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Abstract: Image registration is an essential step in the process of image fusion, environment
surveillance and change detection. Finding correct feature matches during the registration process
proves to be difficult, especially for remote sensing images with large background variations
(e.g., images taken pre and post an earthquake or flood). Traditional registration methods based
on local intensity probably cannot maintain steady performances, as differences are significant in
the same area of the corresponding images, and ground control points are not always available
in many disaster images. In this paper, an automatic image registration method based on the
line segments on the main shape contours (e.g., coastal lines, long roads and mountain ridges)
is proposed for remote sensing images with large background variations because the main shape
contours can hold relatively more invariant information. First, a line segment detector called EDLines
(Edge Drawing Lines), which was proposed by Akinlar et al. in 2011, is used to extract line segments
from two corresponding images, and a line validation step is performed to remove meaningless and
fragmented line segments. Then, a novel line segment descriptor with a new histogram binning
strategy, which is robust to global geometrical distortions, is generated for each line segment based
on the geometrical relationships,including both the locations and orientations of theremaining line
segments relative to it. As a result of the invariance of the main shape contours, correct line segment
matches will have similar descriptors and can be obtained by cross-matching among the descriptors.
Finally, a spatial consistency measure is used to remove incorrect matches, and transformation
parameters between the reference and sensed images can be figured out. Experiments with images
from different types of satellite datasets, such as Landsat7, QuickBird, WorldView, and so on,
demonstrate that the proposed algorithm is automatic, fast (4 ms faster than the second fastest
method, i.e., the rotation- and scale-invariant shape context) and can achieve a recall of 79.7%,
a precision of 89.1% and a root mean square error (RMSE) of 1.0 pixels on average for remote sensing
images with large background variations.

Keywords: image registration; remote sensing; background variation; line segment; main shape contour

1. Introduction

Image registration is the process of geometrically-aligning two or more images of the same scene
taken from different viewpoints, at different times or by different sensors, and the main objective of it
is to find the most appropriate transformation parameters between the images [1–4]. It has been widely
used in the field of remote sensing, including image fusion, change detection [5–7], disaster analysis [8],
semantic labelling of images [9] and mapping sciences [10–12]. Classical methods generally fall into
two categories: area-based methods and feature-based methods [1]. The majority of registration

Remote Sens. 2016, 8, 426; doi:10.3390/rs8050426 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 426 2 of 21

algorithms consist of four steps: feature detection, feature matching, transformation model estimation
and image resampling [13–15]. Many algorithms thathad been proposed in order to register remote
sensing images with geometric and illumination differences mainly focused on the following parts:
feature detection, feature description and feature matching [16–19].

When a disaster, such as a flood or earthquake, takes place, images taken pre and post the disaster
should be registered rapidly in order to do the change detection [20]. Registration of this type of
remote sensing image pairs turns out to be difficult because significant intensity differences always
exist in the same area of the corresponding images. The main characteristics of such image pairs are as
follows: local intensity values change significantly; local objects, such as blocks or buildings, are ruined;
changes in scale and viewpoint exist in images; the main shape contours, such as mountain ridges, long
roads and coastal lines, remain relatively stable. Points, lines and regions are the three most common
features used in the feature-based registration method [21–23], and the information of intensity and
shape structure isusually used to describe the feature [23–25]. The most popular local intensity-based
feature detector and descriptor is the scale-invariant feature transform (SIFT) [26], which uses the local
maximum of the scale space as the point feature and describes it depending on the gradient location and
orientation around the point. The SIFT descriptor is highly discriminative, and many other descriptors,
such as the speeded-up robust feature (SURF) [27], the gradient location and orientation histogram
(GLOH) [28] and the affine-SIFT (ASIFT) [29], have been developed based on it. Bradley [30] presented
a complex scale-invariant feature transform (CSIFT) algorithm, which is suitable for complex-valued
images. Sedaghat et al. [31] proposed a uniform robust scale-invariant feature matching (UR-SIFT)
approach for optical remote sensing images, which had solved the problem of the uneven distribution
of the SIFT point features. However, SIFT-based features are hard to detect and match in remote
sensing images with large background variations because of significant intensity changes in their
neighborhoods. Ghosh et al. [32] introduced a method containing both registration and segmentation
based on the advances in sparsity learning. An efficient and accurate set-based registration algorithm
for aerial images was proposed by Arandjelović [33]. This algorithm formulated the joint registration
problem of a set of image sequences as an optimization scheme, and both robustness and high accuracy
could be obtained. A few georeferencing-based methods had also been proposed in recent years [34,35],
but ground control points (GCP) are not always available in remote districts and mountainous areas.
Generally, the main shape contours, such as coastal lines, long roads and mountain ridges, hold
relatively stable information, although global geometrical distortions between two corresponding
images are more complex than local ones. The shape context (SC) proposed by Belongie et al. [36] is an
effective and rich shape-based descriptor, which is used to describe each point of a shape silhouette
based on the geometrical relationships of the remaining points relative to it, and it has been widely
used in shape retrieval and trademark recognition. Huang [37] firstly introduced the shape context
into remote sensing image registration. The Harris corner detector and the shape context were used
as the feature detector and descriptor, respectively, and preferable results can be achieved in images
with small background variations. However, its histogram binning strategy is not appropriate for
global geometrical distortions, which may produce many outliers. Jiang [38] proposed a rotation
and scale invariant shape context (RSISC) using a multi-scale morphological edge detector and an
improved shape context descriptor, which was specially designed for global geometrical distortions.
The magnitude of Fourier transform in one dimension was applied to achieve rotation invariance,
which once was a big obstacle for the widespread use of the shape context. Nonetheless, RSISC
cannot cope with high-resolution satellite images, because the gradient orientation of the edge point
is too unreliable to be used. Arandjelović [39] proposed an object matching method using boundary
descriptors for smooth and untextured images. Boundary curves were segmented from images,
and equidistant key points could be obtained by sampling the curves. Then, the boundary normals
of a local profile around one key point were utilized to describe this point. Although this algorithm
isvery successful when handling the matching problem in many classical object image sets, there still
exist two limitations when dealing with images taken pre and post disasters: since the key points



Remote Sens. 2016, 8, 426 3 of 21

are drawn independently from the two non-closed contours, there is inevitable jitter noise due to the
differences of the starting points; the local descriptor is more sensitive to local noise and incorrect
shape components, which commonly exist in remote sensing images.

Several line segment matching algorithms designed for industrial vision applications have also
been reported in recent years. Arandjelović [40] proposed a gradient edge mapping algorithm for
frontal face recognition, but the vertical symmetry of faces was utilized in the edge extraction process,
which might not be effective in other scenarios. Wang et al. [41] defined a robust descriptor called MSLD
(mean-standard deviation line descriptor) for line matching.The neighbor region of each line segment
is divided into non-overlapped sub-regions, and the descriptor is generated using a SIFT-like strategy.
Zhang et al. [42] presented a line matching method utilizing both the local appearance of line segments
and their geometrical attributes. López [43] proposed a novel approach for line detection and matching.
A phase-based edge detector and a fusion stage are performed for line detection, and an iterative
process utilizing both the structural information and the appearance of each line is performed for line
matching. Although the line matching algorithms mentioned above can achieve preferable results in
certain situations, they may be non-effective for images taken pre and post disasters as a result of the
use of local intensity information.

In order to register remote sensing images with large background variations, in which most local
intensity information is unreliable, we proposed an automatic image registration method based on the
line segments, which is described using the information of the main shape contour (named RMLSM
for short). First, EDLines (Edge Drawing Lines) [44] is used to extract line segments from the reference
and sensed images, and a line validation step is performed to remove meaningless and fragmented
ones thatdo not belong to the main shape contour. Then, a novel line segment descriptor is generated
for each line segment based on the geometrical relationships of the remaining line segments relative
to it. As the main shape contours are relatively stable, correct line matches could be obtained by
cross-matching among their descriptors. Finally, a spatial consistency measure is utilized to increase
matching accuracy, and transformation parameters between the reference and sensed images can
be figured out. Experiments on different types of satellite datasets comprising both rough terrains
(e.g., mountainous areas or urban regions)and flat areas demonstrate that the proposed algorithm is
automatic, fast and can achieve high accuracy (evaluated by recall, precision, correct matches (CM)
and root mean square error (RMSE)) for remote sensing images with large background variations.

The rest of this paper is organized as follows. In Section 2, the proposed method is described in
detail. Experiments and results are presented in Section 3. The discussion and conclusions parts are
given in Sections 4 and 5 respectively.

2. Methodology

The entire process of the RMLSM algorithm is shown in Figure 1, and it can be divided into the
following steps: feature detection, feature matching, transformation model estimation and accuracy
evaluation. An image pair taken before and after a tsunami in Sendai city, Japan, is shown in Figure 2a,
and there are two types of line segments with red and yellow colors in Figure 2b. We can see that
although the backgrounds change significantly between two images, the main shape contours, which
are depicted in Figure 2b using red lines, remain relatively invariant. Line segments depicted in
yellow are meaningless and fragmented ones that should be discarded during the line segment
detection process.
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Figure 2. An image pair taken pre and post a tsunami. (a) The original images; (b) images with 
different types of line segments depicted in them. 

2.1. Feature Detection 

As shown in Figure 1, this section can be divided into two parts: line segments’ detection and 
line segments’ validation. From Figure 2b, we can see that there exist two types of line segments. Red 
ones mainly consist of so-called meaningful line segments, which constitute the main invariant 
information (i.e., the main shape contour), while yellow ones mainly consist of meaningless and 
fragmented line segments, which may perturb the feature descriptor generation. The main 
characteristics of these meaningful line segments are as follows: large gradient magnitude; long 
distance; small slope differences between adjacent line segments. EDLines and a line validation step 
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different types of line segments depicted in them.

2.1. Feature Detection

As shown in Figure 1, this section can be divided into two parts: line segments’ detection and line
segments’ validation. From Figure 2b, we can see that there exist two types of line segments. Red ones
mainly consist of so-called meaningful line segments, which constitute the main invariant information
(i.e., the main shape contour), while yellow ones mainly consist of meaningless and fragmented
line segments, which may perturb the feature descriptor generation. The main characteristics of
these meaningful line segments are as follows: large gradient magnitude; long distance; small slope
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differences between adjacent line segments. EDLines and a line validation step are used in this section
in order to obtain as many meaningful line segments as possible from the reference and sensed images.

2.1.1. Line Segments’ Detection Using EDLines

EDLines is a real-time line segment detector with high accuracy and blazing speed, and it is
very suitable for extracting the line segment that constitutes the main shape contour. This algorithm
is composed of three parts: (1) Given a grayscale image, a fast and novel edge detector called edge
drawing (ED) [45], which can produce a set of contiguous, clean chains of pixels, is run. These pixels
intuitively correspond to object boundaries. (2) Next, line segments are extracted from the generated
pixel chains using the least squares line fitting method. (3) Finally, a line selection step based on the
Helmholtz principle is used to eliminate incorrect line segment detections.

Compared toother famous edge detectors, such as Canny, etc., ED produces a set of contiguous,
clean and connected chains of edge pixels rather than disjoint, independent and discontinuous entities.
The flow chart of ED is shown in Figure 3. The comparative edge detection results of ED, Canny and
Prewitt implemented on the left image of Figure 2a are shown in Figure 4. From Figure 4, it can be
observed that a set of clean, contiguous, well-localized, one-pixel-wide edge segments isextracted by
ED instead of only an isolated binary edge map (Prewitt) or an edge map containing many disjoint,
unattended noisy edges (Canny).
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Next, the line segment extraction step is performed by splitting an edge segment consisting of a
contiguous chain of edge pixels into one or more straight line segments. Walking over the pixels in
sequence, lines are fit to pixels by means of the least squares line fitting method until the error exceeds
a certain threshold (e.g., 1 pixel error). A new line segment is generated when the error exceeds this
threshold. The remaining pixels of the chain are processed recursively until the last pixel of the edge
segments and a set of line segments with endpoints expressed by sub-pixel coordinates are obtained.
Table 1 shows the algorithm thatis used to extract line segments from a set of edge segments.

Finally, a line selection step is implemented based on the Helmholtz principle, which basically
states that the expectation of one structure by chance must be very low for this structure to be
perceptually meaningful [46]. This step can help to eliminate a part of the meaningless and fragmented
lines. To make this selection process by the Helmholtz principle concrete, “Number of False
Alarms(NFA)” of a line segment is defined as follows: Let X be a line segment of length “ld” with at
least “z” points having their directions (thedirection of a unit vector, which is orthogonal to the unit
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gradient vector of the reference point) aligned with the direction of X in an image of size N ˆ N pixels.
The NFA of X is defined as:

NFApld, zq “ N4 ¨

ld
ÿ

i“z

˜

ld
i

¸

qip1´ qqld´i (1)

where “q” represents the accuracy of the line direction (q is set to be 0.125, referring to [44]). The line
selection step can be realized as follows: we compute the NFA of a line segmentand preserve it if
NFApld, zq ď ε; otherwise, this line segment will be rejected. Desolneux et al. [47] suggest setting ε to 1,
which indicates that at most, one false detection is allowed per image. Figure 5a shows EDLines in
action on an image pair taken pre and post a tsunami.

Table 1. Line segment extraction algorithm.

Algorithm 1: Algorithm to extract line segments

FitLines(Pixel * pixelChain, intpixels_num)
{
doubleError_LineFit=INFINITY; // current line fit error
Line_Equationline_equation; // y=ax+b or x=ay+b
while(pixels_num>MIN_LINE_DISTANCE)

{
LeastSquareFitLine(pixelChain, MIN_LINE_DISTANCE, &line_equation, &Error_LineFit);
if(Error_LineFit<=1.0) break; // An initial line segment detected
pixelChain++;
pixels_num–;
} // end-while
if(Error_LineFit>1.0) return; // no initial line segment
// if an initial line segment has detected
intlineLen= MIN_LINE_DISTANCE;
while(lineLen<pixels_num)
{
double d=ComputePointDistanceToLine(line_equation, pixelChain[lineLen]);
if(d>1.0) break;
lineLen++;
} // end-while
// output current line equation
LeastSquareFitLine(pixelChain, lineLen, &line_equation);
Output “line_equation”
FitLines(pixelChain+lineLen, pixel_num-lineLen); // Extract line segments from the remain pixels

} //end-FitLines

2.1.2. Line Segments’ Validation

A preliminary set of line segments is obtained after the implementation of EDLines. We see from
Figure 5a that although the main shape contours have been extracted, there still exist many fragmented
line segments, which are likely to perturb the feature matching process. As these fragmented line
segments are usually discontinuous and shorter than the ones on the main shape contour, we use a
length threshold lent to remove these line segments. In order to distinguish meaningful line segments
from fragmented ones, this threshold should be determined appropriately. For the evaluation of this
purely empirical threshold, we use lm to represent the median length of all line segments, and a
sequence of candidate thresholds from 0.2ˆ lm to 1.8ˆ lm with an interval of 0.2ˆ lm isevaluated on
ten real image pairs. Two evaluation criteria, i.e., recall and precision, which are defined as the ratio of
the number of correct matches obtained after validation to the number of all original correct matches
and the ratio of the number of correct matches obtained after validation to the number of all matches
after validation, respectively, are utilized in order to test the effectiveness of each candidate threshold.
The recall and precision values against the candidate threshold are shown in Figure 6, and each point in
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the graph represents the average of ten image pairs. According to [21], in order to obtain a better result
in the shape-based feature matching algorithm, both the original recall and precision values would be
best to be more than 0.7. We see from Figure 6 that in order to get a relatively better recall-precision
tradeoff, the most appropriate value of lent is in r0.8ˆ lm, 1.2ˆ lms, and lent “ 1.0ˆ lm is chosen in
this method for all datasets. Figure 5b shows line segments’ validation in action on Figure 5a.
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2.2. Feature Matching

In this section, we assume that the main shape contour of an image is essentially captured by a
subset of line segments originated from the edge segments. More concretely, the main shape contour
can be represented by a discrete set of line segments produced by Section 2.1. The final line segment
matching set can be obtained as follows: (1) a descriptor is proposed for each line segment to find its
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best match in the other image; (2) a spatial consistency measure is used to remove incorrect matches
obtained in Step (1).

2.2.1. Feature Descriptor

Two line segment sets obtained in Section 2.1 can be denoted as L “ tliu pi “ 1, 2, 3...mq and
S “

 

sj
(

pj “ 1, 2, 3...nq; m and n are the numbers of line segments in L and S, respectively. For each
line segment li in the first image, we want to find its “best” matching line segment sj in the second
image. Experience suggests that the richer the information one descriptor has, the easier the matching
process will be. As intensity information around the line segment is unreliable, we consider the set of
vectors originating from the position of a line segment to that of all other line segments on the main
shape contour. These vectors represent the relationship of the entire shape contour relative to the
reference line segment. Obviously, a descriptor constructed by this set of vectors is rich enough. In our
approach, the geometric attributes of the line segments are represented by their midpoints, which
can be denoted as P “ tpiu “ txi, yiu pi “ 1, 2, 3...mq (pi corresponds to li) in the first image and the
orientations of their normal vectors. For a line segment li in the first image, we compute a histogram
hiptq expressing the relative coordinates of the remaining m´ 1 midpoints to its midpoint pi,

hiptq “ #
 

ppj ´ piq P binptq, pj “ 1, 2, 3...m, j ‰ iq
(

(2)

We use a new histogram binning strategy as shown in Figure 7b, and Figure 7a shows the log-polar
space used in the shape context(SC), which is more sensitive to the location of nearby points than to
those farther away. However, when log-polar space is applied, bins near the center become too small,
which may lead to the sensitivity of the descriptor to the pixel location errors, and bins far from the
center become too big to describe the shape silhouette exactly. Consider that the distribution of line
segments is not as dense as that of points;the proposed histogram binning strategy with relatively
uniform bins seems more suitable. We use identical radial quantization lengths and larger angular
quantization numbers for outer circles compared toinner circles. The radial quantization number nr
and the angular quantization number tM1, M2, ..., Mnru (M1 corresponds to the smallest circle) will
be discussed in Section 3. The advantages of the proposed histogram binning strategy are as follows:
(1) robustness to pixel location errors; (2) accurate description of the shape contour far from the
reference line segment; (3) low dimension of the descriptor.

Remote Sens. 2016, 8, 426 8 of 21 

 

2.2. Feature Matching 

In this section, we assume that the main shape contour of an image is essentially captured by a 
subset of line segments originated from the edge segments. More concretely, the main shape contour 
can be represented by a discrete set of line segments produced by Section 2.1. The final line segment 
matching set can be obtained as follows: (1) a descriptor is proposed for each line segment to find its 
best match in the other image; (2) a spatial consistency measure is used to remove incorrect matches 
obtained in Step (1). 

2.2.1. Feature Descriptor 

Two line segment sets obtained in Section 2.1 can be denoted as { }( 1,2,3... )iL l i m= =  and 

{ }( 1,2,3... )jS s j n= = ; m  and n are the numbers of line segments in L  and S , respectively. For 

each line segment il  in the first image, we want to find its “best” matching line segment js  in the 

second image. Experience suggests that the richer the information one descriptor has, the easier the 
matching process will be. As intensity information around the line segment is unreliable, we 
consider the set of vectors originating from the position of a line segment to that of all other line 
segments on the main shape contour. These vectors represent the relationship of the entire shape 
contour relative to the reference line segment. Obviously, a descriptor constructed by this set of 
vectors is rich enough. In our approach, the geometric attributes of the line segments are represented 
by their midpoints, which can be denoted as { } { , }( 1,2,3... )i i iP p x y i m= = =  ( ip  corresponds to il ) 

in the first image and the orientations of their normal vectors. For a line segment il  in the first 

image, we compute a histogram ( )ih t  expressing the relative coordinates of the remaining 1m −

midpoints to its midpoint ip , 

( ) #{( ) ( ),( 1, 2, 3... , )}i j ih t p p bin t j m j i= − ∈ = ≠  (2)

We use a new histogram binning strategy as shown in Figure 7b, and Figure 7a shows the 
log-polar space used in the shape context(SC), which is more sensitive to the location of nearby 
points than to those farther away. However, when log-polar space is applied, bins near the center 
become too small, which may lead to the sensitivity of the descriptor to the pixel location errors, and 
bins far from the center become too big to describe the shape silhouette exactly. Consider that the 
distribution of line segments is not as dense as that of points;the proposed histogram binning strategy 
with relatively uniform bins seems more suitable. We use identical radial quantization lengths and 
larger angular quantization numbers for outer circles compared toinner circles. The radial 
quantization number nr and the angular quantization number 1 2{ , ,..., }nrM M M ( 1M  corresponds to 
the smallest circle) will be discussed in Section 3. The advantages of the proposed histogram binning 
strategy are as follows: (1) robustness to pixel location errors; (2) accurate description of the shape 
contour far from the reference line segment; (3) low dimension of the descriptor. 

  
(a) (b) (c) 

Figure 7. (a) The log-polar histogram bins; (b) the proposed histogram binning strategy; (c) several 
different shapes constituted by the same points. Figure 7. (a) The log-polar histogram bins; (b) the proposed histogram binning strategy; (c) several

different shapes constituted by the same points.

As shown in Figure 7c, the same distribution of points may produce different shape contours.
Therefore,in each bin, we not only count the number of line segments falling in it, but also consider
the orientation of each line segment (the orientation of the normal vector of each line segment) in this
bin. A unit vector is attached to each line segment with its direction equal to the orientation of this
line segment li, and it is decomposed into two vectors along the x-axis and the y-axis, respectively.
The d-bin histogram hiptq for the line segment li is then converted to a 2d-bin histogram as follows:

h1ipoq “
 

hip1q
x, hip1q

y, hip2q
x, hip2q

y..., hipdq
x, hipdq

y( (3)
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It is easy to see that this 2d-bin histogram can provide a more accurate description for each
line segment. We normalize radial distances by a factor α, which is the mean distance among the
m2 midpoint pairs in the image to achieve scale invariance, and orientations relative to that of the
reference line segment are used to achieve rotation invariance. Finally, a Gaussian weighting function
(see Figure 8b) is used to increase the robustness against the geometric distortions. The complete
process of the proposed descriptor generation is shown in Figure 8. Compared to the descriptor in [39]
(named OMBD (Object Matching Using Boundary Descriptors) for short), which is presented for
smooth and untextured object matching, our proposed descriptor seems more suitable for remote
sensing images with large background variations mainly due to the following aspects.
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Figure 8. Generation process of the proposed descriptor. (a) An image taken after a tsunami with
the extracted line segments; (b) the proposed histogram binning strategy used on a line segment
and a number of blue arrows representing the orientation of the other line segments; (c) descriptor
computation; (d) Gaussian weighting function; (e) descriptor vector generation.

We use a global descriptor instead of a local one in the OMBD, which is more sensitive to local
noise and incorrect shape components, which commonly exist in remote sensing images; the OMBD
descriptor only considers the local profile of the boundary normal’s direction around a reference key
point rather than the geometric relations of them, which may result in an unstable descriptor in case
disordered segments exist.

Consider a line segment li in the first image and a line segment sj in the second image. The cost of
matching these two line segments isdefined as:

Cij “ Cpli, sjq “

g

f

f

e

1
2d

2d
ÿ

o“1

˜

h1ipoq ´ h1jpoq

h1ipoq ` h1jpoq

¸2

(4)

where h1ipoq and h1jpoq denote the 2d-bin normalized histogram at li and sj, respectively.
la and sb are deemed as a correct line segment match if the following cross-matching expressions

are satisfied:
#

Cab ““ min tCibu pi “ 1, 2, 3...mq
Cab ““ min

 

Caj
(

pj “ 1, 2, 3...nq
(5)

That is, not only sb is the best match of la in the second image, but la is the best match of sb in
the first image, as well. This is a cross-matching process thataims at obtaining accurate results in case
fragmented line segments or occlusions exist.

2.2.2. A Spatial Consistency Measure

Two preliminary line segment matching sets of size Q have been obtained after the steps above,
which can be denoted as Lp “ tliu “ tpki, biqu and Sp “ tsiu “

 

pk1i, b1iq
(

pi “ 1, 2, 3, ..., Q, li matches si,
parameters k and b of the line equation y “ kx` b are used to represent a line segment). Although
the proposed descriptor is robust and discriminative, there still exist a few outliers in the preliminary
matching sets mainly due to the small differences of two main shape contours. In this part, a spatial
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consistency measure [48] is utilized to remove the outliers. The spatial consistency is a measurement
of the closeness of the reference features to the sensed features under the present transformation,
and it is usually used for point matching. We roughly use the global affine transformation, of which
the parameters are denoted as Tgpθq, to approximate the present transformation and to evaluate the
closeness of the matches one by one. The transformation is formulated as:

«

x1

y1

ff

“

«

a1 a2

a3 a4

ff«

x
y

ff

`

«

a5

a6

ff

(6)

where px1, y1q and px, yq represent the coordinates of two corresponding points. In order to calculate
Tgpθq (i.e., a1 - a6) from tpki, biqu and

 

pk1i, b1iq
(

, px1, y1q and px, yq should be replaced by pk1, b1q and pk, bq
using the equation y “ kx` b.

In each iteration, first, a group of affine transformation parameters Tgpθq between the
two corresponding images can be calculated by means of the least square method using
tpki, biqu and

 

pk1i, b1iq
(

pi “ 1, 2, 3, ..., Qq; then, an error threshold Et “ tke, beu is set for the
slopeand intercept independently,and the root mean square error (RMSE) is obtained as follows:

ErTgpθqs “ t

d

r
Q
ř

i“1
d_ki

2s{Q,

d

r
Q
ř

i“1
d_bi

2s{Qu, dpiq “ pTgpθqpliq ´ siq “ td_ki, d_biu, i “ 1, 2, 3, ...Q.

Both dpiq and ErTgpθqs are composed of two components, which relate to the slope and intercept,
respectively. Finally, while ErTgpθqs ą Et, the match with the maximum of dpiq is removed. The line
segment matching sets are renewed, and the transformation parameters are recalculated. The iteration
process will not stop until ErTgpθqs ď Et, and two final line segment matching sets can be obtained.

2.3. Transformation Model Estimation

After two matching sets of line segments have been obtained, the exact transformation parameters
between the reference and sensed images will be calculated. According to [21], the relationship
between two remote sensing images taken from the same area can be approximately modeled by affine
transformations. In this section, a global affine transformation model is applied. In general, the affine
transformation consists of a translation and linear transformations (rotation, shear or scaling), and it
preserves collinearity and the ratio of distance. In the ideal situation, affine transformation parameters
can be figured out from three nonparallel corresponding line segment matches. However, in order to
increase the accuracy and robustness, all of the line segment matches obtained from Section 2.2 are
used to estimate the coefficients by means of the least square method.

2.4. Accuracy Evaluation

The accuracy evaluation of the registration is performed using recall, precision, CM and RMSE,
which can be defined as follows:

recall “
true positives
total positives

(7)

precision “
true positives

true positives` f alse positives
(8)

correct matches “ true positives (9)

RMSE “

g

f

f

e

1
np

np
ÿ

i“1

r||Tppe1i, θq ´ pei||s2 (10)

where the true positives represents the number of correct line segment matches in the final matching
sets, the total positives represents the number of correct line segment matches existing in two images
after feature detection and the f alse positives represents the number of incorrect line segment matches
in the final matching sets. Two completely correct and well-distributed point matching sets of size np,
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which are denoted as tpeiu and
 

pe1i
(

pi “ 1, 2, 3..., np, pei matches pe1iq, are selected manually fromthe
two corresponding images by an experienced expert to calculate the RMSE, and Tpθq represents the
transformation parameters obtained in Section 2.3.

3. Experiments and Results

In this part, the performance of the RMLSM is evaluated using several types of satellite images.
Experimental results compared tothe UR-SIFT, the RSISC and the MSLD are presented to verify the
effectiveness of the proposed method. Image datasets, parameter setting and experimental results are
introduced in the following.

3.1. Image Datasets

Two groups of remote sensing images are used to evaluate the performance of the RMLSM,
including simulated images and multisensor/multitemporal real images. Because the highlight of the
RMLSM is its robustness against large background variations, the image pairs of the first group are
simulated by utilizing several patches of cloud in various shapes, of which centers are distributed
randomly across the image, instead of the original pixels, and a certain amount of affine transformations
are also added to the images. Figure 9 shows several examples of the simulated images. The second
group consists of different types of multisensor and multitemporal images, most of which are taken pre
and post disasters. The complete information of all image pairs is shown in Table 2. This dataset covers
a variety of high-, medium- and low-resolution images with a ground sample distance (GSD) from
0.61 to 231.65 m, and both rough terrains and flat regions are included in this dataset. All real images
have significant background variations and a certain amount of scale and viewpoint differences.Remote Sens. 2016, 8, 426 12 of 21 
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Figure 9. Examples of the simulated images. (a) A satellite image from Landsat5, Band1;
(b) the corresponding image of (a) from Landsat5, Band2; (c) asimulated image by adding sixty
randomly-distributed patches of cloud to (b); (d) asimulated image by adding eighty randomly-distributed
patches of cloud to (b); (e) asimulated image by adding a certain amount of affine transformations to (c);
(f) asimulated image by adding a certain amount of affine transformations to (d).
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Table 2. The complete information of all experimental satellite image pairs.

Group No. Location Image Size Bits GSD(m) Date Sensor Events

Simulatedimages 1-1
Hangzhou 2129 ˆ 2373 8 30 2011 Landsat5 Band1
Hangzhou 2129 ˆ 2373 8 30 2011 Landsat5 Band2

High-resolution
real images

2-1
Pakistan 1817 ˆ 1194 11 2 2007 QuickBird Pre-flood
Pakistan 1739 ˆ 1056 11 2 2010 WorldView Post-flood

2-2
Mississippi 4254 ˆ 3646 11 0.61 2010 QuickBird Pre-tornado
Mississippi 4254 ˆ 3647 11 0.61 2010 QuickBird Post-tornado

2-3
Natori 940 ˆ 529 11 0.61 2007 QuickBird Pre-tsunami
Natori 940 ˆ 529 11 0.61 2011 QuickBird Post-tsunami

2-4
Chile 2559 ˆ 2528 11 0.61 2010 QuickBird Pre-tsunami
Chile 2566 ˆ 2621 11 0.61 2010 QuickBird Post-tsunami

Medium- and
low-resolution

real images

2-5
Myanmar 1800 ˆ 1200 8 231.65 2008 Aqua Pre-flood
Myanmar 1687 ˆ 1081 8 231.65 2008 Aqua Post-flood

2-6
Alaska 1800 ˆ 1200 8 30 2004 Landsat7 Band 3
Alaska 1800 ˆ 1200 8 30 2004 Landsat7 Band 4

2-7
Fukushima 584 ˆ 923 8 10 2009 SPOT 4 Pre-tsunami
Fukushima 728 ˆ 1064 8 10 2011 SPOT 4 Post-tsunami

3.2. Parameter Setting

In our experiments, the UR-SIFT, the RSISC and the MSLD are implemented based on the codes
offered by the authors of the three algorithms.

During the feature detection, the EDLines algorithm is implemented based on the
publicly-available codes on their website with the default parameters presented explicitly in [44].
The length threshold lent in the line segments validation step is set to be 1.0ˆ lm, which has already
been described in detail in Section 2.1.2.

In the feature matching process, there are three parameters, i.e., radial quantization number
nr, angular quantization number tM1, M2, ..., Mnru and an error threshold Et. The choices of these
three parameters are purely empirical, and two aspects should be considered in the selection process:
higher accuracy and lower dimension of the descriptor. Several combinations are tested on ten
pairs of real remote sensing images, and the average results are depicted in Table 3. The best
accuracy-dimension tradeoff is obtained when nr “ 6; tM1, M2, ..., M6u “ t4, 6, 8, 10, 12, 14u, which
results in a 108-dimensional descriptor. In the section of the spatial consistency measure, Et is used
to remove false matches. As the slope and intercept of a line segment are two different variables,
Et “ tke, beu “ t0.1, 5u is able to distinguish an outlier from an inlier based on experience.

Table 3. Average results of the accuracy with different parameters.

Parameter Setting Recall (%) Precision (%) Descriptor Dimension

nr “ 3, tM1, M2, M3u “ t4, 6, 8u 65.2 73.1 36
nr “ 3, tM1, M2, M3u “ t4, 8, 10u 69.7 77.3 44

nr “ 4, tM1, M2, ..., M4u “ t4, 6, 8, 10u 76.0 82.4 56
nr “ 4, tM1, M2, ..., M4u “ t4, 8, 10, 12u 77.4 84.0 68

nr “ 5, tM1, M2, ..., M5u “ t4, 6, 8, 10, 12u 81.7 86.4 80
nr “ 5, tM1, M2, ..., M5u “ t4, 8, 10, 12, 14u 80.1 87.6 96

nr “ 6, tM1, M2, ..., M6u “ t4, 6, 8, 10, 12, 14u 82.5 91.1 108
nr “ 6, tM1, M2, ..., M6u “ t4, 8, 10, 12, 14, 16u 83.7 90.9 128

nr “ 7, tM1, M2, ..., M7u “ t4, 6, 8, 10, 12, 14, 16u 84.2 91.4 140
nr “ 7, tM1, M2, ..., M7u “ t4, 8, 10, 12, 14, 16, 18u 84.7 92.5 164
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3.3. Experimental Results

EDLines and a line segment validation step are implemented to extract line segments from all
image pairs. Then, the proposed descriptor is used for line segment description and matching. Finally,
accuracy comparisons with the UR-SIFT, the RSISC and the MSLD are carried out to evaluate the
proposed registration method. Table 4 shows the comparative matching accuracy of the proposed
descriptor and the traditional shape context using all real remote sensing images in the image datasets.
The process of feature detection is identical before the comparison of the two descriptors. The matching
results show that the proposed descriptor is more effective than the traditional shape context in terms
of both recall and precision.

Table 4. Comparative matching accuracy between the RMLSM and the shape context (SC).

Recall/Precision No. 2-1 No. 2-2 No. 2-3 No. 2-4 No. 2-5 No. 2-6 No. 2-7

RMLSM 75.2%/86.9% 80.5%/93.1% 65.6%/81.4% 68.7%/70.4% 81.8%/94.1% 76.7%/93.7% 82.4%/90.2%
SC 71.2%/80.4% 74.6%/83.2% 67.2%/78.4% 67.0%/65.1% 73.2%/82.0% 70.7%/84.4% 77.3%/81.6%

Figure 10 shows the comparative results of these four algorithms implemented on the simulated
image pairs in terms of recall, precision, CM and RMSE. The No.1–No.5 image pairs refer to the
(a)(b)–(a)(f) in Figure 9, all of which contain considerable background variations and a certain amount of
affine transformations. The results presented in Figure 10 show that the proposed method outperforms
the other three techniques in recall, precision and RMSE. In some cases, the CM of the RMLSM is less
than that of the RSISC. However, this will have little effect on the computational accuracy of the final
transformation model, because a line segment contains more information than a point. As the UR-SIFT
purely depends on the intensity information in the feature matching process, it performs worst among
the four algorithms for all evaluation criteria.
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The matching results of the RMLSM for three sample simulated image pairs are presented in
Figure 11. To make the graphs easier to read, the corresponding line segments have the same number
and color. Registrations for such images prove to be difficult because the intensity information is
unreliable. This figure shows that although there exist significant background variations and affine
transformations in the image pairs, almost all of the line segments on the main shape contour have
been extracted and correctly matched.
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Figure 11. Matching results of the RMLSM on the simulated image pairs. (a) The first image pair in the
first group; (b) the fourth image pair in the first group; (c) the fifth image pair in the first group.

Figure 12 shows the performances of the four algorithms implemented on seven real image pairs
in terms of recall, precision, CM and RMSE. All real image pairs are taken pre and post disasters,
and rough terrains, such as mountainous regions and building areas, are included. Results demonstrate
the effectiveness and robustness of the proposed method. The UR-SIFT achieves the worst result
because it purely relies on the intensity information, which is unreliable in these real disaster image
pairs. The RSISC can obtain better results than the UR-SIFT mainly due to the use of shape information,
but the neglect of the point orientation results in more outliers than the RMLSM. The MSLD is a
line matching algorithm, but it also relies too much on the appearance and the local structure of the
neighborhood of each line segment, which makes it not perform as wellas the RMLSM. However, it
can be observed that the recall and precision are somewhat low for No.4 in the second group as a result
of relatively complicated distortions between these two images.
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Figure 12. Experimental results on the real image pairs. (a) Recall; (b) precision; (c) correct matches;
(d) RMSE.

The matching results of the RMLSM implemented on all real image pairs are shown in
Figure 13a–d correspond to (2-1)–(2-4) in Table 2, and Figure 14a–c correspond to (2-5)–(2-7) in Table 2,
while Figure 13 covers the high-resolution satellite images, and Figure 14 covers the medium- and
low-resolution ones. To make the graphs easier to understand, the corresponding line segments are
presented using the same number and color. Accurate and well-distributed line segment matches
can be obtained as shown in these two figures. Results demonstrate the robustness of the proposed
method against large background variations and a certain amount of geometric distortions.

Figure 15 shows the registration results of the UR-SIFT (Figure 15a), the RSISC (Figure 15b)and
the MSLD (Figure 15c) on three sample real image pairs respectively and the results of the RMLSM
(Figure 15d–f) on all these three image pairs. Six sub-images are enlarged for visual assessment.
The sub-images cover a variety of scenes, such as roads, coastal lines and mountain ridges. From the
results of the RMLSM, we can see that the sensed image fits well with the reference image in spite of
the significant background variations. However, it can be observed that slight mismatches around the
mountain ridges (Figure 15f) still exist as a result of the relief displacement of the mountains. This is a
challenge for the registration of high-resolution images, and it cannot be settled perfectly through an
image-to-image registration.
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Figure 13. Matching results of the RMLSL on the high-resolution real image pairs. (a) The first image 
pair in the second group: QuickBird-WorldView; (b) the second image pair in the second group: 
QuickBird-QuickBird; (c) the third image pair in the second group: QuickBird-QuickBird; (d) the 
fourth image pair in the second group: QuickBird-QuickBird. 

Figure 13. Matching results of the RMLSL on the high-resolution real image pairs. (a) The first image
pair in the second group: QuickBird-WorldView; (b) the second image pair in the second group:
QuickBird-QuickBird; (c) the third image pair in the second group: QuickBird-QuickBird; (d) the fourth
image pair in the second group: QuickBird-QuickBird.
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Figure 14. Matching results of the RMLSM on the medium- and low-resolution real image pairs.  
(a) The fifth image pair in the second group: Aqua-Aqua; (b) the sixth image pair in the second group: 
Landsat7-Landsat7; (c) the seventh image pair in the second group: SPOT 4-SPOT 4. 

Figure 15 shows the registration results of the UR-SIFT (Figure 15a), the RSISC (Figure 15b)and 
the MSLD (Figure 15c) on three sample real image pairs respectively and the results of the RMLSM 
(Figure 15d–f)on all these three image pairs. Six sub-images are enlarged for visual assessment. The 
sub-images cover a variety of scenes, such as roads, coastal lines and mountain ridges. From the 
results of the RMLSM, we can see that the sensed image fits well with the reference image in spite 
of the significant background variations. However, it can be observed that slight mismatches 
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perfectly through an image-to-image registration. 

Figure 14. Matching results of the RMLSM on the medium- and low-resolution real image pairs.
(a) The fifth image pair in the second group: Aqua-Aqua; (b) the sixth image pair in the second group:
Landsat7-Landsat7; (c) the seventh image pair in the second group: SPOT 4-SPOT 4.

Because of the blazing speed of EDLines and the low dimension of the proposed descriptor,
the computational complexity of the proposed registration method is the lowest among the four
algorithms;the average time of the registration process is 65 ms for the UR-SITF, 47 ms for the RSISC,
96 ms for the MSLD and 43 ms for the RMLSM (using an Intel Core (TM) 2 2.93-GHz central processing
unit and a memory of 2 GB).
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methods for all three evaluation criteria. The UR-SIFT achieves a recall of 63.1%, a precision of 70.7% 
and an RMSE of 1.4 pixels on average, which is the worst result among the four algorithms, because 
it purely depends on the intensity information during the feature matching process. The MSLD can 
obtain a recall of 73.9%, a precision of 79.4% and an RMSE of 1.2 pixels on average. The accuracy of 
the MSLD is lower than that of the RMLSM because local structure-based methods are usually more 
sensitive to local noise and incorrect structure components. The recall of 78.8%, the precision of 
85.0%, and the RMSE of 1.1 pixels are achieved on average during the implementation process of the 
RSISC, of which accuracy is lower than that of the RMLSM mainly due to the unreliability of the 
gradient orientation of the edge point. In several image pairs, such as No.2 and No.6 in the second 
group, the CM of the RMLSM is lower than that of the RSISC. However, this will have little effect on 
the computational accuracy of the final transformation model because a line segment contains more 
information than a point. 

The results from this study show that the shape can be utilized to constitute a feature descriptor 
independently when the intensity around this feature is unreliable. Most of the previous studies 
concentrated on local intensity-based registration methods to achieve robustness to geometric and 
illumination variations between the corresponding images. However, finding the invariant 

Figure 15. Registration results of three sample real image pairs. (a) Registration results of the UR-SIFT
on the first image pair in the second group; (b) registration results of the RSISC on the fifth image pair
in the second group; (c) registration results of the MSLD on the sixth image pair in the second group;
(d) registration results of the RMLSM on the first image pair in the second group; (e) registration results
of the RMLSM on the fifth image pair in the second group; (f) registration results of the RMLSM on the
sixth image pair in the second group.

4. Discussion

An automatic image registration method for remote sensing images with large background
variations is proposed in this paper, and preferable results are obtained on both simulated and real
image pairs.

The average results of the proposed method for both simulated and real image pairs are 79.7%,
89.1% and 1.0 pixels in recall, precision and RMSE, respectively. The RMLSM outperforms the other
methods for all three evaluation criteria. The UR-SIFT achieves a recall of 63.1%, a precision of 70.7%
and an RMSE of 1.4 pixels on average, which is the worst result among the four algorithms, because
it purely depends on the intensity information during the feature matching process. The MSLD can
obtain a recall of 73.9%, a precision of 79.4% and an RMSE of 1.2 pixels on average. The accuracy
of the MSLD is lower than that of the RMLSM because local structure-based methods are usually
more sensitive to local noise and incorrect structure components. The recall of 78.8%, the precision
of 85.0%, and the RMSE of 1.1 pixels are achieved on average during the implementation process of
the RSISC, of which accuracy is lower than that of the RMLSM mainly due to the unreliability of the
gradient orientation of the edge point. In several image pairs, such as No.2 and No.6 in the second
group, the CM of the RMLSM is lower than that of the RSISC. However, this will have little effect on
the computational accuracy of the final transformation model because a line segment contains more
information than a point.

The results from this study show that the shape can be utilized to constitute a feature descriptor
independently when the intensity around this feature is unreliable. Most of the previous studies
concentrated on local intensity-based registration methods to achieve robustness to geometric and
illumination variations between the corresponding images. However, finding the invariant information
is the common goal of all methods. The experimental results show that local intensity-based algorithms
may fail when dealing with image pairs taken pre and post disasters, and in that case, the main shape
structure becomes the most stable information.

Although EDLines and a line segment validation step can effectively extract the main shape
contour consisting of line segments on it and the proposed line segment descriptor is invariant
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to scale, rotation and a certain amount of other affine transformations, there still exist several
limitations in our registration algorithm. Global geometric distortions are more complex than the local
ones, and non-rigid transformations may exist between the satellite image pairs. However, we are
uncertain whether the proposed algorithm can cope with the satellite image pairs with high order
non-rigid transformations.

5. Conclusions

In this paper, an automatic image registration method has been proposed for remote sensing
images with large background variations (e.g., images taken pre and post an earthquake or flood).
First, EDLines is used for line segment extraction, and a validation step is developed to reject the
meaningless and fragmented features. Then, a shape-based line segment descriptor is introduced
for each line segment. Finally, a spatial consistency measure is used to remove incorrect matches,
and transformation parameters can be figured out. The experiment results on both simulated and real
satellite image pairs demonstrate that high-quality and well-distributed line segments can be extracted
and correctly matched, and a recall of 79.7%, a precision of 89.1% and an RMSE of 1.0 pixels have been
achieved on average for all image pairs. All of the comparative algorithms are implemented on the
same platform, and the running time of the proposed method is 4ms faster than that of the second
fastest method. From this study, the global shape structure information is proven to be reliable and
effective in the process of remote sensing image registration, especially when significant background
variations exist in the corresponding images.

As future work, a registration method for remote sensing images with both large background
variations and complex global distortions, such as non-rigid transformations and thin-plate-spline
transformation, will be investigated. Some compound features, like the combination of line segments
and points, could also be considered in order to increase matching accuracy.
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