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Abstract: Monitoring post-fire vegetation response using remotely-sensed images is a top priority for
post-fire management. This study investigated the potential of very-high-resolution (VHR) GeoEye
images on detecting the field-measured burn severity of a forest fire that occurred in Evros (Greece)
during summer 2011. To do so, we analysed the role of topographic conditions and burn severity, as
measured in the field immediately after the fire (2011) and one year after (2012) using the Composite
Burn Index (CBI) for explaining the post-fire vegetation response, which is measured using VHR
satellite imagery. To determine this relationship, we applied redundancy analysis (RDA), which
allowed us to identify which satellite variables among VHR spectral bands and Normalized Difference
Vegetation Index (NDVI) can better express the post-fire vegetation response. Results demonstrated
that in the first year after the fire event, variations in the post-fire vegetation dynamics can be properly
detected using the GeoEye VHR data. Furthermore, results showed that remotely-sensed NDVI-based
variables are able to encapsulate burn severity variability over time. Our analysis showed that, in this
specific case, burn severity variations are mildly affected by the topography, while the NDVI index,
as inferred from VHR data, can be successfully used to monitor the short-term post-fire dynamics of
the vegetation recovery.

Keywords: burn severity; Composite Burn Index (CBI); post-fire dynamics; redundancy analysis

1. Introduction

Over the last decades, forest fires have become more frequent, prolonged, and severe than ever
before [1,2], especially in the Mediterranean region. As such, fires have long-lasting and devastating
impacts on forest ecosystems both in ecological and socio-economic terms. Therefore, it is now more
important than ever to act upon enforcing sustainable fire management policies and promote forest
sustainability [3].

To decide upon effective policies, national governments and stakeholders require accurate and
detailed information regarding the impact of wildfires on forest ecosystems and their response after
the disturbance [4-6]. Accurate information regarding the spatial distribution and level of damage
(i.e., burn severity), as well as the post-fire vegetation recovery, is essential to quantify the impact
of fire on the landscape, select and prioritize treatment measures, and plan and monitor restoration
activities [7]. The overall effectiveness of post-fire management plans (restoration activities, etc.)
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depends highly on understanding the relationships between patterns, dynamic processes, and potential
restorative measures [3].

Such relationships are documented in the literature through the use of the term “burn severity”.
The burn severity metric is commonly defined in the literature as “a measure that gauges the magnitude
of ecological change caused by fire and is related to short and long-term changes in vegetation structure
and soil composition” [2,3,8,9]. The use of such a burn severity metric has been extensively studied in
the past and it is now well understood that the good knowledge of the spatiotemporal variability of
burn severity is key to understanding the vegetation response after a fire incident [10-13].

According to the literature, the time spans at which different plant species respond to burn
severity may vary significantly [14]. Such differences in response timing have been shown to be one of
the most critical factors that directly affects the post-fire succession in Mediterranean ecosystems [14].
Understanding the dominant time-scales at which burn severity influences vegetation the most, could
improve our knowledge regarding the resilience of vegetation to fires [15].

Burn severity is controlled by many diverse biotic and abiotic parameters: vegetation type (fire
sensitive species or fire adapted species), stand structure [16], topography (i.e., slope and aspect), and
climatic conditions [9,17-21]. According to the study by Birch et al. [9] the two most important factors
in controlling burn severity are vegetation cover and topography. Burn severity in forested areas
has been shown to strongly depend on the dominant pre-fire tree species [17,18]. The magnitude of
severity is usually very high in areas covered by flammable conifer species and medium or low in areas
covered by less flammable species, such as broadleaves [22]. Topography is also an important factor
that influences burn severity. In general, prior and after the fire event, topography plays a crucial role
in many ecological processes, as it greatly affects the fire proneness of an area, as well as the post-fire
vegetation dynamics [23,24]. However, the association among vegetation response, topography, and
burn severity cannot be generalized for all ecosystems. Therefore, it is strongly recommended to the
land managers to investigate the above relationship for each ecosystem separately, before making any
important management decision [2].

Several methods have been proposed for measuring short and long-term burn severity. The
Composite Burn Index (CBI) proposed by [25,26] is the most widely used field-based index for
quantifying burn severity. CBI field measurements are usually coupled with medium-resolution
satellite data like Landsat data (30 m), in order to map burn severity over large areas [27]. The level
of fire damage in remote sensing studies is usually inferred from satellite images using indexes such
as the Differenced Normalized Burn Ratio (dANBR) and the Normalized Difference Vegetation Index
(NDVI) [13,28]. Examples of successful uses of CBI estimations along with satellite data can be found
in [12,29-31].

Most research found in the literature about burn severity has been carried out using
medium-resolution satellite data, as opposed to a handful of studies which evaluate burn severity
from very-high-resolution (VHR) satellite data [27,31]. However, the thematic precision of these
studies is generally insufficient for studying burn severity implications at a small scale. As a result,
the production of burn severity maps, particularly at very high spatial resolutions, still remains an
active research topic [32]. In general, burn severity studies require more detailed inventories. This is
because more accurate information regarding the different levels of burn severity is expected to aid
our understanding about the complex effects of fire [18].

The goal of generating accurate local-level burn severity map products is usually accomplished
using VHR imagery, combined with one of the existing classification methods [7]. However, as new
technology (e.g., new sensors) and advanced image analysis techniques becomes available, burn
severity classifications will increasingly need to be adjusted in order to reflect any additional fire effects
detected by new VHR sensors [32]. In this context, it is of paramount importance for the stakeholders
to determine the degree of consistency between the burn severity field data and the VHR satellite data.

To date, however, there is a lack of studies examining the interrelationship between burn severity,
ecosystem response, and topography, especially over the complete extent of a large fire [13,33-35].
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This could be because such studies require extensive and costly field measurements for extracting
the burn severity metric. Although VHR data have been mainly used for assessing burn severity,
there remains a need to explore the interrelationships between remotely-sensed measurements and the
physical/ecological processes that the CBI index infers [3].

So far, a limited number of studies have found statistical correlations between fire severity metrics,
topography, VHR satellite data, and ecosystem responses [9,28,36,37]. This has generated the need for
more studies focused on the understanding of these relationships.

The main objectives of this study are (i) to investigate the potential of the remotely-sensed post-fire
vegetation response data as an expression of field-measured burn severity and topography; and (ii) to
identify the best satellite variables (bands and NDVI index) able to capture the post-fire vegetation
dynamics in the short-term. In this perspective this study used VHR GeoEye images of a forest fire that
occurred in Evros (Greece) during summer 2011, in relationship with the CBI measured immediately
after the fire (November 2011) and one year after the fire (August 2012).

2. Study Area

The study area is located in Evros, Greece’s northernmost prefecture (40°57'-41°0'N and
26°2'-26°8'E) (Figure 1). Evros is located in the eastern-northeastern part of Thrace and shares
international borders with Turkey to the east and Bulgaria to the north. The forests in this region
are mainly composed of conifers, oaks, and beeches, and they are widely known for their unique
ornithological and ecological value. The climate in this region is mainly Mediterranean, although it is
affected by continental conditions.

Study Area: Evros-Greece
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Figure 1. Location of the study area. The area delineated with red is the area of Evros (Greece) which
was severely affected by a large fire in August 2011. The detail on the upper right depicts the locations
which were visited in the field in order to measure the Composite Burn Index (CBI).

The area was affected by a large forest fire (5996 ha) in the summer of 2011. The fire started on
24 August 2011 and it was extinguished three days later, on 27 August 2011. Prior the the fire the area
was mainly covered by coniferous (29.96%), oak (18.39%), and mixed oak—coniferous forests (27.15%).
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The fire is the first fire event after the reforestation interventions that took place in the mid-1970s.
The predominant types of landcover at that point of time (in the mid-1970s) was makia vegetation
and sparse oak forests. The area’s elevation varies from 0 m to 1650 m above sea level, whereas the
elevation within the fire perimeter varies from 35 m to 433 m (Figure 2).
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Figure 2. Elevation map and geographical position of the CBI plots (52) left after the tree clearings.
The color scale illustrates values of elevation change. The black trees in the map, indicate the CBI
plot locations.

3. Datasets and Preprocessing

3.1. Field Data

We collected two sets of data over 100 randomly-selected 60 x 60 m plots (Figure 1). The first set of
data was collected in November 2011 immediately after the fire incident, and the second one a year later,
in August 2012. To select the location of our burn severity data sampling, we used a stratified random
sampling scheme based on a burn severity map. Such a map was derived using the object-based
image analysis (OBIA) [38] method by classifying the multispectral four-band WorldView-2 imagery
into seven classes: water, healthy vegetation, bare land/other land uses (ex.agricultural areas), high
severity, high-medium severity, and medium-low severity.

The whole process was fulfilled in two main phases. In the first phase, we applied a
multi-resolution segmentation to the World View-2 image. Throughout the procedure, we segmented
the image and generated image objects based on several adjustable criteria of scale, band weights, and
homogeneity in color and shape. Overall, we created two segmentation levels for the World View-2
image. In each level, the segmentation parameters were determined through a trial-and-error
procedure. The first level targeted exclusively at agricultural areas by using the land-parcel
identification system (LPIS) thematic layer parameter to segment the image. The LPIS thematic
dataset is a vector layer that contains information about the boundaries of all Greek agricultural
areas and it was used during the segmentation process to separate the agricultural areas from its
surroundings. At the second level, the area outside the LPIS boundaries was segmented again in order
to derive homogeneous objects that are representative of all of the remaining classes. In the second
phase, we developed a rule-based classification model to classify image objects into the burn severity
classes. In our analysis, the representative features of the object classes were determined with the
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associated threshold value and implemented in the classification model. We regulated the membership
of objects in certain classes via classification rules with fixed threshold values. Overall, the whole
process resulted in the production of the previously-mentioned burn severity map.

The 100 CBI plots, which we selected based on the object-based burn-severity map, were
positioned in the field by taking into account accessibility constraints. All CBI plots were located at
least 100 m away from each other. Unfortunately, the Greek forest services, in an effort to aid the
recovery of the ecosystem, allowed loggers to remove all of the dead trees and clear the burnt land.
Due to this, we were able to use only 52 out of the initial 100 plots in our analysis.

To gauge the magnitude of ecological change caused by fire in the field, we adopted the Composite
Burn Index (CBI). The CBI was measured for each plot, using an adapted version of the FIREMON
landscape assessment methodology [1,8]. Burn severity was recorded using the FIREMON field
form [8] and field digital photography. Five burn severity factors were visually assessed for each
vegetation strata ((i) substrates; (ii) grasses, herbs, and small shrubs below 1 m; (iii) tall shrubs and
trees up to 5 m; (iv) trees from 5 to 20 m; and (v) large trees taller than 20 m) within each plot, and
were given a score ranging from zero to three (unburned to highest severity) [39]. In the following,
a total CBI score was calculated for each plot by averaging the five rating factors measured in field.
Finally, for the purposes of the statistical analysis, the CBI values were linearly scaled to the range
between 0 and 1.

To provide additional information regarding the statistical attributes of the derived CBI variables
(Time1CBI and Time2CBI) we plotted their histograms in Figure 3. From the figure we can see that in
both examined cases (Timel at 2011 and Time?2 at 2012), the CBI scores are highly clustered around the
high values (and, therefore, they are not very dispersed). This indicates that most of the plots have
high CBI scores and implies that most of the areas examined in the field have been severely affected by
the fire. Visual analysis of the two histograms indicates that there is a significant difference between
the two distributions. In the case of the first histogram (Figure 3a) the majority of the CBI plots have
high scores that fall into the 2.75-3 class whereas, in the second histogram, the number of plots that
belong to this class has decreased significantly. In the first case examined (TimelCBI), the concentration
of the CBI scores around the high values can be attributed to the fact that, immediately after the fire,
the effects of burn severity were very intense. This find also agrees with our field observations. In the
second case (Time2CBI) (Figure 3b) the fact that the number of CBI plots with the highest scores is
decreased can be explained by the fact that one year after the fire the ecosystem has started recovering.

Frequency
Frequency

0

05 1 15 2 25 3 0.5 1 15 2 25 3
TimelCBI Time2CBI

(a) (b)

Figure 3. Distributions of mean CBI values for (a) Timel (2011) and (b) Time2 (2012).

3.2. Satellite Data

Two satellite images collected by the GeoEye sensor (2 m) were used for the statistical analysis
(Table 1). The first image was captured immediately after the fire (20 November 2011) and the second
image was captured one year later (23 August 2012). Henceforth, the preprocessed images will be
referred, respectively, as GeoEyetime1 and GeoEyetimen.
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The two GeoEye images were atmospherically corrected, using the ATCOR 2 software (Wessling,
Germany), and ortho-rectified with the help of the 5 m Digital Elevation Model [40]. The total RMS
errors associated with the ground control points (GCPs) did not exceed 0.5 pixels in either of the
two images. Auxiliary data, such as the Land-parcel Identification system (LPIS) data for Greece
and a WorldView-2 image captured soon after the fire event, were also used during the object-based
classification process.

To investigate the relationship between the VHR satellite data (GeoEye) and the field-measured
burn severity, for each CBI plot we identified a 60 m x 60 m area centered on each CBI field point,
where we computed five remotely-sensed variables. First, we computed the mean value of each
spectral band (i.e., blue, green, red, near-infrared). Then, since various studies have shown that the
variation of the vegetation cover after a severe fire event is highly correlated with the magnitude of the
burn severity [12,33,41] we computed the mean Normalized Difference Vegetation Index (NDVI) [42]
per sampling plot. We applied the same procedure to both post-fire images (i.e., GeoEyetime1 and
GeoEyetimez). Overall, we derived 10 variables. Figure 4 presents the histograms of the derived
variables. From the figure we can see that variation exists in all variables. Ultimately, all of the
aforementioned variables were linearly scaled to the range (0, 1) [7]. For better understanding of the
NDVI variable, Figure 5 presents the variability within the CBI plots of different levels of burn severity.
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Figure 4. Cont.



Remote Sens. 2016, 8, 566 7 of 15

Frequency
Frequency

0.05 0.1 0.15 0.2 0.25 012 014 016 018 02 022 024 026 028
NirTimel NirTime2

(8) (h)

Frequency
Frequency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
NDVITimel NDVITime2

(i) ()

Figure 4. Histograms for the 10 satellite-derived variables. These distributions were obtained after
plotting the mean values of the two sets of CBI plots, for each band and each different image (GeoEye
2011 and 2012); (a) blue band histogram for the year 2011; (b) blue band histogram for year 2012;
(c) green band histogram for the year 2011; (d) green band histogram for the year 2012; (e) red band
histogram for the year 2011; (f) red band histogram for the year 2012; (g) NIR band histogram for the
year 2011; (h) NIR band histogram for the year 2012; (i) NDVI band histogram for the year 2011; and
(j) NDVI band histogram for the year 2011.

In this study we used the NDVI index as a proxy for quantifying the magnitude of post-fire
vegetation response in GeoEye images (Equation (1)):

NIRbund - REDbund

D
NIRband + REDhand

NDVI =

NDVI is a commonly used index for post-fire vegetation response in the literature [2,33,43] and is
based on the absorption and reflection characteristics of plants in the red and near-infrared spectral
regions [12]. In addition to NDVI, previous work [44] has proposed the use of the Normalized Burn
Ratio (NBR) [26], and the differenced Normalized Burn Ratio (ANBR) [26] for detecting and monitoring
post-fire vegetation changes over time. Unfortunately, their use was not possible in this study because
they require data from regions of the optical spectrum that are not available in GeoEye images (Table 1).
More specifically, the NBR index requires multispectral sensors with a NIR band between 0.76-0.9 um
and a SWIR band between 2.08-2.35 pm.
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Figure 5. Visual representation of the NDVI variability in three different burn severity field plots. The
areas delineated with red are the 60 m x 60 m CBI field plots. (a) NDVI values within a high-severity CBI
plot; (b) NDVI values within a moderate-severity CBI plot; and (c¢) NDVI values within a low-severity
CBI plot. The background of the figure is the 2011 NDVI image.

Table 1. Characteristics of the satellite data used in this study.

Satellite Sensor

Code Name

Acquisition Date Spectral Range

GeoEye-1

GeoEyetime1

Blue: 450-510 nm
Green: 510-580 nm
Red: 655-690 nm
Near Infra Red: 780-920 nm

20 November 2011

GeoEye-1

GeoEyetime»

Blue: 450-510 nm
Green: 510-580 nm
Red: 655-690 nm
Near Infra Red: 780-920 nm

23 August 2012

WorldView-2

Blue: 450-510 nm
Green: 510-580 nm
Red: 630-690 nm
Near Infra Red 1: 770-895 nm

Soon after the fire
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3.3. Topographic Data

We used a five-meter (5 m) DEM [40] to derive three topographic parameters: (a) aspect;
(b) slope; and (c) elevation. The produced grids of aspect and slope were calculated in radians,
while the elevation in meters. Aspect is a variable measured in circular scale, with values ranging from
0° to 360° degrees. The fact that angles 0° and 360° are identical in this scale imposes the conversion of
aspect values into sine and cosine values [45]. As a result, the aspect values were initially converted
from degrees to radians and then to sine and cosine values using ArcMap Raster Calculator. The
converted aspect sine values ranged from —1 (at due west) to 1 (at due east) [46], while cosine values
ranged from —1 (at due south) to 1 (at due north) [45].

The values of all the topographic parameters (aspect cosine, aspect sine, slope, and elevation)
were obtained for all CBI sampling points by computing the mean of each variable within a window of
12 pixels x 12 pixels (60 m x 60 m plot area). Figure 6 presents the histograms of the derived variables.
From the figure we can see that variation exists in all four variables. This implies that the CBI plots
were collected from areas with diverse topographic characteristics. Finally, the values of these variables
were linearly scaled between 0 and 1 in order to facilitate the statistical analysis.
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Figure 6. The topographic variables histograms of the CBI plots. (a,b) (from left to right) histograms
for the mean cos and sin values of the CBI plots; and (c,d) histograms for the mean elevation and slope
values of the CBI plots.

4. Methodology

To quantify the potential of VHR GeoEye satellite data to express the variations in the
field-measured burn severity we used redundancy analysis (RDA) [47]. The RDA method was
first developed by Rao [48,49]. RDA is a form of asymmetric canonical ordination technique widely
used by ecologist and palaeoecologists [50]. The term “asymmetric” means that the two data matrices
used in the analysis do not play the same role: there is a matrix of response variables, denoted Y, which
often contains community composition data, and a matrix of explanatory variables (also referred to as
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predictors) (e.g., environmental), denoted X, which is used to explain the variation in Y, as in regression
analysis [49]. In this case, the term “redundancy” has a specific meaning and is used interchangeably
with explained variance [49,51]. RDA can also be considered as an extension of principal component
analysis because the ordination axes are linear combinations of the response variables (Y), but they
are also constrained to be a linear function of the predictor [49]. Accordingly, the ordination of the
dependent variables is forced to be explained by the configuration of the independent variables such
that the RDA axes represent the percentage of the variance of the response variables explained by
the predictors [52,53]. In a RDA biplot, the correlation among variables is given by the cosine of the
angle between two vectors. Vectors pointing in roughly the same direction indicate a high positive
correlation, vectors crossing at right angles correspond to a near zero correlation, and vectors pointing
in opposite directions show a high negative correlation [54]. Environmental variables with long vectors
are the most important in the analysis [55].

In order to identify the explanatory power of field-measured burn severity and topography on the
vegetation post-fire response, we carried out the RDA using the topographic and CBI data as predictor
variables (X), while the remotely-sensed VHR variables represented the response variables (Y). The
rationale was to see if, through time, the satellite-based data can somehow express the field-measured
burn severity and to quantify to what extent, in our study case, burn severity rather than topography
influences the satellite-based data. RDA was performed using XLSTAT statistical software. We tested
the significance of the analysis by running 500 permutations.

5. Results

The results obtained by applying the RDA method are presented in Figure 7 and Tables 2 and 3.
Figure 6 illustrates that the first, second. and third axis represented, respectively, 95.83%, 2.81%, and
1.10% of the total variation of the multivariate system (p-value < 0.001); the first axis is, hence, the
component which accounts for nearly the totality of the system variation.

0,8
r Cos
0,4 |
BlueTimel i
Time2CBI GreenTime
BlueTime2 )
~ Elevation NDVITimd2
3 N GreenTime2 ime
= .
S\ 0 \ " Slope
o P ‘
[ TimelCBI RedTime2 NirTime2
NDVITimel
/
Sin NirTimel
RedTimel
-0,4
0,8
12 -0,8 0,4 0 04 08 12 L6
F1 (95,83 %)
Y X

Figure 7. RDA biplot showing the explanatory variables (X) with lines (different color for each variable)
and the response variables with orange dots.The RDA ordination plot was performed using the
topographic (slope, aspect ,elevation) and field-measured CBI data as explanatory variables, and the
remotely-sensed variables as response variables. The percent of the total variation that is explained by
the first two canonical axes (F1 and F2) are 95.83% and 2.81%, respectively.
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Table 2. RDA explanatory variables scores for the first three axis.

Variable F1 F2 F3
Elevation 0.0764 0.0328 —0.4437
Slope 0.2954 0.0949 0.0787
Cos 0.4058 0.4115 —0.0962
Sin —0.2299 —0.1725 —0.2778
TimelCBI —0.8628 0.0109 0.0380
Time2CBI —0.8127 0.0147 0.0127

Table 3. RDA response variables scores for the first three axis.

Variable F1 F2 F3
BlueTimel —0.0254 —0.0168 0.0269
GreenTimel —0.0224 —0.0270 0.0272
RedTimel —0.0445 —0.0474 0.0301
NirTimel 0.0691 —0.1078 0.0256
BlueTime2 —0.0495 —0.0128 0.0090
GreenTime2 —0.0542 —0.0216 0.0096
RedTime2 —0.1344 —0.0360 0.0078
NirTime2 0.0693 —0.0629 0.0287
NDVITimel 0.5136 —0.0763 —0.0722
NDVITime2 0.8301 0.0497 0.0457

According to Table 2, the most contributing variables to the first axis are the CBI ones at
both times of measurement (TimelCBI and Time2CBI), while the topographic data are the least
contributing variables. The response variables were mostly explained by the predictors NDVITimel
and NDVITime?2 (Table 3); to the contrary the raw spectral data are only partially related to the
considered explanatory variables.

6. Discussion

Burn severity is commonly defined as a measure of the magnitude of the short- to long-term
ecological changes caused by fire [9]. Due to the challenges faced by resource managers in maintaining
post-fire ecosystem health, there is a need for methods to assess the ecological consequences of
disturbances and to monitor the vegetation changes occurring after a burning event [7].

Generally, topography plays an important role in vegetation dynamics prior and after the fire.
Prior to the fire, topography influences the microclimate (temperature, precipitation, and direct solar
radiation), plant productivity, and biomass accumulation that directly affects the amount of biomass
available to burn during the outbreak of fire [18]. After the fire event, the topographic variations in
slope, aspect, and elevation influences the microclimate at a local scale which, in turn, affects the
post-fire regeneration rates [47].

Our statistical analysis results indicate that the two NDVI time variables are slightly correlated
with slope, aspect, and elevation. This important finding can be attributed to two possible reasons.
First, since the vegetation response to fire depends on many factors, it is likely that various factors other
than the topography have an important influence on the post-fire vegetation response. Second, prior
to the fire the studied area was mainly covered by Pinus reforestations, all of which were established
on areas with similar altitudes. For this reason a large number of samples (CBI field measurements)
were selected from areas with similar altitude. The fact that the statistical analysis is based on a dataset
with samples taken from similar altitudes may explain the lack of elevation influence on the post-fire
vegetation response. Even though these statements need further investigation in order to arrive to
concrete conclusions, it is clear that the restoration planning can greatly benefit from insights into the
vegetation response to local environmental conditions.
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Following, the results showed that there is a high negative correlation between the two CBI time
variables and the corresponding NDVI (NDVITimel and NDVITime2). This negative correlation is
attributed to the fact that during the course of time, the ecosystem responds to disturbance which,
in turn, affects the degree of burn severity. That is, the increased satellite-derived NDVI values
are associated with lower degree of burn severity in the field. Several studies have shown that the
variation of the vegetation cover after a severe fire event is highly correlated with the magnitude of burn
severity [7,12,33]. This indicates that the NDVI data extracted from the GeoEye imagery, was able to
capture the ecosystem response to fire, which was quantified using the field-based CBI measurements.

The strong, negative correlation between the CBI and NDVI variables demonstrated that GeoEye
images captured soon after the fire are capable of detecting the short term (up to one year) bi-temporal
variations in burn severity. A possible explanation is that the fire effects are quite homogeneous
and easy to measure short after the disturbance [18]. Even though in this study we focused on the
short-term relationship between the GeoEye images and the fire effects, it would be beneficial to extend
our analysis by looking at the long-term relationship. To do so, we will need a much larger dataset
of field-measured burn severity that is not currently available. Extracting information from imagery
with higher spectral, spatial, and temporal resolutions is expected to augment existing information
regarding ecosystems response after fire.

In summary, the results of this study showed that satellite-derived NDVI time variables are highly
associated with the CBI field-measured variables. This observation emphasizes the role of the VHR
GeoEye remotely-sensed data in monitoring burn severity through space and time. This work is a
preliminary study, in which the relationship between the field-measured CBI index and the VHR
GeoEye satellite data are explored. To the best of our knowledge there is no burn severity index found
in literature to be specifically designed for VHR satellite data. Hence, the results of this study could
possibly provide a first guide for designing a new burn severity index specifically focused on VHR
satellite data. Since the results of this study have the limit to be site specific, further research is needed
to fully understand the interrelationships between topography, field measured burn severity, and the
post-fire vegetation response, which, in this specific case, has been quantified using VHR GeoEye
satellite data. In this context, it would be very interesting to examine how the previously-mentioned
relationships vary over longer time spans and different study areas.

7. Conclusions

Fire and burn severity studies will continue to depend on satellite data and field-based burn
severity data. As generally known, field sampling is very complicated due to several factors, like
survey costs, the accessibility of the locations, the limited surface coverage, etc. Finding a direct
correlation between in situ measurements and remotely-sensed data also in this research field may
have useful implications in terms of post-fire analysis, recovery strategies, intervention and land
management work. Therefore, it is to the best interest of stakeholders and local managers to improve
the quality of the burn severity information. To do so, it is critical to associate the burn severity field
measurements with the appropriate satellite image. The results of this study indicate, that short term
burn severity can be successfully estimated using GeoEye images. Accurate burn severity estimates
will augment existing information regarding the ecosystems response after fire. Furthermore, this kind
of study can open new perspectives in terms of environmental applications of new sensor products.
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