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Abstract: Higher biodiversity leads to more productive ecosystems which, in turn, supports more
biodiversity. Ongoing global changes affect ecosystem productivity and, therefore, are expected
to affect productivity-biodiversity relationships. However, the magnitude of these relationships
may be affected by baseline biodiversity and its lifeforms. Cork oak (Quercus suber) woodlands
are a highly biodiverse Mediterranean ecosystem managed for cork extraction; as a result of
this management cork oak woodlands may have both tree and shrub canopies, just tree and
just shrub canopies, and just grasslands. Trees, shrubs, and grasses may respond differently to
climatic variables and their combination may, therefore, affect measurements of productivity and
the resulting productivity-biodiversity relationships. Here, we asked whether the relationship
between productivity and climate is affected by the responses of trees, shrubs, and grasses in cork oak
woodlands in Southern Portugal. To answer this question, we linked a 15-year time series of Enhanced
Vegetation Index (EVI) derived from Landsat satellites to micrometeorological data to assess the
relationship between trends in EVI and climate. Between 2000 and 2013 we observed an overall
decrease in EVI. However, EVI increased over cork oaks and decreased over shrublands. EVI trends
were strongly positively related to changes in relative humidity and negatively related to temperature.
The intra-annual EVI cycle of grasslands and sparse cork oak woodland without understorey
(savannah-like ecosystem) had higher variation than the other land-cover types. These results
suggest that oaks and shrubs have different responses to changes in water availability, which can
be either related to oak physiology, to oaks being either more resilient or having lagged responses
to changes in climate, or to the fact that shrublands start senesce earlier than oaks. Our results also
suggest that in the future EVI could improve because the rate of increase in minimum EVI is greater
than the rate of decrease in maximum EVI, and that this is contingent on management of the shrub
understorey as it affects the rate of decrease in maximum EVI. This will be the challenge for the
persistence of cork oak woodlands, their associated biodiversity and social-ecological system.

Keywords: cork oak; time series; Landsat; Enhanced Vegetation Index; inter-annual variability;
climate; biodiversity

1. Introduction

One of the key ecological paradigms is the relationship between biodiversity and productivity [1,2].
Higher biodiversity leads to more productive ecosystems [3,4], and more productive environments
support more biodiversity [5,6]. Two mechanisms relate biodiversity to productivity. On one hand,
resource acquisition can be done by obtaining the necessary resources along a productivity gradient,
commonly referred to as niche complementarity [7]. On the other hand, species may improve their
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resource utilization efficiency, which is called niche efficiency [8]. Both mechanisms link plant and
animal biodiversity to ecosystem productivity [8,9], though provide only two of the many explanations
and shapes of productivity-biodiversity relationships, highlighting the general need for more research
linking patterns of primary productivity and functional types of organisms (or life-forms) that use
resources in different ways [10]. Ongoing global changes are affecting ecosystem productivity [11–13]
and, thus, likely alter the relationship between productivity and biodiversity. However, it remains
unclear to what extent such climate-induced changes in productivity-biodiversity relationships are
mediated by baseline biodiversity and its life-forms.

Climate changes are predicted to increase stress on the productivity-biodiversity relationship
particularly in Mediterranean systems [14], with general increases in temperatures and seasonal
changes in precipitation including overall less annual precipitation [15]. While the general expectation
is that such changes in climate result in a decrease in productivity, it remains unclear whether
the baseline biodiversity and its lifeforms in Mediterranean systems will all respond in the same
way. In other words, changes in temperature and water may change productivity in different
directions [16], but it is unclear how such changes affect the overall net result and shape of the
productivity-biodiversity relationships.

Mediterranean ecosystems hold high biodiversity despite the long history of management [17–19]
and, because, of this are classified as a biodiversity hotspot [20]. In the Mediterranean basin, these
ecosystems may hold up to 25,000 species of native plants and 920 species of vertebrates [21]. Cork oak
woodlands are home to a large fraction of these species, which have been maintained through
management [22,23]. Variation in management regimes have resulted in a patchwork landscape
in which oak woodlands are a mix of trees and shrubs, only trees or shrubs, and grasslands [22,23],
which may all respond differently to changes in climate. Thus, the mix of different regimes in
the same landscape may allow testing whether different life-forms (i.e., trees, shrubs and grasses)
respond differently to climatic variables, thus, affecting measurements of productivity and the resulting
productivity-biodiversity relationships [24].

Remote sensing is a useful tool to assess changes in ecosystem productivity [11,25] and may,
thus, contribute to our understanding of temporal changes in biodiversity [26], habitat [27], and its
associated ecosystem services [28,29]. Estimates of primary productivity using remote sensing data
and methods are often derived from several vegetation indices, including the Normalized Difference
Vegetation Index (NDVI, [30]), or the Enhanced Vegetation Index (EVI, [31]). While both indices can
be calculated from a variety of satellite remote-sensing data, linking vegetation indices to functional
vegetation types at the local to regional scale requires a sufficient spatial and temporal resolution.
Landsat imagery, with their moderate to high spatial (30 m) and temporal resolutions (8–16 days
on the archive of Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+),
and 16 days with current Landsat 8 (OLI) data), match these criteria and are thus well suited for
monitoring changes in ecosystems [29,32–34]. The rich Landsat archive provides imagery since the
mid-1980s [35,36] and the free availability triggered a wide range of applications including assessing
changes in green leaf phenology [37], changes in evapotranspiration [38], or changes in gross primary
production [39], among others [40]. Further, remotely-sensed estimates of ecosystem functioning
provided valuable input in assessing habitat heterogeneity [27], quality [41,42], and species responses
to it [43–45]. As such, Landsat data may be of high value for analyzing the spatio-temporal dynamics
of ecosystem productivity and productivity–biodiversity relationships.

Here our goal was to assess whether the relationship between productivity and climate is affected
by the responses of trees, shrubs, and grasses in cork oak (Quercus suber) woodlands in Southern
Portugal, and we used Landsat time series of the enhanced vegetation index (EVI) and local weather
data to do so. Specifically, we hypothesized that:

Cork oaks and shrubs (mainly Cistus spp.) will show different responses to changes in temperature
and humidity because cork oak leaves are better adapted to water shortage than the leaves of the
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understory shrub species. Therefore, we expect no changes in EVI in patches with dense and sparse
cork oak forests without understorey (Figure 1c,e).

(a) We expect a decrease in EVI in dense and sparse cork oak with understorey (Figure 1b,d) because
the negative EVI of the shrub layer effect will dominate over the stable effect of the cork oak.
This is because the life-cycle of shrubs operates in a seasonal time span while oaks operate in a
yearly time span.

(b) Sparse cork oak woodlands with shrub understorey (Figure 1d) are more resistant to changes in
temperature and humidity than sparse cork oak woodlands without shrub understorey (Figure 1e)
because in the absence of oaks, shrub leaves are relatively more resilient to changes in humidity
and temperature than annual or perennial grasses.

(c) Grasslands show substantially stronger intra- that inter-annual variability in EVI compared to
sparse and dense cork oak woodlands. This is because the life-cycle of grasses operates in a
shorter time span than that of shrubs and oaks.
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Figure 1. (a) Study area location and distribution of oak woodlands in Portugal; (b) Dense cork oak
woodland with shrub understory; (c) Dense cork oak woodland without shrub understory; (d) Sparse
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2. Methodology

2.1. Study Area

This study was conducted in a 20 km2 area in Serra de Grândola, Portugal (Figure 1). The region
is dominated by cork oak (Quercus suber) and holm oak (Q. ilex) woodlands, interspersed with
pastures, Tasmanian blue gum stands (Eucalyptus globulus), riparian vegetation (dominated by alder
Alnus glutinosa, elm Ulmus spp., blackberries Rubus ulmifolius), orchards (mainly composed by pears
Pyrus bourgeana, figs Ficus carica, loquats Eryobrotia japonica), and human settlements (mainly the village
of Santa Margarida da Serra; [46]).

Topography is moderate, with gentle slopes and low altitude (159 to 238 m). Climate is
Mediterranean with an Atlantic influence, mean annual precipitation of 500 mm, and maximum
average daily temperatures ranging from 5 ˝C to 35 ˝C [46].The area holds a high richness of species
with varying conservation status (Table 1; [47,48]).



Remote Sens. 2016, 8, 486 4 of 13

Table 1. Species richness and their International Union for Conservation of Nature (IUCN) conservation
status in the study area (CR—Critically Endangered, EN—Endangered, VU—Vulnerable, NT—Near
Threatened).

Taxonomic Group N
Species

Endemic to
Iberian Peninsula

Endemic to
Portugal

Relict
Species

IUCN Conservation
Status

Fungi 264 - - 2 –
Briophytes 70 1 - - –

Vascular Plants 304 12 - - –
Insects 155 1 1 - –

Fish 6 4 1 - CR = 1; EN = 2; VU = 1
Amphibians 12 9 - - NT = 1

Reptiles 12 7 - - VU = 1; NT = 1
Birds 74 - - - VU = 2; NT = 6

Mammals 32 1 - - CR = 1; EN = 1; VU = 5

2.2. Data Acquisition

2.2.1. Remote Sensing Data

We used a time series of EVI to describe the phenological evolution in our study area. EVI is
particularly well suited for cork oak woodlands, because it is generally less affected by the saturation
of dense canopy covers [49], which are characteristic of cork oak woodlands. Further, EVI has been
particularly useful for ecosystem modeling [50], monitoring vegetation phenology [51], and assessing
vegetation responses to droughts [52]. We generated our time series from all available Landsat imagery
between the years 2000 and 2013 for the two footprints that cover our study area (Path/Row 204/33,
204/34), resulting in a time series of 296 images. We pre-processed all images by converting digital
numbers into surface reflectance values using the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS; [53]), and (b) masking all clouds and cloud shadows using Fmask [54]. We chose
this approach because for calculating EVI we need surface reflectance and we chose to use a standard
method across all the samples. We then calculated the EVI for each image (Equation (1)):

EVI “ Gˆ r
ρNIR ´ ρR

ρNIR ` C1 ˆ ρR ´ C2 ˆ ρB ` L
s (1)

where ρx is the surface reflectance for band ˆ (NIR = shortwave infrared band, R = red band, B = blue
band), L is the canopy background adjustment, C1 and C2 are the coefficients of the aerosol resistance
term, and G is a gain or scaling factor [31].

2.2.2. Land-Cover

We selected only land-cover types of interest to assess EVI trends over stable land-cover types.
To do so, we used an existing land-cover map and selected only areas which did not show any
land-cover change. The map was based on visual interpretation of a 1 m spatial resolution aerial
photograph of the year 1995 [46], and distinguished nine land-cover types within our study area:
dense cork oak woodlands with understory (DCoW), dense cork oak woodlands without understory
(DCoWt), sparse cork oak woodlands with understory (SCoW), sparse cork oak woodlands without
understory (SCoWt), olive yards and orchards (O), riparian vegetation (RV), grasslands (G), eucalyptus
plantations (E), and human settlements (S; Figure 2). We chose to focus on five of these land-cover
types to test our hypotheses: (i) dense and sparse cork oak without understorey (DCoWt, SCoWt)
because these areas represent the response of cork oaks; (ii) dense cork oak with understorey (DCoW)
because it represents the combined response of oaks and shrubs; (iii) sparse oak with understorey
(SCoW) because it represents the response of shrubs (mostly Cistus spp.); and (iv) grasslands (G) that
represent the response of the herbaceous layer.
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2.2.3. Meteorological Data

Data on local meteorological parameters was collected using a Wireless Vantage Pro2™ with
Standard Radiation Shield (Davis Inc., Hayward, CA, USA) micro-meteorological station installed at
the site in 2003. The micrometeorological station was installed in the Herdade da Ribeira Abaixo, a field
station of the University of Lisbon in April 2003 in the context of the Long Term Ecological Research
site of montado (FCT/LTER/BIA-BEC/0048/2009). The station records date and time, temperature
(˝C), relative humidity (0%–100%), dew point (˝C), wind speed (km/h), and wind chill (˝C) in a 30 min
interval. In addition, the station provides a heat index (˝C), calculated as a ratio of the instant outside
temperature and instant outside relative humidity.

We used data from this station aggregated to daily averages. We chose to analyze only the effect
of temperature (T), relative humidity (RH), and heat index (HI) on the EVI trend because these weather
parameters are more tightly linked to productivity than the parameters directly measuring wind
or metrics that depend on wind. Due to malfunctioning, there were data gaps between the end of
March 2006 and May 2007, December 2008 and October 2009, March and July 2011, and April 2012
to February 2014. Unfortunately, it was not possible to complement these data gaps with other
meteorological data from the surroundings because the closest station was in pine plantations.

2.3. Data Analysis

We based our analysis on a sub-region of ~1.8 km2 in the immediate vicinity of the weather
station so that we could test effects of local weather on local productivity measurements. Further, this
close match between the scales of the measurements ensured that the potential relationships are
interpretable at the local level, before scaling up to more general patterns for larger areas. This choice
reduced the number of available data points, however, still within what is considered a sufficient
sample size if significant differences are to be detected and we do not think that it hinders the relevance
of the findings. These locations were randomly chosen across all land-cover types, and the random
selection provided proportional representation of each land-cover. We then extracted the aggregated
weather data for each day in our time series for and merged this information to the EVI values of
our Landsat time series. This resulted in a time series containing, overall, 107 observations (i.e., time
points) between 2000 and 2015, which served as the input for our analysis (Table 2).
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Table 2. Number of Landsat pixels over each land-cover type in the study area.

Land-Cover Type Area (ha) % of Analyzed Area

Dense Cork oak Woodlands With Understory (DCoW) 653.4 35.6
Dense Cork oak Woodlands Without Understory (DCoWt) 536.5 28.7

Sparse Cork oak Woodlands With Understory (SCoW) 112.3 5.8
Sparse Cork oak Woodlands Without Understory (SCoWt) 288.6 18.3

Grasslands (G) 282.1 11.6

To measure intra-annual variability in productivity, we calculated the coefficient of variation
(CoV) for the EVI time series and for the EVI for each land-cover type individually. CoV measures
the dispersion in the values across a period of time, therefore, allowing for the comparison of the
relative variability of EVI for each land-cover type [55]. High CoV values indicate a strong intra-annual
variability in EVI, while low CoV values indicate a more homogeneous EVI and, therefore, a lower
intra-annual variability.

To test whether there is inter-annual variability within the EVI time series, we used Kendall’s tau
(τ; [56]), a commonly used test to detect trends in time series (for examples see [57,58]). We assessed
whether there were significant trends in overall EVI, and by land-cover type. In addition we tested
whether EVI trends were varying in the same direction or in different directions by correlating
minimum and maximum EVI using Spearman’s correlation coefficient.

Finally, to test whether temperature (T), relative humidity (RH), and heat index (HI) were related
to EVI trends, we correlated the two trends for the dates for which we had both weather and EVI
data. We repeated the analysis for the average EVI combined for all land-cover types, and for average
EVI per land-cover type. To do so we correlated maximum and minimum EVI with the three weather
parameters using Spearman’s correlation coefficient.

3. Results

3.1. Intra-Annual Variability

EVI in the study area followed a yearly phenological cycle for all land-cover types. EVI was
highest in spring (February to May; EVIFeb = 0.355˘ 0.05, EVIMar = 0.397˘ 0.05, EVIApr = 0.415 ˘ 0.04,
EVIMay = 0.375 ˘ 0.06) and lowest during summer (July, August, and September; EVIJul = 0.259 ˘ 0.03,
EVIAug = 0.238˘ 0.04, EVISep = 0.229˘ 0.04). Overall, the onset of productivity occurs from October to
November, at the time of the first rains, and the downfall from April to May, as temperatures increase.
Cork oak woodlands with understorey have the smoothest EVI yearly cycle, i.e., have the lowest
CoV, whereas grasslands have the least smooth cycle with the highest CoV (Figure 3). Sparse cork
oak woodlands without understorey follow closely the CoV of grasslands, likely because of their
savannah-like morphology.

3.2. Inter-Annual Variability

During our study period (2000–2013) we found a small but significant downward trend in
maximum EVI and a significant upward trend for minimum EVI. The increase in minimum EVI was
slightly higher than the decrease in maximum EVI, with little correlation between maximum and
minimum EVI (R2 = 0.203; Spearman’s rho = 0.211; Table 3).

Contrary to the expectation, cork oak woodlands without understorey showed a significant
increase in minimum EVI and a trend towards a decreasing maximum EVI (Table 3). The average
minimum EVI over the entire time series and for all land-cover types was 0.171, whereas, for DCoWt, it
was 0.22. Further, and in line with the expectations, sparse cork oak woodland with understorey shrubs
show a decreasing trend in maximum EVI. The average maximum EVI over the entire time series and
for all land-cover types was 0.464, whereas, for SCoWt, it was 0.394. Despite the high intra-annual
variability in grasslands EVI we found no significant trend in EVI over the entire time series, except for
a potential increase in minimum EVI (average min EVI = 0.20, average max EVI = 0.434; Table 3).
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and grasslands (G). Box plots represent the mean (bold line within the box), variance (size of the
box), and the range of values (whiskers). Open circles and asterisks represent outliers, out and far
out respectively.

Table 3. Trends in, and correlations between, average, maximum, and minimum EVI per land-cover
type and total from 2000 to 2013. Bold values show significant trends. Land-cover types: dense cork
oak woodlands with understory (DCoW), dense cork oak woodlands without understory (DCoWt),
sparse cork oak woodlands with understory (SCoW), sparse cork oak woodlands without understory
(SCoWt), and grasslands (G).

Kendall’s Tau Spearman’s Rho

Average/Date Max/Date Min/Date Average/Max Average/Min MAX/MIN

Tau p-Value Tau p-Value Tau p-Value Rho Rho Rho

DCoW ´0.16 0.686 ´0.038 0.324 0.062 0.108 0.781 0.651 0.406
DCoWt ´0.037 0.338 ´0.072 0.062 0.112 0.003 0.769 0.713 0.452
SCoW ´0.026 0.51 ´0.11 0.005 0.067 0.088 0.811 0.763 0.497
SCoWt ´0.01 0.799 ´0.008 0.828 0.03 0.432 0.826 0.728 0.495

G ´0.003 0.942 ´0.02 0.596 0.075 0.052 0.888 0.698 0.504
All ´0.011 0.394 ´0.049 0.0001 0.059 0.0001 0.76 0.669 0.211
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3.3. EVI and Weather Conditions

Over the last fifteen years, the study area has experienced an average temperature of 15.5 ˝C
(maximum temperature = 45.2 ˝C; minimum temperature = ´8.4 ˝C), an average relative humidity
of 78.6% (maximum RH = 100%, minimum RH = 12%) and an average heat index of 15.67 ˝C
(maximum HI = 45.33 ˝C). We found a strongly decreasing trend in relative humidity, while
temperature trends were still decreasing, but by a small amount.

EVI trend was strongly correlated with the trend in relative humidity. We found a strong positive
correlation between EVI and RH (r = 0.30; Figure 4) and strong negative correlations with the other two
weather parameters (T: r =´0.48; HI: r =´0.49; Figure 4). When decomposing EVI trends by land-cover
type, we found similar correlations as for the average EVI, but with higher fluctuations in EVI and
stronger correlations for grasslands and lowest for dense cork oak woodlands with understorey
(Table 4).

Remote Sens. 2016, 8, 486 8 of 13 

annual variability in grasslands EVI we found no significant trend in EVI over the entire time series, except 
for a potential increase in minimum EVI (average min EVI = 0.20, average max EVI = 0.434; Table 3). 

Table 3. Trends in, and correlations between, average, maximum, and minimum EVI per land-cover 
type and total from 2000 to 2013. Bold values show significant trends. Land-cover types: dense cork 
oak woodlands with understory (DCoW), dense cork oak woodlands without understory (DCoWt), 
sparse cork oak woodlands with understory (SCoW), sparse cork oak woodlands without understory 
(SCoWt), and grasslands (G). 

 Kendall’s Tau  Spearman’s Rho 
  Average/Date Max/Date Min/Date Average/Max Average/Min MAX/MIN
  Tau p-value Tau p-value Tau p-value Rho Rho Rho

DCoW −0.16 0.686 −0.038 0.324 0.062 0.108 0.781 0.651 0.406 
DCoWt −0.037 0.338 −0.072 0.062 0.112 0.003 0.769 0.713 0.452 
SCoW −0.026 0.51 −0.11 0.005 0.067 0.088 0.811 0.763 0.497 
SCoWt −0.01 0.799 −0.008 0.828 0.03 0.432 0.826 0.728 0.495 

G −0.003 0.942 −0.02 0.596 0.075 0.052 0.888 0.698 0.504 
All −0.011 0.394 −0.049 0.0001 0.059 0.0001 0.76 0.669 0.211 

3.3. EVI and Weather Conditions 

Over the last fifteen years, the study area has experienced an average temperature of 15.5 °C 
(maximum temperature = 45.2 °C; minimum temperature = −8.4 °C), an average relative humidity of 
78.6% (maximum RH = 100%, minimum RH = 12%) and an average heat index of 15.67 °C (maximum 
HI = 45.33 °C). We found a strongly decreasing trend in relative humidity, while temperature trends 
were still decreasing, but by a small amount.  

EVI trend was strongly correlated with the trend in relative humidity. We found a strong positive 
correlation between EVI and RH (r = 0.30; Figure 4) and strong negative correlations with the other 
two weather parameters (T: r = −0.48; HI: r = −0.49; Figure 4). When decomposing EVI trends by land-
cover type, we found similar correlations as for the average EVI, but with higher fluctuations in EVI 
and stronger correlations for grasslands and lowest for dense cork oak woodlands with understorey 
(Table 4). 

 

Figure 4. Inter-annual variability in EVI between 2002 and 2014 and (a) RH (%), (b) T (°C), and (c) HI (°C). 
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Table 4. Correlation between EVI for each land-cover type and weather parameters. Land-cover types:
dense cork oak woodlands with understorey (DCoW), dense cork oak woodlands without understorey
(DCoWt), sparse cork oak woodlands with understorey (SCoW), sparse cork oak woodlands without
understorey (SCoWt), and grasslands (G).

Weather Parameter DCoW DCoWt SCoW SCoWt G

average RH (%) 0.189 0.257 0.206 0.359 0.354
average T (˝C) ´0.371 ´0.437 ´0.361 ´0.534 ´0.514

average HI (˝C) ´0.369 ´0.433 ´0.355 ´0.527 ´0.506

Since the relation between weather and EVI could be the opposite in growing and non-growing
seasons we repeated the analysis just for the growing season (December to May). During the growing
season, we found a strong negative correlation between EVI and temperature and heat index, and a
less strong correlation with relative humidity (Table 5). We found the strongest correlation for sparse
cork oak woodlands without understorey and grasslands, and the weakest correlation for sparse cork
oak woodlands with understorey.
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Table 5. Correlation between growing season-only EVI for each land-cover type and weather
parameters. Land-cover types: dense cork oak woodlands with understorey (DCoW), dense cork
oak woodlands without understorey (DCoWt), sparse cork oak woodlands with understorey (SCoW),
sparse cork oak woodlands without understorey (SCoWt), and grasslands (G).

Weather Parameter DCoW DCoWt SCoW SCoWt G

average RH (%) 0.04 0.08 0.03 0.12 0.12
average T (˝C) ´0.25 ´0.28 ´0.22 ´0.39 ´0.34

average HI (˝C) ´0.26 ´0.27 ´0.23 ´0.39 ´0.35

4. Discussion

Our study aimed at assessing whether trees, shrubs, and grasses in cork oak (Quercus suber)
woodlands in Southern Portugal showed differences in the relationship between productivity and
climate. We found that the selected metric of productivity—EVI—in areas with dense and sparse cork
oak forest without understorey responded differently than in areas with understorey and of grasslands.

Cork oak woodlands without understorey maintained higher EVI and even a significant increase
in minimum EVI. Further, this land-cover type showed a much stronger relationship with relative
humidity then when there is a layer of understorey. During the growing season, however, EVI over
this land cover type was mostly negatively correlated with temperature. Therefore, temperature
and relative humidity seem to control EVI in the growing season and outside the growing season,
respectively. Since the growing season in our study area occurs during the colder months and after the
first rains, this explains the strong negative correlation with temperature. In this period there is no
water limitation; thus, EVI increases, which mostly occurs during the hot and dry periods when relative
humidity becomes the stronger control over EVI. A possible explanation is that the modification of the
leaves in evergreen oaks allows them to maintain their photosynthetic rates despite water stress [59].
Evergreen cork oaks have modified leaves called sclerophyllous leaves, which have a waxy layer on
the upper side of the leaf and stomata in the lower side of the leaf. The stomata in these leaves are
surrounded by hairs (trichoms), which capture and maintain moisture in the lower side of the leaf,
therefore, allowing the stomata to stay open for longer periods of time, enhancing photosynthesis,
resulting in the relatively constant EVI throughout the time series and a strong correlation with
relative humidity.

We also found a significant downward trend in maximum EVI is sparse oak woodlands with
understorey and a lower correlation with relative humidity. In these areas the dominant species in the
shrub layer are Cistus spp. Contrary to cork oaks, Cistus spp. do not have sclerophyllous leaves and its
growth is strongly related to precipitation and in dry periods these species tend to start senescence
earlier than expected [60]. This could justify why we find a significant decrease in EVI when patches
are dominated by shrubs. This trend can be further exacerbated by the fact that these shrubs have a life
expectancy of 10 years and that they may be replaced every 5–8 years, being two time periods within
our time series.

We also found that EVI did not change in dense cork oak woodlands with shrub understorey and
that the presence of understorey reduced the strength of the relationship between EVI and relative
humidity and between EVI and temperature during the growing season. This could be because of the
opposing direction of the trends in the oak and the shrub layers, thus, suggesting that the tree canopy
and the shrub canopy layers have different physiological responses to RH, T, and HI. Despite Cistus
species having an ability to restore soil and aid in oak regeneration [60,61], our results suggest that
this is limited by the ability of the shrubs to persist. This could be because the dominant C. salvifolius
produces allelopathic substances therefore maintaining a mono-specific shrub layer that is vulnerable
to changes in precipitation/relative humidity.

These results suggest that the overall upward trend in minimum EVI is driven by the canopy
of cork oaks, the downward trend in maximum EVI by the understorey canopy of shrubs, and that



Remote Sens. 2016, 8, 486 10 of 13

grasslands do not influence EVI trends over the time period we performed our analysis. Our results
also suggest that in the future EVI could improve because the rate of increase in minimum EVI is
greater than the rate of decrease in maximum EVI, and that this contingent on management of the
shrub understory, as it affects the rate of decrease in maximum EVI. Grasslands showed a much
stronger intra-annual variation in EVI and a stronger correlation between those and relative humidity,
possibly because grasslands respond to changes in precipitation in a shorter cycle than shrubs and oaks.
These results are corroborated by the trends in the sparse oak woodlands without understorey, which
are very close to those of grasslands. Since maximum and minimum EVI trends are not correlated,
i.e., the two trends are occurring independently of each other, it suggests that different processes may
be operating simultaneously. We suggest that oaks are better adapted to Mediterranean climates and,
therefore, are more resilient to changes, or that oaks take longer to respond to the ongoing changes
than the understorey and their response will be delayed.

A few uncertainties are worth mentioning. First, our study area is comparatively local and, as such,
we are unable to draw conclusions on the relationship across a larger scale. However, since our analysis
relied on standardized methods (i.e., Landsat EVI data and climate station data) there is only little
reason to believe that the relationship will not hold outside of our study area. Second, calculating EVI
requires reflectance values, which we only achieved through a standardized method for atmospheric
correction (i.e., LEDAPS). While some uncertainties may result from using LEDAPS, our EVI time series
analyses suggest that using Landsat EVI time series data elsewhere in the world will be reliable. Last, a
few uncertainties may remain from the input land-cover map, but we consider these uncertainties
marginal since the land cover types used were hand-drawn and based on detailed regional knowledge.

Nevertheless, being able to link the remote sensing measurements to these processes is
fundamental for ecosystem modeling and management. Our analysis shows one way in which
we can take advantage of the existing archive of remote sensing data and analytical tools to
understand ecosystem processes and further expand our understanding of the relation between
productivity-biodiversity. While our results are focused on a local area, they are indicative that we can
better link remote sensing metrics with local environmental conditions to understand the fundamental
processes that may drive larger scale patterns.

5. Conclusions

We found different temporal trends in productivity for the tree canopy and the shrub canopy,
and these trends in productivity were positively associated with relative humidity and negatively
with temperature. Independently of whether oaks are better adapted to Mediterranean climates and,
therefore, more resilient to changes, or oaks are taking longer to respond to the ongoing changes
than the understorey, these results have implications for the persistence of cork oak woodlands and
their associated biodiversity. While relative humidity seems to be stressing productivity, its effect
is stronger in deciduous land-cover types than in cork oak dominated land-cover types. Cork oak
dominated land-cover pixels were stable, in fact even improving productivity over this time period.
However, when cork oak was replaced by shrubs or herbs or its density decreased, productivity also
decreased. Therefore, if future land use preserves cork oaks, they may be sufficiently resilient to
withstand changes in climate, or at least have yet to show major effects. However, if changes in land
use favor replacement of cork oaks by other land-cover types or if cork oaks show lagged responses,
then the effect of climatic changes may be stronger than expected, challenging the persistence of its
associated biodiversity and social-ecological system.
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