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Abstract: As a large carbon pool, global forest ecosystems are a critical component of the global
carbon cycle. Accurate estimations of global forest aboveground biomass (AGB) can improve the
understanding of global carbon dynamics and help to quantify anthropogenic carbon emissions.
Light detection and ranging (LiDAR) techniques have been proven that can accurately capture
both horizontal and vertical forest structures and increase the accuracy of forest AGB estimation.
In this study, we mapped the global forest AGB density at a 1-km resolution through the integration
of ground inventory data, optical imagery, Geoscience Laser Altimeter System/Ice, Cloud, and
Land Elevation Satellite data, climate surfaces, and topographic data. Over 4000 ground inventory
records were collected from published literatures to train the forest AGB estimation model and
validate the resulting global forest AGB product. Our wall-to-wall global forest AGB map showed
that the global forest AGB density was 210.09 Mg/ha on average, with a standard deviation
of 109.31 Mg/ha. At the continental level, Africa (333.34 ˘ 63.80 Mg/ha) and South America
(301.68 ˘ 67.43 Mg/ha) had higher AGB density. The AGB density in Asia, North America and
Europe were 172.28 ˘ 94.75, 166.48 ˘ 84.97, and 132.97 ˘ 50.70 Mg/ha, respectively. The wall-to-wall
forest AGB map was evaluated at plot level using independent plot measurements. The adjusted
coefficient of determination (R2) and root-mean-square error (RMSE) between our predicted results
and the validation plots were 0.56 and 87.53 Mg/ha, respectively. At the ecological zone level, the R2

and RMSE between our map and Intergovernmental Panel on Climate Change suggested values were
0.56 and 101.21 Mg/ha, respectively. Moreover, a comprehensive comparison was also conducted
between our forest AGB map and other published regional AGB products. Overall, our forest AGB
map showed good agreements with these regional AGB products, but some of the regional AGB
products tended to underestimate forest AGB density.
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1. Introduction

Global forest ecosystems, which cover 30% of the land surface, play an important role in the
global carbon cycle since they sequester atmospheric carbon dioxide and are able to mitigate global
warming [1,2]. Aboveground biomass (AGB) is the total amount of biological material (usually based
on a dry weight) presented above the ground in a specified area. Since approximately 50% of plant
biomass is composed of carbon, accurate estimation of the total AGB in forest ecosystems is critical for
carbon cycle studies from local to global scales [3]. For example, the amount and distribution of regional
to global biomass can provide either initial conditions or validations for ecosystem and biogeochemical
models [4–7], which simulate the exchange of carbon and energy between the atmosphere and
biosphere. They can also provide the baseline of forest carbon stocks for calculating carbon fluxes
from deforestation, land cover change, and other disturbances [8,9]. Moreover, biomass and its change
also act as indicators of other ecosystem services, such as biodiversity [10]. Consequently, accurate
estimations of the regional to global distribution of forest AGB are of great benefit to improve our
understanding of carbon dynamics and quantify anthropogenic emissions caused by deforestation
and forest degradation against the background of global climate change [11–13].

Generally, forest inventories are recognized as the most accurate method for providing information
on biomass at local or regional scales [14,15]. However, these approaches are usually time-consuming
and labor-intensive when applied to large areas, and also cannot provide spatially continuous AGB
measurements [16]. Compared with traditional forest inventory methods, the availability of remote
sensing techniques has greatly improved the efficiency and lowered the cost of forest AGB mapping,
especially in remote areas [17,18]. Remote sensing techniques cannot directly acquire forest AGB
measurements. Instead, they are used with regression models, which are built by linking ground
measurements with remotely sensed data.

Currently, passive optical remote sensing, radar, and light detection and ranging (LiDAR)
techniques are the three commonly used remotely sensed data sources for mapping forest AGB.
Among these three techniques, passive optical remote sensing (e.g., Landsat Thematic Mapper data
and MODIS (Moderate Resolution Imaging Spectroradiometer) data) and radar (e.g., phased array
L-band Synthetic Aperture Radar (SAR)) are the more frequently used data sources because of their
availability at regional to global scales [19–21]. However, many studies have demonstrated that
approaches using optical remotely sensed data are limited by the saturation effect of optical sensors,
and the saturation points can range from 15 to 150 Mg/ha depending on different sensors [22–30].
The saturation points for active SAR are higher than for optical sensors (ranging from 30 to over
300 Mg/ha based on the use of different frequencies and polarization methods), because SAR is more
sensitive to forest spatial structures and standing biomass [31–35].

LiDAR, as an alternative active remote sensing technique, uses a focused short-wavelength laser
pulse, which can penetrate the forest canopy more effectively [36]. With its ability to detect the
vertical structures in forests, LiDAR has proved to be an efficient tool in the study of forest AGB
estimation in a variety of forest environments [37–41]. Currently, the saturation phenomenon is rarely
observed in the LiDAR approach, even in forests with high AGB levels; and the accuracy of forest
AGB mapping can be significantly improved by using LiDAR, compared with optical passive and
radar approaches [39,42,43]. However, LiDAR currently has disadvantages in temporal and spatial
coverages, which has limited its application in global forest AGB estimation. Neither of the two major
LiDAR platforms, airborne LiDAR and spaceborne LiDAR, can provide globally continuous LiDAR
measurements. So far, airborne LiDAR data are only available in certain small areas because of the
relatively high cost of airborne LiDAR flight missions [44,45]. The only available spaceborne LiDAR
system, Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and Land Elevation
Satellite (ICESat), can provide worldwide LiDAR data. However, the density of the GLAS footprint is
too low to directly produce a wall-to-wall forest AGB map [46].

Recently, many studies have tried to integrate multisource data to overcome the deficiencies of
GLAS data and estimate regional- to continental-scale forest AGB. One of the major problems in these



Remote Sens. 2016, 8, 565 3 of 27

studies is how to build correlations between plot measurements and GLAS footprints considering the
relatively low density of GLAS footprints. Generally, there are three ways to link forest inventories
data and GLAS points [47]. (1) Direct links based on the geolocation [48–50]. Baccini et al. [49] used
field data that were collected within the GLAS footprints to calibrate GLAS observations, and then
used GLAS observations and other remote sensing data to generate a spatially continuous AGB in
a pan-tropical forest; (2) The use of airborne LiDAR data as a medium [38]. Boudreau et al. [38]
first used airborne LiDAR data to calibrate GLAS observations in parts of the study area, and then
extrapolated GLAS observations using other remote sensing data to the whole study area in Québec,
Canada; (3) Extrapolation of GLAS parameters [47,51]. Instead of linking ground measurements
with GLAS data at the footprint level, Su et al. [47] first extracted GLAS full-waveform parameters
and used statistical methods to extrapolate them into spatially continuous layers. Then, they used
these extrapolated layers as predictors to build statistical models based on ground inventories, and
estimated continuous forest AGB distribution in China. No matter which method is chosen, having a
sufficient number of ground measurements that are well distributed across the world is a pre-requisite
to estimate the distribution of global-scale forest AGB.

Although biomass maps based on multisource remote sensing data have recently become available
in certain national [47,52], pan-tropical [48,49], circumboreal [53], and northern boreal and temperate
forests [54], spatially explicit datasets on global forest AGB in a single product have been rarely
seen up to now. In this study, our objective was to estimate global forest AGB using a combination
of ground inventory data, spaceborne LiDAR, optical imagery, climate surfaces, and topographic
data. Over 4000 plot measurements were collected from published literature to address this objective.
This study selected extrapolation of GLAS parameters (the third method mentioned above) as the
method to map global forest AGB [47] because there was only a low chance that the collected plot
measurements would coincide with the GLAS footprints and sufficient airborne LiDAR data were not
available. The resulting global wall-to-wall forest AGB map at 1-km resolution can be downloaded
from web [55]. This new product can help to improve the accuracy of predictions of carbon dynamics
and quantify the carbon fluxes from deforestation, land cover change, and other disturbances.

2. Materials and Methodology

As mentioned, this study chose the framework developed by Su et al. [47], which has been
successfully used to estimate the nationwide forest AGB of China, to estimate global forest AGB. In line
with the framework (Figure 1), we collected forest ground inventory, GLAS, Normalized Difference
Vegetation Index (NDVI), topographic, climatic and land cover data (Table 1). Detailed descriptions of
each dataset and a brief introduction to the AGB estimation methodology are given below.

Table 1. Variables used in the random forest method to model aboveground biomass of forests.

Variable Dataset Year Resolution Reference

Annual Mean Precipitation (mm) Worldclim 1950–2000 1 km Hijmans et al., 2005 [56]

Precipitation Seasonality
(Coefficient of Variation) Worldclim 1950–2000 1 km Hijmans et al., 2005 [56]

Annual Mean Temperature (˝C) Worldclim 1950–2000 1 km Hijmans et al., 2005 [56]

Temperature Seasonality
(standard deviation ˆ 100) Worldclim 1950–2000 1 km Hijmans et al., 2005 [56]

Elevation (m) SRTM 2000 1 km Jarvis et al., 2008 [57]

Slope SRTM 2000 1 km

NDVI MOD13A2 2004 1 km [58]

Land Cover MCD12Q1 2004 1 km [59,60]

Waveform Extent GLAS 2004

Leading Edge Extent GLAS 2004

Trailing Edge Extent GLAS 2004
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Figure 1. The workflow for estimating global forest aboveground biomass (AGB) distribution from
multisource remotely sensed data and ground inventory data.

2.1. Ground AGB Measurements

A sufficient amount of ground inventory data is fundamental to estimate forest AGB from remotely
sensed data, no matter which methods are chosen. In this study, we collected 4090 records of plot
measurements from papers published between 1990 and 2013. The allometric equations used in these
literatures were based on either DBH (diameter at breast height) or DBH and tree height (Table S1).
Some literatures directly provided the carbon density (Mg¨C/ha) and we used a common factor of 2.0
to convert the carbon density to biomass density (Mg/ha) [14]. The stand origin (plantation or natural
forest), plot size, measurement method, data publication year, and AGB value for each individual
record are provided in the supplementary materials. To ensure the in-situ plot measurements were
representative to the forest conditions of corresponding locations, the collected plot measurements
were further filtered to ensure they were larger than 0.05 ha in size. The records measured through
harvesting methods were also excluded from the AGB estimation procedures. In total, 3348 plot
samples were retained in this study for the forest AGB mapping procedure (Figure 2; Table S2).
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2.2. GLAS Data

The GLAS instrument was onboard the NASA (National Aeronautics and Space Administration)
ICESat satellite, which was launched on 12 January 2003. It was equipped with three laser sensors,
L1–L3, each of which has a 1064-nm laser channel for surface altimetry and dense cloud heights.
The ellipsoidal footprints of ~65 m in diameter were spaced at 170 m along the track and at tens of
kilometers across tracks [61]. In this study, we selected GLAS data from the operating periods L2B,
L2C, and L3A (17 February 2004 to 9 November 2004) for the AGB mapping procedure. Three GLAS
products, namely GLA01, GLA06, and GLA14, were downloaded from the ICESat/GLAS data pool.
They respectively recorded the full-waveform, geolocation and data quality, and surface elevation
information of each laser shot. These three products were linked by the combination of a unique record
index (i_rec_ndx) and shot count (i_shot_count) for each shot.

To ensure the quality of the GLAS measurements, we further applied four criteria to filter the
GLAS laser shots, namely: (1) should be cloud free (FRir_qa_flg = 15); (2) should have no saturation
effects (i_satNdx <2); (3) should have high signal to noise ratios (i.e., >50); and (4) should not be
significantly higher (i.e., <100 m) than the land surface elevation denoted by the Shuttle Radar
Topography Mission (SRTM) data. Finally, 4,513,563 full-waveform records were retained in the final
GLAS dataset. Working from the definitions of the waveform extent, leading edge extent, and trailing
edge extent [62], we derived these three parameters from the full-waveform information of each laser
shot. These variables have been shown to be highly correlated with canopy height, canopy height
variability, and terrain slope, respectively [38,62–64].

2.3. NDVI Data

We selected MODIS-Terra MOD13A2 data as the source of NDVI data [58]. These data are
computed from atmospherically corrected MODIS bi-directional surface reflectance data that have
been masked for water, clouds, heavy aerosols, and cloud shadows. MOD13A2 data are provided
every 16 days at 1-km spatial resolution in the sinusoidal projection. In this study, we collected global
MOD13A2 data during 2004 from the Land Processes Distributed Active Archive Center (LP DAAC)
data pool. Since cumulative NDVI from a time-series can increase the AGB estimation accuracy
compared with the use of NDVI data from a single time period [45], we computed the cumulative
NDVI from the sum of all NDVI data in the growing season of 2004 and used this as a predictor in
forest AGB estimations.

2.4. Topographic Data

The elevation and slope were two important factors in the forest AGB mapping procedures
proposed by Su et al. (2016) [47]. In this study, we chose the SRTM digital elevation model (DEM)
data to obtain land surface elevation and slope information, which covers 99.97% of the Earth land
surface from 56˝S to 60˝N [65,66]. We downloaded the 4.1 version of the SRTM data at a resolution
of 90 m from the Consultative Group for International Agricultural Research-Consortium for Spatial
Information (CGIAR-CSI) [57]. For consistency with other datasets, the SRTM DEM was resampled to
1-km resolution for further steps, and the slope product was derived from the resampled SRTM DEM.

2.5. Climatic Data

Climate conditions have a profound impact on the potential forest AGB [67,68]. We collected
four bioclimatic variables between 1950 and 2000 from the WorldClim dataset, namely annual mean
temperature, annual temperature seasonality, annual total precipitation, and annual precipitation
seasonality [56]. These climate surfaces were provided in 1-km grids.

2.6. Land Cover Data

The global mosaics of the standard MODIS land cover type data product (MCD12Q1) in the IGBP
Land Cover Type Classification was used in this study [59,60]. MCD12Q1 has provided an annual land
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cover map since 2001. For consistency with GLAS data, we downloaded a land cover map for 2004
from the Global Land Cover Facility.

2.7. Forest AGB Estimation Methods

As mentioned, this study used the AGB estimation framework developed by Su et al. (2016) [47]
to estimate the global forest AGB. Detailed descriptions of the framework can be found in Su et al.
(2016) [47]. As shown in Figure 1, the framework can generally be divided into four major steps.

First, the three discrete GLAS full-waveform parameters were extrapolated into spatial continuous
layers using the random forest (RF) algorithm. Each of the three parameters were first aggregated into
1-km pixels using the average value of the corresponding parameter within each pixel. These 1-km
pixels were used as training data to build the RF models to extrapolate the GLAS parameters based on
prediction variables (i.e., cumulative NDVI, DEM, slope, climate surfaces, and land cover map).

Second, 100 sets of ground plot measurements with plot location uncertainty were generated.
Most geolocations for the collected plots were accurate to 0.01˝ (corresponding to ~1 km), but some
were only accurate to 0.1˝ (corresponding to ~10 km). As suggested by Su et al. (2016) [47], the plot
location uncertainty may be too large and bring unneglectable error when linking the plots with other
prediction variables. To minimize the influence of the plot location uncertainty on the forest AGB
estimation, Su et al. (2016) [47] introduced an uncertainty field model into the forest AGB mapping
procedure. This method assumed that the real plot center is randomly located within a circular buffer
zone of the provided plot location. The radius of the buffer is determined by the uncertainty of the
plot location (1 km or 10 km in this study). Then, a large number of plot measurements sets (i.e., 100 in
this study) were randomly generated within these buffers using Monte-Carlo simulation.

Third, the initial global forest AGB distribution was mapped. Each set of the plot measurements
with location uncertainty from the previous step was used as training data to estimate one global
forest AGB distribution layer. The RF algorithm was used to build the regression models, and the three
extrapolated GLAS parameters along with the eight parameters in Table 1 were used as explanatory
variables. The initial global forest AGB map was computed as the average of the results from these
100 separate runs.

Finally, non-forested areas were masked to refine the forest AGB map. The initial global forest
AGB map was further masked by the land cover map. The final global forest AGB map was obtained
by setting the forest AGB density in areas without forest coverage as 0 Mg/ha.

The RF method for extrapolating the GLAS parameters and estimating forest AGB distribution
was implemented using the randomForest R package [69]. The land cover map was used as a dummy
variable in the RF regression procedures. Each land cover type was represented by a unique numerical
identification number and fed into the RF regression tree models. Not all of the retained 3348 plots
were used in the procedure of mapping global forest AGB distribution. Approximately 70% of the
plots were randomly used to map the forest AGB and the other 30% were used to evaluate the forest
AGB estimation result.

2.8. Accuracy Assessment

In this study, we used the adjusted coefficient of determination (R2) and root-mean-square error
(RMSE) to evaluate the accuracy of the estimated global forest AGB at the plot level. The plot-level
accuracy was assessed by directly comparing the estimated result with the independent validation
ground inventory dataset. Moreover, the ecoregion-level AGB value was compared with the IPCC
suggested value in each ecoregion.

We further conducted a comprehensive comparison between our estimated result and other
published regional forest AGB products at the pixel level. Table 2 shows the regional forest AGB
products that were used to make the comparison. As can be seen, most currently available published
forest AGB products are concentrated in three regions, pan-tropical areas, boreal forest, and the
continental U.S. The spatial similarity between our product and these other regional products was
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compared in two ways: direct pixel-level differencing and the use of the Fuzzy Numerical (FN) index
map. The FN index map can measure the similarity of spatial patterns between two numerical raster
maps at the pixel level [70,71]. The FN index, ranging between 0 (fully distinct maps) and 100 (fully
identical maps), can be computed as the average of the numerical similarity s between each pair of
corresponding cells (a and b) in two maps, which in turn can be computed cell-by-cell as follows:

spa, bq “
ˆ

1´
|a´ b|

maxp|a| , |b|q

˙

ˆ 100 (1)

where the cell values (a and b) are re-computed considering the neighboring cells within a specified
window, such as 1 ˆ 1 (in this study), 3 ˆ 3, 5 ˆ 5.

Table 2. Main characteristics of the AGB maps used for the comparison in this study.

AGB Map Coverage Year Resolution Reference

Saatchi map Pan-tropic 2000 1 km [48]
Baccini map Pan-tropic 2007–2008 500 m [49]

Avitabile map Pan-tropic ~2000 1 km [72]
Ruesch & Gibbs map Global 2000 1 km [73]

Margolis map North America 2005–2006 1 km [74]
Thurner map Northern Hemisphere 2010 1 km [54]
Neigh map Euro-Asia 2005–2006 1 km [75]

Blackard map U.S. 2001 1 km [76]
Saatchi map U.S. ~2005 1 km [77]

3. Results

3.1. Wall-to-Wall Global Forest AGB Map

Figure 3 shows the distributions of the three extrapolated GLAS parameters. In general, the RF
regression models explained 64.1%, 51.4%, and 55.1% of the variances in waveform extent, leading
edge extent, and trailing edge extent, respectively. The mean root-mean-square residuals for the
extrapolated waveform extent, leading edge extent, and trailing edge extent were 16.08 m, 12.8 m,
and 4.7 m, respectively. These three extrapolated GLAS parameters along with the other eight
collected predictors were used to estimate the global wall-to-wall forest AGB map. The resulting global
wall-to-wall forest AGB map is shown in Figure 4 and can be downloaded from the web [55]. The RF
regression tree model built from plot measurements without considering plot location uncertainty
explained 61.21% of the variances in forest AGB and the root-mean-squared residual was 99.30 Mg/ha.
The importance of each variables was provided in the Figure S1. The final global forest AGB result
indicated that the mean AGB density for global forests was 210.09 Mg/ha with a standard deviation of
109.31 Mg/ha.

The forest AGB density gradually increased from the boreal forest area to the tropical forest
area (Figure 4a). The boreal coniferous forests, which were mainly distributed in northern Europe,
northern Asia, and northern North America, had relatively low average forest AGB densities (111.63,
97.49 and 126.80 Mg/ha, respectively). The internal variation of the forest AGB in these areas was
also low (16, 20 and 18 Mg/ha, respectively). The temperate continental forests, which were mainly
distributed in eastern Asia, western Europe, and eastern North America, had slightly higher forest
AGB densities compared with the boreal coniferous forests (131.34, 120.70, and 155.85 Mg/ha on
average, respectively). The temperate oceanic forests were mainly distributed in Eastern Europe
with a few areas in western North America, southern South America, and New Zealand. The mean
AGB density of temperate oceanic forest in Europe was 184.20 Mg/ha, which was lower than other
temperate oceanic forests (North America 317.28 Mg/ha, South America 435.45 Mg/ha, and New
Zealand 527.15 Mg/ha). The internal variations of the forest AGB in these areas were higher compared
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with the boreal areas: 80.01 Mg/ha in Europe, 109.71 Mg/ha in New Zealand, 98.47 Mg/ha in North
America, and 84.56 Mg/ha in South America.Remote Sens. 2016, 8, 565 8 of 27 
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Figure 4. (a) The derived wall-to-wall map of global forest AGB in this study; (b) the absolute
uncertainty induced by plot location uncertainty (estimated as the standard deviation of the 100 RF
run results); and (c) the relative uncertainty induced by plot location uncertainty. The study region was
bounded at 80˝ north latitude and 58˝ south latitude and from longitude ´180˝ to 180˝.

The subtropical dry forests (Mediterranean) were mainly distributed in Southern Europe
(193.62 ˘ 51.85 Mg/ha) with a few areas in North America, South America (333.72 ˘ 55.95 Mg/ha),
Asia (157.96 ˘ 19.91 Mg/ha), and Africa (242.90 ˘ 89.24 Mg/ha). Subtropical humid forests were
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mainly distributed in Asia, southern North America, and South America. The subtropical humid
forest in South America had the highest AGB density (336.65 Mg/ha) and variation (101.15 Mg/ha)
compared with those in Asia (171.41 ˘ 53.28 Mg/ha) and North America (141.43 ˘ 26.24 Mg/ha).
Tropical rainforests are usually known for having the highest AGB density compared with other
forests. The tropical rainforests in Africa had the highest mean AGB density (341.44 ˘ 51.14 Mg/ha)
compared with those in South America (309.48 ˘ 30.26 Mg/ha) and Asia (305.17 ˘ 33.42 Mg/ha).
Since they experienced 3–5 dry months in winter, the AGB density of tropical moist deciduous forests
was lower than the tropical rainforest (Africa 240.16 ˘ 73.15 Mg/ha, Asia 259.15 ˘ 40.57 Mg/ha, and
South America 258.36 ˘ 72.74 Mg/ha). Tropical dry forests had the lowest AGB density in the tropics.
The tropical dry forest in South America had an AGB density of 138.93 ˘ 51.26 Mg/ha compared with
Africa (178.57 ˘ 65.78 Mg/ha) and Asia (226.58 ˘ 59.68 Mg/ha).

At the continental level, South America forests had the highest AGB stock (188.68 Pg) since
the high AGB density (301.68 ˘ 67.43 Mg/ha) and larger forest areas (608.6 Mha) (Table 3).
The AGB stock in Asia, North America, Africa, and Europe was 143.14, 77.46, 64.65 and 40.83 Pg,
respectively. Although Australia and Oceania had high average AGB density (415.66 and 424.30 Mg/ha,
respectively), the total AGB in Australia and Oceania was low (8.69 and 9.30 Pg, respectively) since
there are relatively small forest areas. At the national level, the Brazil forests had the highest AGB
stock (97.44 Pg) since the high AGB density (306.79 ˘ 36.1 Mg/ha) and large forest areas (317.34 Mha).
Russian Federation had the secondary AGB stock (59.87 Pg) since the largest forest cover (530.48 Mha),
and forest AGB density and stock of other main countries in each continent were listed in Table 3 and
Table S3.

Table 3. The continental-level and national-level forest AGB density and biomass stock in this study.

Continent Mean AGB (Mg/ha) Forest Area (Mha) Total AGB (Pg)

Africa 333.34 ˘ 63.80 191.0 64.65
Asia 172.28 ˘ 94.75 762.2 143.14

Australia 415.66 ˘ 131.75 20.3 8.69
North America 166.48 ˘ 84.97 459.1 77.46

Oceania 424.30 ˘ 114.03 21.9 9.30
South America 301.68 ˘ 67.43 608.6 188.68

Europe 132.97 ˘ 50.70 310.1 40.83

Country Mean AGB (Mg/ha) Forest Area (Mha) Total AGB (Pg)

Australia 415.85 ˘ 131.69 20.28 8.68
Brazil 306.79 ˘ 36.1 317.34 97.44

Canada 141.38 ˘ 64.68 268.81 38.26
China 160.74 ˘ 45.16 101.34 16.41

Democratic Republic of the Congo 342.01 ˘ 49.17 103.66 35.52
Finland 89.42 ˘ 7.99 15.51 1.37

Indonesia 328.25 ˘ 43.39 102.78 34.04
Japan 175.78 ˘ 41.69 22.83 4.03

New Zealand 488.69 ˘ 107.94 12.24 6.07
Norway 210.15 ˘ 116.76 9.04 1.95

Russian Federation 110.14 ˘ 23.48 530.48 59.87
Sweden 108.11 ˘ 16.39 26.32 2.82

United Kingdom 265.09 ˘ 87.3 3.22 0.87
United States 180.96 ˘ 92.44 150.61 27.71

The uncertainty in the AGB estimation introduced by the plot location for each pixel was
evaluated using the standard deviation of the 100 sets of initial forest AGB estimation maps
(Figure 4b,c). The mean uncertainty introduced by the plot location was 14.53 Mg/ha with a range of
3.75–127.69 Mg/ha. Most forests distributed in the European, North American, and Amazon areas
had relatively low uncertainty values (<30 Mg/ha). In Southeast Asia, the influence of plot location
uncertainty became larger, resulting in a forest AGB uncertainty of over 50 Mg/ha. The AGB estimation
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uncertainty introduced by the plot location was highest on the western coast of North America and
central Papua New Guinea, reaching values of 100 Mg/ha.

3.2. Validation at Plot Level

The retained 30% of independent plot measurements were used to evaluate the forest AGB
estimation result at the plot scale. As can be seen in Figure 5, the estimated forest AGB map showed
good agreement with the field-measured AGB. The fitted line between the observed values and
predicted values was close to the 1:1 line. The statistical parameters also show that the accuracy of the
estimated global forest AGB map was satisfactory. The R2 between the observed and predicted AGB
was 0.56 and the RMSE was 87.53 Mg/ha. However, the global forest AGB map had some limitations.
It was inclined to overestimate forest AGB density in areas with low AGB density (<221 Mg/ha), and
underestimate forest AGB density in areas with relatively high AGB density (>221 Mg/ha).
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At the ecoregion zone level, the forest AGB map was compared with by the AGB density values
of the eight ecological zones in different continents provided by the IPCC. As shown in Figure 6, the
R2 and RMSE between the IPCC suggested values and the predicted AGB were 0.38 and 101.21 Mg/ha,
respectively. However, there was a clear outlier where the predicted forest AGB density for the
North America temperate oceanic forest was significantly lower than the value provided by the IPCC.
When we removed this data point, the R2 increased to 0.56 and the RMSE decreased to 82.38 Mg/ha,
which was very close to the plot-level validation results.
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3.3. Comparisons with Published Regional Forest AGB Maps

3.3.1. Pan-Tropical Forests

Figure 7 shows the pixel-level differences between our forest AGB map and the products from
Saatchi et al. (2011) [48], Baccini et al. (2012) [49], Avitabile et al. (2015) [72], and Ruesch &
Gibbs (2008) [73]. In general, our forest AGB density values tended to be higher (80 Mg/ha on average)
than those from Saatchi et al. (2011) [48] (Figure 7a), especially in the Amazon Basin and eastern
Democratic Republic of Congo. In South and Southeast Asia, differences between the two products
were mixed, with positive and negative values. The FN index map (Figure 8a) showed that the
two products had high similarity in spatial patterns. Over 59% of the pixels had a FN index value
larger than 70. The differences between our product and that from Baccini et al. (2012) [49] and
Avitabile et al. (2015) [72] were similar (Figure 7b,c). Our product tended to be slightly higher than
these two products, and the average differences were both around 65 Mg/ha. However, the standard
deviation of differences between our product and that of Baccini et al. (2012) [49] was smaller than
between our product and the product of Avitabile et al. (2015) [72], at 77.07 Mg/ha and 107.40 Mg/ha,
respectively. The spatial similarity among these three products was also similar. The average FN
index between our product and that from Baccini et al. (2012) [49] was 75.32, and the average FN
index between our product and that from Avitabile et al. (2015) [72] was 65.80. However, the spatial
similarity between our product and that from Avitabile et al. (2015) [72] was relatively poor in Central
America and south of the Amazon Basin. Finally, our product tended to be lower than the product
from Ruesch & Gibbs (2008) [73], especially in the Amazon Basin and the tropical areas of Central
Africa. The average difference between the two products was ´12 Mg/ha. The average value of the
FN index was 76.37, which indicated these two products also had high spatial similarity. However, the
spatial similarity in Southeast and South Asia was relatively poor compared with that in the Amazon
Basin and Central Africa (Figure 8d).
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Figure 8. The spatial similarity map between our global wall-to-wall forest AGB product and the
products from (a) Saatchi et al. (2011) [48]; (b) Baccini et al. (2012) [49]; (c) Avitabile et al. (2015) [72];
and (d) Reusch & Gibbs (2008) [73] in pan-tropical forest areas.
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3.3.2. Boreal Forests

In boreal forest areas, our wall-to-wall forest AGB map was compared with three products in
northern America [54,73,74] and three products in northern Eurasia [54,73,75]. In northern America
(Figure 9), our product tended to be higher than all three products, except for the difference between
our product and that of Ruesch & Gibbs et al. (2008) [73] in the eastern U.S. The average differences
between our product and the products of Margolis et al. (2015) [75], Thurner et al. (2014) [54], and
Ruesch & Gibbs (2008) [73] were 56 Mg/ha, 96 Mg/ha and 75 Mg/ha, respectively. The average
FN index for the product of Margolis et al. (2015) [75] was 55.76, which was the highest among
the three products (Figure 10). The spatial similarity between our product and the products of
Thurner et al. (2014) [54] and Ruesch & Gibbs (2008) [73] was relatively poor.
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products from (a) Margolis et al. (2015) [74]; (b) Thurner et al. (2014) [54]; and (c) Reusch & Gibbs
(2008) [73] in the North America boreal forest area.

Our product also tended to be higher than all three products in northern Eurasia (Figure 11).
The average differences between our product and the products of Neigh et al. (2015) [74], Thurner et al.
(2014) [54], and Ruesch & Gibbs et al. (2014) [73] were 36 Mg/ha, 72 Mg/ha and 71 Mg/ha, respectively.
Nearly all pixels had positive differences between our product and these three products, except those
between our product and the product of Neigh et al. (2015) [74] in central northern Eurasian areas.
Among these three products, the spatial similarity between our product and that from Neigh et al.
(2015) [74] was the highest (Figure 12). The average FN index between these two products was 59.27.
The spatial similarities between our product and the products from Thurner et al. (2014) [54] and
Ruesch & Gibbs (2008) [73] were relatively poor. Over 83.24% pixels of the FN index map between our
product and the product from Thurner et al. (2014) [54] were lower than 50. The FN index between
our product and the product of Ruesch & Gibbs (2008) [73] was more unevenly distributed.
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from (a) Neigh et al. (2015) [75]; (b) Thurner et al. (2014) [54]; and (c) Reusch & Gibbs (2008) [73] in the
northern Eurasia boreal forest area.
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products from (a) Neigh et al. (2015) [75]; (b) Thurner et al. (2014) [54]; and (c) Reusch & Gibbs
(2008) [73] in the northern Eurasia boreal forest area.

3.3.3. U.S. Forests

Our product was also compared with three nationwide forest AGB products [73,76,77] in the
U.S. As can be seen in Figure 13, the average differences between our product and the product of
Saatchi et al. (2005) [76] was the smallest among all three products. The differences were mixed with
positive and negative values, and the average difference was 24 Mg/ha. The spatial similarity between
these two products was also high (Figure 14b). Over 72.18% of pixels had an FN index higher than
50. Compared with the product of Blackard et al. (2005) [77], our product tended to be slightly higher.
About 43.73% of pixels had differences ranging from 10 Mg/ha to 50 Mg/ha. The spatial similarity
between these two products was the highest (the mean FN index = 67.55). The average differences
between our product and that of Ruesch & Gibbs (2008) [73] were the highest among all three U.S.
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forest AGB products (the mean difference was 71 Mg/ha). The variation of differences between these
two products was also very high. In the western and northeastern U.S., our product was around
107.60 Mg/ha higher than the product of Ruesch & Gibbs (2008) on average. However, in the southern
eastern U.S., our product was around 42.03 Mg/ha lower than their product on average. The spatial
similarity between these two products was also the lowest among all three U.S. forest AGB maps,
especially in the western and northeastern U.S.
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(2008) [73] in the U.S. forest area.

4. Discussion

The global wall-to-wall forest AGB map obtained from our analysis had good agreement with the
independent plot measurements and IPCC-suggested AGB values at the ecoregion level. The trends
of forest AGB density along latitude also similar to previous results [12] (Figure 15): the highest
AGB density occurred in the temperate latitudes of the Southern hemisphere (southeastern Australia,
New Zealand, and Chile), and AGB density decreased from the tropical latitudes to temperate and
boreal latitudes of the Northern hemisphere. The high AGB density in the Pacific Northwest of North
America brought a significant peak in the trend line of AGB density at the temperate latitudes of the
Northern hemisphere (Figure 15). In this study, comparisons between our resulting new map and
other published maps were mainly aimed to validate the spatial pattern and AGB level of our result.
Therefore, we only conducted direct comparisons based on pixel-level differences. The systematic
comparison results showed that our product also had good correspondence in spatial patterns and
AGB levels with many of the published products (Table S4; Figure S2). However, our product still had
differences with some products in certain areas.
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Saatchi et al. (2011) [48] and Baccini et al. (2012) [49] produced the first two pan-tropical AGB maps
using a similar method that integrated GLAS data, optical imagery, and plot data, and Avitabile et al.
(2015) [72] fused these two products into a new pan-tropical AGB map using an independent reference
dataset of field observations and locally calibrated high-resolution biomass maps. In the western
Amazon Basin, our map tended to be slightly higher than the map from Saatchi et al. (2011) [48],
but much lower than the map from Baccini et al. (2012) [49] and slightly lower than the map from
Avitabile et al. (2015) [72] (Figure 7). In the center of the Amazon Basin, the difference maps were mixed
with positive and negative values and our map in general tended to be higher than others (Figure 7).
In the northeastern Amazon Basin, our map tended to be higher than Saatchi et al. (2011) [48] and
Baccini et al. (2012) [49], but lower than Avitabile et al. (2015) [72] (Figure 7). The spatial difference
in AGB in the Amazon Basin between our map and first two pan-tropic AGB maps (Saatchi et al.
(2011) [48] and Baccini et al. (2012) [49]) concurred with the results found by Mitchard et al. (2014) [78],
who compared these two maps with a map derived from kriging interpolation using 413 field plots.
Mitchard et al. (2014) [78] thought that neglecting the regional variations of wood density or D:H
(diameter at breast height:height) relationships that cannot be detected by remote sensing was the major
reason. We think two factors may have reduced the loss in the information on regional variations of
wood density or D:H relationships during our estimation process. First, we directly used the field data
from the literature and did not carry out any conversion before the extrapolation, which may keep the
potential variations of forest wood density. In contrast, both Saatchi et al. (2011) [48] and Baccini et al.
(2012) [49] converted the field AGB into GLAS-derived AGB, which may lose the potential information
of forest wood density contained in the plot data. Second, we used bioclimatic layers as inputs in our
study, which could potentially be related to wood density [68] or D:H relationships [79] in tropical or
global forest areas. The difference map between Avitabile et al. (2015) [72] and Saatchi et al. (2011) [48]
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or Baccini et al. (2012) [49] presented a similar pattern to ours and the map from Mitchard et al.
(2014) [78] in the Amazon Basin, which may be benefitted from the fusion with an external field dataset.

Compared with the tropical forest area, most AGB products in the boreal forest areas tended to
be lower than our AGB map. We think these differences may result from the following three reasons.
First, the underestimation may be caused by the limitation of the remote sensing data used to predict
AGB. Thurner et al. (2014) [54] only used the growing stock volume (GSV) product retrieved from
SAR (Santoro et al., unpublished data) to predict biomass and their map was lower than other AGB
maps in most boreal forest areas. Although Santoro et al. [80] reported GSV was mapped without
saturation up to 300 m3/ha, which is suitable for the boreal forest, the predicted GSV was lower than
the reference GSV in their study [80]. This may be the reason for the underestimation in the map
from Thurner et al. (2014) [54]. Second, the differences may come from the extrapolation methods.
Neigh et al. (2015) [53,74] and Margolis et al. (2015) [75] used the same method to map the boreal forest
AGB in northern Eurasia and North America, respectively. They divided the forest AGB into different
strata, e.g., conifer, hardwood, mixed wood, and wetlands, using Landsat and MODIS land cover
products. The AGB value of each pixel was assigned by the ratio of different strata, the values of which
were estimated by combining GLAS, airborne LiDAR and plot data. Since the mean AGB value of a
stratum was used while assigning, this may tend to underestimate the AGB density in high AGB areas.
Moreover, the strata also included non-forest areas and burned areas, which were not considered in
our study. This could also introduce underestimation to their results. Third, the differences may be
caused by insufficient number of plot data. In general, the map from Neigh et al. (2015) [74] had high
spatial similarity in north Eurasia areas, except northwestern Russia (Figure 12a). This phenomenon
may be caused by the AGB estimation model used by Neigh et al. (2015) [74] in the Scandinavian and
Russian Taiga, which only linked the airborne LiDAR data with plots of conifer forest in southern
Norway. According to the MODIS land cover map (Figure 2), the majority of northwestern Russia is
covered by mixed forests and this would introduce an underestimation while applying an AGB model
built for conifer forests to mixed forests.

Ruesch & Gibbs (2008) [73] presented the first global forest biomass map and provided important
benchmarks for climate policy dialogues, but they tended to significantly overestimate AGB in tropical
areas, and underestimate it in boreal forest areas compared with our product. The negative or positive
values in the AGB difference map between Ruesch & Gibbs (2008) and our map tend to form large
patches (Figures 7d and 13c), which is different from other AGB difference maps. The method used by
Ruesch & Gibbs may be the major reason for this phenomenon. Ruesch & Gibbs (2008) [73] used the
global forest AGB default values provided by the IPCC to map forest AGB from a range of spatially
explicit climate and vegetation datasets. All the pixels in each ecological zone used the same value,
which could not reflect spatial variance in the same ecological zone. Moreover, according to the
validation at the ecological zone level (Figure 6), our results were higher than the IPCC value in boreal
forest and lower than the value in tropical forest, which was coincident with this phenomenon.

Although the global wall-to-wall forest AGB map has a good correspondence with the
independent plot data and nine other published products (in spatial pattern and AGB level), there were
deficiencies in this study. First of all, the uncertainty of the forest AGB map was not fully quantified.
In this study, we only computed the uncertainty caused by the plot location uncertainty, but there are
other error sources from the uncertainty of each prediction variables. Generally, the propagation of the
uncertainty from each prediction variable to the final forest AGB estimation uncertainty was evaluated
using the Monte Carlo simulation method assuming the influences of each variable are independent.
However, to conduct this, thousands of RF runs need to be executed to estimate the uncertainty of the
extrapolated GLAS parameters and the final forest AGB product. Each run will need to take a week to
finish. Considering the time and computation cost, we only evaluated the uncertainty caused by plot
location in the current study and other uncertainties will be fulfilled in the future study. Second, the
quality of reference data still needs improvements in future research. Currently, temporal mismatch
between our ground inventory data and remote sensing data was a potential error source. The collected
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ground plots were spanned from 1990 to 2013 while the prediction variables were collected in 2004.
During this long time (up to 14 year) span, the condition in some plots would be changed due to the
land cover/use change, forest growth, or heavy degradation. However, currently, we do not have
enough ground plots from a single year (e.g., 2004) to build a robust global forest AGB estimated
model. There is a tradeoff between temporal match and quantity control in current collected plots
at the global scale. We will continue to work on collecting more ground measurements to address
this issue. Moreover, there was also a deficiency to use plot AGB values to represent the biomass at
1 km resolution. The difference between the plot size and the resolution of prediction variables may
be another source of error in the final result. Airborne LiDAR has been recognized as an important
method to extrapolate plot biomass into grids with high accuracy [45]. In the future, it would be
a practical option to first use airborne LiDAR to extrapolate plot measurements into regional scale
and then use the airborne LiDAR derived AGB as the ground truth input of the proposed method in
this study. Third, the seasonality of GLAS data should be considered in the further research. In the
temperate deciduous forest, GLAS waveforms from the summer and early stage of autumn period can
well capture the returns from forest canopy [81]. By contrast, data from other periods received less
signals from forest canopy and did not effectively reflect forest height [81]. Since all GLAS data in 2004
were used in this study, it may introduce some uncertainty to the final AGB results in the temperate
forest areas.

Global forest ecosystems are important land surface carbon sinks which greatly influence the
global carbon cycle [1,2]. Since forest AGB is a direct measurement of the forest carbon stock, it is of
great significance to accurately map the global forest AGB distribution. To the best of our knowledge,
this study, for the first time, mapped the global continuous forest AGB distribution using remotely
sensed observation data and a large amount of plot estimations. The resulting map can help researchers
to improve the accuracy of global carbon cycle modelling, enhance our understanding on global carbon
dynamics, and quantify anthropogenic carbon dioxide emissions.

5. Conclusions

This study produced a global wall-to-wall forest AGB map at a 1-km resolution for the first time,
and this new product is available through the web [55]. This product was generated based on the
framework proposed by Su et al. (2016) [46] and over 4000 plot measurement records collected from
published literature. Based on this forest AGB product, the global forest AGB density was around
210 Mg/ha on average with a standard deviation of 109 Mg/ha. The uncertainty introduced by
plot location was 14.53 Mg/ha on average with a range of 3.75–127.69 Mg/ha. This product was
evaluated at the plot level and the result showed that our products had a good correspondence with
the independent plot measurements (R2 = 0.56 RMSE = 87.53 Mg/ha). At the ecoregion level, values
recommended by the IPCC were used to compare with this new map which also showed a good
correspondence (R2 = 0.38 RMSE = 101.21 Mg/ha with one outlier, R2 = 0.56 RMSE = 82.38 Mg/ha
after removing one outlier). Moreover, a systematic comparison between our product and other
published regional products was conducted in pan-tropical areas, northern boreal forest areas, and
the U.S. This comparison was aimed to compare the spatial similarity in AGB distribution and AGB
level between our map and other published maps. The results indicated our product corresponded
well with products obtained by integrating LiDAR data. Products generated using traditional optical
passive remote sensing and radar data tended to underestimate forest AGB density. This new map is
highly beneficial to global carbon assessments and biogeochemical modellings. Moreover, it can also
help to quantify changes in forest biomass caused by deforestation or afforestation.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/7/565/s1,
Table S1: The main literature provided the AGB using allometry equation; Table S2: The distribution of plots
in each continents and ecoregions; Table S3: The national level forest AGB density and biomass stock in this
study; Table S4: The mean AGB and FN differences for each major region; Figure S1: The mean importance of
variables for 100 runs AGB estimation RandomForest model, indicated by percentage increase of mean-squared
error (%IncMSE) (left) and the increase in node purity (IncNodePurity) (right). le, we, te, prec_total, precp_s,
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tmean, T_s, ndvi, and landuse represent the leading edge extent, waveform extent, trailing edge extent, annual
total precipitation, annual precipitation seasonality, annual mean temperature, annual temperature seasonality,
cumulative NDVI, and landcover type, respectively; Figure S2: validation of AGB map at different ecoregions.
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The following abbreviations are used in this manuscript:

AGB aboveground biomass
LiDAR Light Detection and Ranging
GLAS Geoscience Laser Altimeter System
ICESat Ice, Cloud, and Land Elevation Satellite
R2 adjusted coefficient of determination
RMSE root-mean-square error
SAR Synthetic Aperture Radar
NDVI Normalized Difference Vegetation Index
LP DAAC Land Processes Distributed Active Archive Center
SRTM Shuttle Radar Topographic Mission
CGIAR-CSI Consultative Group for International Agricultural Research-Consortium for Spatial Information
DEM digital elevation model
RF random forest
FN fuzzy numerical
H tree height
DBH,D diameter at breast height
GSV growing stock volume
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