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Abstract: The identification of tree species can provide a useful and efficient tool for forest managers
for planning and monitoring purposes. Hyperspectral data provide sufficient spectral information to
classify individual tree species. Two non-parametric classifiers, support vector machines (SVM) and
random forest (RF), have resulted in high accuracies in previous classification studies. This research
takes a comparative classification approach to examine the SVM and RF classifiers in the complex
and heterogeneous forests of Muir Woods National Monument and Kent Creek Canyon in Marin
County, California. The influence of object- or pixel-based training samples and segmentation
size on the object-oriented classification is also explored. To reduce the data dimensionality, a
minimum noise fraction transform was applied to the mosaicked hyperspectral image, resulting in
the selection of 27 bands for the final classification. Each classifier was also assessed individually
to identify any advantage related to an increase in training sample size or an increase in object
segmentation size. All classifications resulted in overall accuracies above 90%. No difference was
found between classifiers when using object-based training samples. SVM outperformed RF when
additional training samples were used. An increase in training samples was also found to improve
the individual performance of the SVM classifier.
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1. Introduction

The identification of tree species through remote sensing provides an efficient and potentially
cost-effective way to inventory, protect and manage forest resources [1–5]. Detailed and accurate forest
maps are crucial for the preparation and monitoring of fire, drought and other forest disturbances
caused by climate change [2,6,7]. Remotely-sensed images contain pixels displaying different surface
objects with unique reflectance values, allowing for the discrimination of classes, such as trees and
vegetation, based on their spectral signatures [8]. Forest classifications have ranged from more general
classifications of forest type (deciduous and coniferous trees) [4,9] to narrower focus classifications of
single tree species [1,10,11]. Often, the ability to classify individual species is limited, due to the lack of
spectral variance, which helps discriminate small spectral differences between species [12].

The type of imagery is a major factor in classification analysis, as the spatial and spectral
resolution can influence the accuracy of a classification. Multispectral images with three to
eight bands are commonly used with land cover classifications or forest type (broadleaf, conifer)
identification [9,12,13]. In some cases, the limited spectral bands available with multispectral imagery
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are combined with additional data, including LiDAR, tree heights, shape [14,15], multi-temporal
imagery [16] and texture [17].

Hyperspectral images contain multiple (typically between 64 and 256) continuous narrow
bands, providing significant levels of detail, which allow for the distinction of fine spectral
variations among tree species [18]. Despite the abundance of information contained in hyperspectral
imaging, discriminating species within the same genus can be a challenge, often leading to
misclassification [3,19]. However, in a comparison between hyperspectral and simulated broadband
multispectral classifications in tropical tree species, Clark et al. [12] found that hyperspectral
significantly outperformed multispectral. Where multispectral classification fails to capture the
slight spectral differences that occur between tree species, data-rich hyperspectral imagery can
improve classifications by providing sufficient information to discriminate between spectrally-similar
targets [12,15]. This has resulted in the extensive use of hyperspectral imagery for tree species
classifications [4,10,20,21].

The high level of data dimensionality in hyperspectral imagery poses a problem for classifications
due to the Hughes phenomenon [22]. The increase in spectral bands associated with hyperspectral
imagery changes the ratio between the number of training samples and the number of bands, causing
the accuracy of the classifier to decrease [23]. To resolve this issue, data reduction through band
selection reduces dimensionality without the need to increase training samples [12]. One common
method of feature selection in recent years has been the minimum noise fraction (MNF) [4,20,24–27].
The MNF is a transformation based on two principal component analysis rotations, which first uses
principal components to de-correlate noisy data and secondly uses the noise-removed principal
components for the final transformation [28]. The resulting MNF bands are ranked by eigenvalue from
those containing the highest variance to the highest noise.

Image analysis using pixel-based approaches has been popular [2,26,29], although challenges with
this approach have been identified. Issues with pixel-level analysis include shadowed or noise-filled
pixels [30], mixed pixels or, for very high resolution imagery, high spectral variety within a class [31].

Object-oriented approaches for classification can offer a more robust method for analysis over
pixel-based approaches by providing context to the areas around pixels and a more human-like
interpretation of imagery [32]. For classification of trees, object-based segmentations reduce the
challenge of crown edge shadowing and spectral variability within pixels that are often found
with pixel-based approaches [30]. Object-oriented tree segmentation for tree species classifications
commonly occurs on the individual tree crown level [12,19]. Dalponte et al. [30] tested delineation
methods with both airborne laser scanning (ALS) and hyperspectral data and determined that
neither method was significantly better than the other. When compared to the pixel-based approach,
object-based methods have been shown to provide improved classification accuracy in many
cases [10,12,20,25].

The support vector machine (SVM) classifier has been increasingly used for complex multi-class
problems because it has been found to be better prepared to handle highly dimensional data without an
increase in training sample size [33], and some authors even suggest that data reduction is unnecessary
for such classifiers [4]. The wide use of the SVM classifier has been apparent in both land cover (forest
type) classifications [20,24,27] and tree species classifications [19,21,30], making it one of the more
common classifiers used in vegetation classifications.

Support vector machines contain a machine learning algorithm that separates classes by defining
an optimal hyperplane between classes, based on support vectors that are defined by training data [33].
In its most basic form, an SVM is a linear binary classifier; however, multi-class strategies have been
created that can be applied to complex hyperspectral classifications [23]. While the SVM classifier is
seen as a robust method that requires only a small training sample size, the classifier requires trial and
error tuning to determine parameters for each classification [33]. The nonlinear SVM with radial basis
kernel functions (RBF) requires two parameters to be set. The C parameter determines the amount
of misclassification allowed for non-separable training data, enabling the rigidity of training to be
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adjusted [28]. The gamma parameter is a kernel width parameter that determines the smoothing of the
shape of the class-dividing hyperplane [23].

Another non-parametric classifier gaining wider use is the random forest classifier (RF) as
developed by [34]. Random forest is an ensemble-based machine learning algorithm that uses multiple
decision tree classifiers to vote on a final classification. Only a few parameters are required, including
N (number of trees) and m (number of predictor features) [13]. With minimal parameter settings and
few variables, random forest has been found to require less complex computations and running time
than other classifiers, as well as having high classification accuracy in especially intricate models [35].
Random forest has been suggested as an alternate classifier to SVM for multi-class problems, as it
requires fewer parameters than SVM [13].

The objective of this research is to compare and examine the performance of two state-of-the-art
classifiers, random forests and support vector machines, for tree species classification in a forest setting
with a non-homogenous tree species distribution. A comparative classification approach is used to
assess the performance of the two classifiers, with additional consideration for the influence of training
sample size and object-based segmentation size on the individual performance of the individual
classifiers. To further explore the impact of training sample size, pixel-based and object-based
reflectance values are used.

2. Materials and Methods

2.1. Study Area

The study area consists of Muir Woods National Monument and adjacent Kent Creek Canyon,
located in Marin County, CA, about 15 miles north of San Francisco, CA (Figure 1). The parks are
managed by the U.S. National Parks Service and the California State Parks, respectively. Both parks
occur within the Redwood Creek watershed, which extends steeply to the Pacific Ocean, roughly
5.5 miles to the south. The park’s close proximity to the colder ocean water creates fog, resulting in
fog drip, which helps support the redwood forest ecosystem [36]. In 1908, Muir Woods became a
National Monument, protecting the remaining old growth redwoods. With over 1 million visitors in
2014, efforts within Muir Woods are being made to minimize high visitor impacts, including erosion,
noise-pollution and traffic [37,38].
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Muir Woods National Monument occupies 2.25 square kilometers in the upper reaches of the
Redwood Creek Watershed, where old growth coast redwoods (Sequoia sempervirens), Douglas fir
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(Pseudotsuga menziesii) and California bay laurel (Umbellularia californica) dominate the forest canopy.
The extent of tan oak (Lithocarpus densiflorus) and big leaf maple (Acer macrophyllum) are limited, but
occupy both the canopy and understory. Although some of the redwood trees in the area are over
600 years old, the forest contains trees of varying ages [39].

To the west of Muir Woods National Monument is the smaller Kent Creek Canyon, part of Mt.
Tamalpais State Park. The Kent Creek area exhibits drier conditions than Redwood Canyon. In this
area, bay laurel, coast live oak (Quercus agrifolia) and Douglas fir are more abundant, while the extent
of coast redwood is limited. Kent Creek Canyon includes extensive non-forested areas containing
coyote brush and grassland. In both parks, arroyo willow (Salix lasiolepis) and red alder (Alnus rubra)
corridors line Redwood Creek, while California buckeye (Aesculus californica) is found along Muir
Woods Road and around the Muir Woods main parking lot. Within the boundaries of Muir Woods
National Monument, a small grove of non-native eucalyptus (Eucalyptus globulus) sits in the eastern
edge of the park in the Canyon de Camino area. The eucalyptus grove was planted before the land
was acquired as part of the park [37].

2.2. Remote Sensing Data

Acquisition of remote sensing data for this project occurred through the Golden Gate LiDAR
Project [40] (Table 1). Airborne hyperspectral data were acquired using an AISA Eagle sensor with
a 23-mm lens. The sensor was flown at an altitude of 2286 meters with a FWHM (bandwidth)
of approximately 4.6 nm. Multiple flight lines were flown, out of which four flight line images
were ultimately selected based on time of day taken, the spatial coverage of the study area and the
temporal proximity between images. The LiDAR and hyperspectral data were acquired concurrently.
A minimum LiDAR point density was planned for 4 points/m2, but additional flight lines flown over
Muir Woods National Monument densified the LiDAR points, resulting in an average raw point
density of 8 points/m2. In Kent Canyon, the raw point density averaged 4 points/m2, but areas with
deep canyons generally resulted in a point density between 7 and 8 points/m2 [41].

Table 1. Hyperspectral imagery and LiDAR were collected as part of the Golden Gate LiDAR project.

Data Sensor Date of Acquisition Spatial Resolution Spectral Range Bands

Hyperspectral AISA Eagle 5–7 May 2010 2 m 397.78–997.96 nm 128
LiDAR Leica ALS60 5–7 May 2010 4–8 points/m2 1064 nm 1

2.3. Pre-Processing

The LiDAR point data were classified into ground, canopy and building points, and QA/QC
(quality assurance/quality control) was completed to remove noise points using LP360 software [42].
A digital elevation model (DEM) and canopy height model (CHM) were created with a spatial
resolution of 0.5 m using a regularized spines with tension interpolation from the LiDAR data using
open source software [43]. This spatial resolution was selected after a comparison of the 0.5-m and 1-m
DEM/CHM showed additional topographic and canopy detail in the 0.5-m datasets.

Most initial pre-processing of the hyperspectral data occurred separately from this study as part
of the Golden Gate LiDAR project and included radiometric corrections from digital numbers to
reflectance, geometric calibration and orthorectification [41]. Additional processing was completed
using ENVI 5.1 [28]. Atmospheric corrections were applied to each flight line image using the fast
line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) algorithm, converting the image
from radiance to reflectance. Hyperspectral flight lines were clipped as close to nadir as possible
to eliminate edge effects. Topographic normalization was applied to the images using the DEM,
solar elevation and sensor azimuth to reduce the influence of radiometric distortion caused by the
mountainous terrain. The four flight line images were then mosaicked using the seamless mosaic tool,
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and histogram matching was applied for normalization. This yielded a hyperspectral mosaic of the
study area with 2-m spatial resolution.

2.4. Masking

The study area contains sections of low-lying vegetation and roads, which were not considered
in the classification. A CHM mask was created and applied to the hyperspectral mosaic, removing
any areas below 2 meters from the image. As suggested by Ghosh et al. [4], a mask was applied to the
hyperspectral mosaic to remove non-forest area, reducing the spectral influence of non-tree classes in
the principal components during feature selection.

2.5. Object-Based Tree Segmentation

The goal of the object-oriented segmentation approach was to delineate object areas inclusive of
individual tree crowns for species classification. Shadowing from tree crowns due to sun illumination
can result in misclassification in pixel-based classifications; however, an object-based approach contains
shadowed pixels within the objects [30]. To aid in the segmentation, tree stems were located by isolating
maximum heights based on LiDAR points. An assumption was made that all trees take a similar
form as conifers, with crowns forming a pointed top. While this assumption helped predict the
tree stem location of coniferous trees, high points of other species, such as bay and coast live oak,
were not as readily identified using this method. As a result of this potential error, the tree center
locations were used only as a visual guide for the segmentation. A preliminary segmentation tested
on the hyperspectral imagery resulted in a poor delineation of tree crowns, so a segmentation on the
LiDAR-based canopy height model was tested and found to provide improved crown delineation.
eCognition 9.1 software [44] was used for segmentation based on the CHM. The multi-resolution
segmentation assesses single pixels and combines them with neighboring pixels based on factors of
homogeneity to create the object. The three parameters used to tune the segmentation included the
scale parameter, to adjust the size of objects, shape, to determine the influence of shape versus color,
and compactness, which influences the value of compactness over smoothness [45]. To compare the
influence of object size on classification accuracy, two segmentations were created, one containing
smaller objects and one with larger objects (Figure 2).
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Figure 2. (a) The small segmentation created by the multi-resolution segmentation in eCognition
9.1 displayed over the canopy height model. Points represent tree centers. Over-segmentation is
visible; (b) The large segmentation created by the multi-resolution segmentation shows areas of
under-segmentation of merged tree crowns.

The small object segmentation resulted from a scaling parameter of 6, a shape of 0.3 and a
compactness of 0.8 using trial and error. These parameters increased the likelihood that a tree stem
point was contained within a single object while maintaining a small object size. This approach,
however, resulted in an over-segmentation of objects in some areas. The large object segmentation
parameters were also determined using trial and error, resulting in a scaling factor of 9, a shape
of 0.1 and a compactness of 0.5. Visually, the large object delineation aligned closer to actual tree
boundaries of the CHM. In some cases, however, the image was under-segmented in areas where
merged tree crowns had similar heights.

2.6. Data Reduction and Feature Selection

To address the problem of high data dimensionality in hyperspectral images, a forward
minimum noise fraction (MNF) transform was applied to the mosaicked image to reduce data
redundancy and help identify bands containing the most variance. This process creates outputs
of uncorrelated bands, which are ranked from highest eigenvalue (with most meaningful bands)
to lowest eigenvalue (containing noise-filled bands). Due to the masking of low-lying vegetation,
the resulting set of MNF bands was ranked only based on variance within forested areas only.
ENVI’s data dimensionality wizard allows for automated estimates of MNF band coherence;
however, these estimates are based on default calculations, which risk over- and under-estimation of
dimensionality [28]. Alternatively, manual band selection allows for the examination of eigenvalues
and visual assessment of MNF band images to determine which are spatially coherent and which
contain noise. Based on visual inspection of MNF band images and the consideration of ranked
eigenvalues, a total of 27 features (Figure 3) were deemed coherent and informative for use in the final
classification (Table 2).
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Figure 3. The first three minimum noise fraction (MNF) band images (a) have high spectral coherence,
which helps to distinguish dominant tree species. The final three MNF bands of the 27 selected
(b) contain some spectrally-coherent areas (highlighted) within the otherwise noise-filled image.

Table 2. After the minimum noise fraction transform, 27 bands were selected to be used in the image
classifications. The selection of bands was based on the eigenvalues and percentage of data variance,
along with visual inspection of each band.

MNF Eigenvalue Percent MNF Eigenvalue Percent

1 1769.69 55.56% 15 12.60 72.15%
2 148.59 60.23% 16 12.05 72.53%
3 79.96 62.74% 17 11.37 72.89%
4 56.29 64.51% 18 10.97 73.23%
5 51.37 66.12% 19 10.02 73.55%
6 31.97 67.12% 20 9.48 73.84%
7 27.03 67.97% 21 9.07 74.13%
8 21.76 68.65% 22 8.90 8.9096
9 21.35 69.33% 23 8.87 74.69%
10 19.37 69.93% 24 8.79 74.96%
11 16.71 70.46% 25 8.73 75.24%
12 14.09 70.90% 26 8.66 75.51%
13 13.95 71.34% 27 8.59 75.78%
14 13.28 71.76%

2.7. Sample Data

Stratified random sampling was used to select both training and testing samples for the
classification. Single species tree stands were used as strata to reduce potential error when conducting
ground truth and to remove the possibility of mixed-species pixels. Field work consisted of navigating
to pre-selected random points within stands using GPS and a detailed CHM to confirm the species of
the tree at each point. Given the steep terrain and thick vegetation in the study area, samples that could
not be checked in the field were confirmed using high resolution reference imagery. From the total
samples collected, points were randomly assigned into training and testing samples. Training sample
polygons were manually drawn around the training sample points with CHM tree crowns as a guide.

To determine the number of training pixels needed for each class, a common rule suggests
multiplying the number of bands used in the classification by ten [46]. Given the object-based
approach used in this research, this rule was used as a guideline to select training samples that were
then assigned pixel-based and object-based reflectance to understand the influence of training sample
size and type on the two classifiers (Table 3). The object-based training sample set was based on the



Remote Sens. 2016, 8, 445 8 of 18

training sample polygons, where the value of the sample equaled the mean spectral reflectance value
of the pixels within the polygon. The same training sample polygons were used in the pixel-based
training sample set; however, the spectral reflectance of each pixel contained within the polygon was
used as a training sample. All samples were proportionally selected for each class.

Table 3. Training and accuracy assessment samples by class. A total of 806 samples were collected
(small training sample set and testing samples). The large training sample set utilized all pixels within
the sample polygons as the training samples.

Class Percent Coverage 1
Object-Based

Small Training
Sample Size

Pixel-Based Training
Sample Size

Accuracy
Assessment

Samples

Arroyo Willow
(Salix lasiolepis) 1.0% 10 139 19

California Bay Laurel
(Umbellularia californica) 26.2% 27 371 152

California Buckeye
(Aesculus californica) 0.1% 12 180 15

Coast Live Oak
(Quercus agrifolia) 5.1% 16 192 30

Coast Redwood
(Sequoia sempervirens) 40.0% 24 254 276

Douglas Fir
(Pseudotsuga menziesii) 26.0% 25 236 135

Eucalyptus
(Eucalyptus globulus) 0.5% 23 134 10

Red Alder
(Alnus rubra) 1.10% 16 201 26

Total 100% 143 1707 663
1 Estimated percent coverage was calculated from an initial unsupervised classification of the study area.

The number of test samples needed for accuracy testing was based on the multinomial distribution
for a confidence interval of 90% for the accuracy assessment [47]. Although a confidence interval of
95% would have been preferred, the number of test samples required to attain that level was beyond
the scope of this project, especially given the hard to access terrain. Testing samples for each species
were also proportionally selected by class size. A total of 663 test samples were determined necessary
for a confidence interval of 90%.

2.8. Classification

Eight tree species were used in the classification, including coast redwood (Sequoia sempervirens),
Douglas fir (Pseudotsuga menziesii), California bay laurel (Umbellularia californica), coast live
oak (Quercus agrifolia), red alder (Alnus rubra), arroyo willow (Salix lasiolepis), eucalyptus
(Eucalyptus globulus) and California buckeye (Aesculus californica). These species were selected based
on their estimated percent coverage in the study area, as well as visibility in the canopy.

A comparative classification approach was taken to compare the support vector machine to the
RBF classifier and the random forest classifier. Additionally, classifications were compared based on
the size of the object-oriented segmentation and training samples. The classifier comparisons were
divided into a total of 4 classification sets, resulting in eight total classifications, explained below
(Table 4).
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Table 4. Classification set based on classifier, training sample size and segmentation size.

Classification Set Training Sample Type Segmentation Object Size

Classification Set 1:
SVM and RF Object-based reflectance Small object

Classification Set 2:
SVM and RF Object-based reflectance Large object

Classification Set 3:
SVM and RF Pixel-based reflectance Small object

Classification Set 4:
SVM and RF Pixel-based reflectance Large object

All species classifications were performed using eCognition 9.1 Developer software [45]. A grid
search to determine optimal parameters for the SVM and random forest classifiers was completed
in R-project [48] using the ‘tune’ command in package ‘e1071’ (2014). Calibration samples for
parameter tuning were extracted from the training samples of each classification set. The SVM
classifier parameters selected include gamma, which controls the smoothness of the hyperplane, and
C, which controls the error penalty [23]. The RF parameters include m, the number of features used
for training, and N, the number of trees. A framework of the steps for these methods can be found in
Figure 4.

Remote Sens. 2016, 8, 445 9 of 18 

 

Table 4. Classification set based on classifier, training sample size and segmentation size. 

Classification Set Training Sample Type Segmentation Object Size 

Classification Set 1:  
SVM and RF 

Object-based reflectance  Small object 

Classification Set 2:  
SVM and RF Object-based reflectance  Large object 

Classification Set 3:  
SVM and RF 

Pixel-based reflectance  Small object 

Classification Set 4:  
SVM and RF 

Pixel-based reflectance  Large object 

All species classifications were performed using eCognition 9.1 Developer software [45]. A grid 
search to determine optimal parameters for the SVM and random forest classifiers was completed in 
R-project [48] using the ‘tune’ command in package ‘e1071’ (2014). Calibration samples for parameter 
tuning were extracted from the training samples of each classification set. The SVM classifier 
parameters selected include gamma, which controls the smoothness of the hyperplane, and C, which 
controls the error penalty [23]. The RF parameters include m, the number of features used for training, 
and N, the number of trees. A framework of the steps for these methods can be found in Figure 4. 

 
Figure 4. Framework of the tree species classification using LiDAR, hyperspectral and field data. 

2.9. Accuracy Assessment 

A visual inspection of each classification was performed to identify areas of potential error and 
contrast between classifications. The results of the classifications were also assessed according to the 
confusion matrix based on overall accuracy, user’s accuracy and producer’s accuracy [49]. 

McNemar’s test has been frequently used for testing the statistical significance of two classifiers 
[4,20,21,50]. Foody [51] suggests the use of McNemar’s test instead of a z-test in cases where the same 
test samples are used for each accuracy assessment, resulting in the assumption of independence of 

Figure 4. Framework of the tree species classification using LiDAR, hyperspectral and field data.

2.9. Accuracy Assessment

A visual inspection of each classification was performed to identify areas of potential error and
contrast between classifications. The results of the classifications were also assessed according to the
confusion matrix based on overall accuracy, user’s accuracy and producer’s accuracy [49].

McNemar’s test has been frequently used for testing the statistical significance of
two classifiers [4,20,21,50]. Foody [51] suggests the use of McNemar’s test instead of a z-test in cases
where the same test samples are used for each accuracy assessment, resulting in the assumption of
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independence of samples to not be fulfilled. McNemar’s test [52] measures the error of two proportions
that use the same training sample set, where the null hypothesis assumes that the error produced by
each classifier is the same [53]. McNemar’s test was used to determine if differences in accuracies
between the SVM and RF classifier were statistically significant, as well as any change in performance
of the individual classifiers when training and segmentation sizes are adjusted. The confidence interval
for statistical testing was 95%.

3. Results

3.1. Overall Classification Results

All four classification sets resulted in overall accuracies above 90% for both the SVM and RF
classifiers. The overall accuracies of the first two classification sets showed no statistically-significant
difference between classifiers (Table 5). Classification Sets 3 and 4 both resulted in the SVM classifier
having a statistically significant advantage over the RF classifier. Classification Set 4, with pixel-based
training samples and a large object segmentation size, resulted in the highest accuracies for both
classifiers and was considered to be the best scenario.

Table 5. Statistical significance of the classification sets.

Classification Set Classifier Overall Accuracy p-Value Statistical Significance

Classification Set 1
SVM 92.61% 0.3408 Not significant
RF 91.55%

Classification Set 2
SVM 92.76% 0.4404 Not Significant
RF 92.31%

Classification Set 3
SVM 94.72% 0.0119 Significant
RF 92.46%

Classification Set 4
SVM 95.02% 0.0164 Significant
RF 92.91%

3.2. Best Performance: Classification Set 4

Classification Set 4 resulted in the best performance of both classifiers with overall accuracy for
the SVM at 95.02% and RF at 92.91% (Table 6). The difference between classifier overall accuracies was
found to be significant.

Table 6. Confusion matrices for classification Set 4, which resulted in the highest overall accuracies for
both classifiers. The top row of classes represents the reference trees, and the left column represents
classified trees.

Classifier:
SVM DF RW Bay CLO BU RA E W Total User’s

Accuracy

DF 126 4 1 2 1 1 0 3 138 91.30
RW 0 271 1 0 0 0 0 0 272 99.63
Bay 1 0 147 0 0 0 0 0 148 99.32
CLO 6 1 3 28 0 0 1 3 42 66.67
BU 0 0 0 0 14 0 0 1 15 93.33
RA 1 0 0 0 0 24 0 1 26 92.31
E 0 0 0 0 0 0 9 0 9 100.00
W 1 0 0 0 0 1 0 11 13 84.62

Total 135 276 152 30 15 26 10 19 663

Producer’s
Accuracy 93.33 98.19 96.71 93.33 93.33 92.31 90.00 57.89

Overall
Accuracy 95.02
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Table 6. Cont.

Classifier:
RF DF RW Bay CLO BU RA E W Total User’s

Accuracy

DF 117 3 1 3 0 0 0 2 126 92.86
RW 3 272 2 1 0 0 1 0 279 97.49
Bay 4 1 146 1 0 0 1 0 153 95.42
CLO 6 0 3 25 1 1 0 4 40 62.50
BU 0 0 0 0 14 0 0 1 15 93.33
RA 3 0 0 0 0 23 0 1 27 85.19
E 0 0 0 0 0 0 8 0 8 100.00
W 2 0 0 0 0 2 0 11 15 73.33

Total 135 276 152 30 15 26 10 19 663

Producer’s
Accuracy 86.67 98.55 96.05 83.33 93.33 88.46 80.00 57.89

Overall
Accuracy 92.91

DF, Douglas fir; RW, redwood; Bay, California bay laurel; CLO, coast live oak; BU, California buckeye; RA, red
alder; E, eucalyptus; W, willow.

This classification set used pixel-based reflectance training samples to classify the large object
segmentation. The SVM parameters were a gamma of 16 and a cost of 0.0156, while the RF parameters
had an m of five and N of 2000.

The improvements in overall accuracies were consistent with the visual improvement from other
classification sets. With the introduction of pixel-based training samples and a larger segmentation,
both classifications showed a visible reduction of misclassifications and improvement in species
homogeneity within stands.

As was the case with all other classification sets, visual assessment comparing the SVM and
RF classifications consistently found that the SVM classifier resulted in a more homogeneous and
generalized classification of species than the random forest classifier (Figure 5). Three areas in the study
site tended to have higher instances of misclassification; however, this showed improvement with each
classification. The RF classifications consistently misidentified red alder along the right edge of the
image, while the SVM classification correctly identified the uniform coverage of Douglas fir (Figure 6).
Stands along the western edge of Kent Canyon posed a challenge for the other classification sets, with
redwoods misclassified as coast live oak and buckeye. As was true for all other classifications, SVM
displayed greater uniformity than RF and resulted in better prediction of classes in this area (Figure 7).

For individual class accuracies, both classifiers resulted in a 57.89% producer’s accuracy for
willow, which was consistent with all other classification sets. The RF classifier resulted in the willow
user’s accuracy dropping by at least 10% from previous classifications. The RF classifier user’s accuracy
for coast live oak remained similar to other classification sets at 62.50%, while the SVM user’s accuracy
for coast live oak rose from below 75% in all previous classifications to 90.32%. Aside from coast live
oak and willow, both classifiers had producer’s and user’s accuracy above 90% for all other species,
showing improvement from other classification sets.
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Figure 6. Classification Set 4 comparison of RF (a) and SVM (b) on the eastern edge of Muir Woods
National Monument. The random forest classification (a) shows large groupings of coast live oak (1)
and abundant red alder (2), while the support vector machine classification (b) contains less coast live
oak and red alder, providing a more accurate representation of the existing tree stands.
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Figure 7. Classification Set 4 comparison of RF (a) and SVM (b) in Kent Creek Canyon. Both the RF
classification (a) and SVM classifications (b) show large areas of misclassified buckeye in the redwood
stand (1). The RF classification (a) contains more areas misclassified as redwood and coast live oak
(2,3), resulting in more class variation than in the SVM classification (b).

3.3. Individual Classifier Performance

The performances of both the SVM and RF classifiers were assessed individually to determine
if the use of pixel-based training samples, segmentation size or both would result in a change of
performance. Pixel-based training samples increased the SVM overall accuracy for both the small
segmentation and large segmentation with p-values of 0.0258 (Figure 8). With a confidence interval
of 95%, the enhanced performance of the SVM classifier can be considered significant. For the RF
classifier, improvement in overall accuracy was significant only with the addition of pixel-based
training sample size combined with the larger object size. The increase in segmentation object size
alone did not improve the SVM or RF classifications with any significance.
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Figure 8. A graph of classifier performance for each classification approach highlights
statistically-significant changes in overall accuracy. The SVM classifier demonstrated significant
improvement with the addition of pixel-based training samples. The RF classifier showed significant
improvement only with the addition of pixel-based and larger object size.



Remote Sens. 2016, 8, 445 14 of 18

4. Discussion

In comparing the overall accuracies of the SVM and RF classifier, SVM was determined to have
a statistically-significant advantage over RF when the pixel-based reflectance samples were used,
irrespective of segmentation size. The most misclassified class for both classifiers was willow, with
class accuracies all below 60%. The willow class was misclassified as multiple different species, had the
fewest number of training samples and consistently had low class accuracies. Redwood was correctly
identified most consistently.

A noticeable trait of both classifiers was the high overall accuracies despite abundant
misclassifications found during visual inspection. Duro et al. [54] experienced similar issues with their
classification, highlighting that limited testing samples can result in inaccurate classification accuracies.
Similarly, Congalton [49] explains that a large quantity of zeroes within the confusion matrix can mean
that the test sample size is inadequate or the classification highly successful. Considering the number
of zeroes on the confusion matrix for the smaller classes (eucalyptus, willow, coast live oak, etc.), it
is quite possible that insufficient test samples were responsible for the high classification accuracies
of some species. For this research, the stratified sampling method utilized single species stands to
ensure correct sample identification; however, this prevented test samples from being selected near
stand boundaries, in mixed forest areas or in inaccessible areas. As a result, the test samples did not
represent all areas of the study site, and thus, the accuracy assessment failed to reflect the classifier
performance in those areas.

In some cases, an individual species was misclassified as one or two other classes, as was
demonstrated by the redwood class commonly being incorrectly classified as bay or Douglas fir.
As discussed by Heinzel and Koch [19], misclassification within the same tree types (conifers and
broadleaf) occur at a higher rate than they do between tree types. Some broadleaf tree classes (coast
live oak, buckeye, red alder) were misclassified as other broadleaf species, likely as a result of similar
spectral signatures among the broadleaf species. The fact that Douglas fir and willow were misclassified
as many different species of various tree types, however, may suggest a different cause of some
misclassifications. Leckie et al. [1] highlight the causes of high spectral variability in old growth
forests, which include shadowing, tree health and bidirectional reflectance. Shadowing may best
explain the misclassification of Douglas fir as coast live oak throughout the upper portions of the
mosaic. Additionally, sun angle and slope can change reflectance values based on date and time of day.
Although a normalization was applied to the images before mosaicking, the normalization was likely
insufficient for the non-consecutive flight lines. Because training samples from all images were used
to train the classifiers, the result was a wider spectral range for some classes. This may have caused
spectral overlap, which leads to misclassification of species.

The influence of pixel-based training samples played a significant role in the SVM and RF
classifications. The difference between object- and pixel-based training samples can effectively be seen
as an increase in sample size. Although the actual number of samples is the same for both sample
types, the pixel-based reflectance samples provide additional spectral reflectance values used to train
the classifiers. The current literature generally recognizes the support vector machine classifier for
its ability to work well with limited training samples [33]. The need for fewer training samples is
attributed to the fact that SVM utilizes only the subset of the training samples that defines the location
of the SVM hyperplane [23]. Contrary to the majority of the literature, this research suggests that an
increase in training size can improve the SVM classifier. Similarly, Zhang and Xie [55] also found
that both SVM and RF were sensitive to training size when assessing a complex landscape with high
spatial and spectral variability. A possible reason for the greater influence of training sample size in
this research could be the complexity and heterogeneity of forest and insufficient object-based samples.
Considering the influence of training samples on defining SVM hyperplanes, object-based samples
(based on mean pixel values) may fail to capture the high spectral variability within eight tree species
in a highly heterogeneous forest as compared to a less complex forest with fewer classes or less spectral
overlap of species.
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The influence of segmentation size alone had no statistically-significant influence on classification
accuracy. Classifications using small segmentations tended to show a greater variety of species within
stands, which was likely due to shadowing. Small segmentations that fit entirely within shadowed
areas may not have similar spectral properties as sunlit segments of the same class, resulting in a
misclassification of shadowed areas. The larger segmentation might include both shadowed and sunlit
portions of a tree, resulting in a higher chance of being correctly classified. The result of this artifact
is a speckled appearance of species on the small-object classification and a more uniform display of
species on the large-object classification.

In the comparison of SVM and RF in forest and land cover classifications, most literature has
found that both provide high accuracies with no significant difference between the classifiers [4,53].
Consistent with the literature, both classifiers in this research resulted in high accuracies, which showed
no significant difference between methods. However, the addition of pixel-based training samples
improved SVM enough to gain a significant advantage. Dalponte et al. [15] found that in a mixed
coniferous and broadleaf forest, SVM performed better than RF, likely because RF has been found less
able to handle minority classes. Tarabalka et al. [20] also noted with the SVM classifier that classes
with small training sample sizes often resulted in low accuracy. The performance of both classifiers on
small classes can explain the low class accuracies in Classification Sets 1 and 2, where no difference in
classifier performance is found. With the addition of pixel-based samples, the SVM classifier likely
improved the handling of the small classes due to the increase in sample size, increasing overall SVM
accuracy significantly above RF.

Visually, SVM consistently provided a smooth and less speckled appearance over the RF classifier.
While SVM may provide a more visually realistic classification, post-classification processing could
minimize visual differences between the classifier outputs [24].

5. Conclusions

An object-based classification of tree species in a complex and heterogeneous forest on challenging
topography was performed on a mosaicked hyperspectral image using two commonly-used classifiers.
Two variables, training sample type and segmentation size, were adjusted to test classifier performance
under these different conditions. Neither classifier outperformed the other statistically when
object-based training samples were used, regardless of segmentation size. The SVM classifier accuracy
did have a statistical advantage over RF with the addition of pixel-based training samples, likely due to
how each classifier handles small classes. Individually, SVM and RF classifiers improved significantly
when segmentation size and training sample size increased. In the context of a complex forest with
varying class sizes, SVM offers a statistical advantage over RF, assuming sufficient training samples
are provided. Additionally, increasing the training sample size may improve the performance of the
SVM when small classes are being considered.

Considering the challenging environment of the study area, all classifications successfully resulted
in high overall accuracies. The limited accessibility to the study area restricted the number of samples
that could be collected, providing additional challenges. Similarly, the sun illumination differences
between non-consecutive flight lines, which were enhanced by the steep canyons of the study area,
increased opportunities for misclassifications.
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Abbreviations

The following abbreviations are used in this manuscript:

DEM digital elevation model
CHM canopy height model
SVM support vector machine
RBF radial basis function
RF random forest
MNF minimum noise fraction
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