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Abstract: WFV (Wide Field of View) cameras on-board Gaofen-1 satellite (gaofen means high resolution)
provide unparalleled global observations with both high spatial and high temporal resolutions.
However, the accuracy of the radiometric calibration remains unknown. Using an improved cross
calibration method, the WFV cameras were re-calibrated with well-calibrated Landsat-8 OLI
(Operational Land Imager) data as reference. An objective method was proposed to guarantee the
homogeneity and sufficient dynamic coverage for calibration sites and reference sensors. The USGS
spectral library was used to match the most appropriate hyperspectral data, based on which the
spectral band differences between WFV and OLI were adjusted. The TOA (top-of-atmosphere)
reflectance of the cross-calibrated WFV agreed very well with that of OLI, with the mean differences
between the two sensors less than 5% for most of the reflectance ranges of the four spectral bands,
after accounting for the spectral band difference between the two sensors. Given the calibration
error of 3% for Landsat-8 OLI TOA reflectance, the uncertainty of the newly-calibrated WFV should
be within 8%. The newly generated calibration coefficients established confidence when using
Gaofen-1 WFV observations for their further quantitative applications, and the proposed simple cross
calibration method here could be easily extended to other operational or planned satellite missions.

Keywords: cross calibration; Gaofen-1 WFV; Landsat-8 OLI; relative spectral response; spectral
library; remote sensing

1. Introduction

To build a near-real time, all-weather and global surveillance network for agricultural
planning, disaster relief, environment protection and security, the Chinese government approved
the implementation of high-definition earth observation system (HDEOS). As the first mission of
the five or six satellites in HDEOS, Gaofen-1 satellite was successfully launched on 26 April 2013.
With high spatial resolution (16 ˆ 24 m at nadir) and wide coverage (4 ˆ 200 km), the four wide field
of view (WFV) cameras on-board Gaofen-1 provide detailed observations for the entire globe within
four days. Indeed, WFV has demonstrated its capability in many emergency response related works
during the first operating year, such as to monitor the earthquakes in China and Pakistan and to search
the missing Malaysia Airlines Flight 370 (reported by various mass media).

The unparalleled information provided by WFV sensors can also be used to understand the
biological, chemical, and physical processes at both small and large scales, once the relationships
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between satellite signal and physico-chemical parameters are established. To obtain valid results from
remotely sensed data, accurate radiometric calibration is required. Unfortunately, although the data
provider (China Centre for Resources Satellite Data and Application, CCRSDA) published radiometric
calibration coefficients on their official website, where in situ spectral measurements of the Dunhuang
Calibration site [1] were used to conduct the vicarious calibration, the uncertainties (or analytical
estimates of errors) cannot be found in any report, peer-reviewed publication or gray literature. Thus,
the calibration of WFV sensors needs to be revisited before their further quantitative applications.

In general, radiometric calibration of optical remote sensing instruments could be conducted
with the combined efforts during pre- and post-launch periods, including laboratory, on-board and
vicarious/cross calibration methods [2,3]. The laboratory calibration takes advantage of a controlled
environment, where the responses of detectors could be calibrated using external stable illumination
sources [2,4,5]. On-board standard calibrators enable calibrations to be performed with high-temporal
frequency, such as the solar calibrators for TM (Thematic Mapper)/ETM+ (Enhanced Thematic Mapper)
and solar diffusers for MODIS (Moderate Resolution Imaging Spectroradiometer) [3,5]. Meanwhile,
long term measurements from these on-board calibrators could serve as references to monitor the
sensors’ radiometric degradation. In addition, calibrations are often carried out with in situ surface
reflectance and atmospheric conditions, as well as the simultaneous satellite overpasses, where the
top-of-atmosphere radiance (TOA) are estimated using radiative transfer models [6–9]. However,
vicarious calibration methods are labor-intensive and suffer from limited calibration frequency.
To address these technical challenges, concurrently collected images from a well-calibrated instrument
are used to substitute the in situ ground measurements in some studies [10–13], and this method is
commonly known as cross calibration.

As mentioned before, uncertainties of the official radiometric calibration coefficients (published in
2013) for Gaofen-1 WFV are generally unknown. The absence of a calibrator in WFV also prohibits the
absolute calibration through on-board radiometric calibration method. Thus, lack of sufficient ground
data to establish a valid vicarious calibration, cross calibration seems to be the most suitable method to
re-calibrate the WFV cameras on Gaofen-1 satellite. Finding a properly referenced instrument becomes
the first step to perform the radiometric cross calibration for the WFVs.

The instruments equipped in Landsat series of satellites (MSS, TM and ETM+) provide the
longest continuous record of satellite-based observations, which have been widely used in many
applications because of their high-radiometric stability and adequate calibration [2]. Most recently,
Landsat-8 was launched in 2013 to extend the remarkable 40+ year Landsat record. After a series of
rigorous radiometric calibration procedures, the absolute calibration accuracy for the Operational Land
Imager (OLI) of Landsat-8 is within 3% for reflectance and 5% for radiance, respectively [11,14,15].
Motivated by the high demand of reliable calibration coefficients for Gaofen-1 WFV cameras, we used
concurrently collected Landsat-8 OLI data to:

1. Improve the cross calibration method to produce accurate radiometric calibration coefficients for
Gaofen-1 WFV instruments, where the calibration sites were selected objectively and the spectral
response differences between the two sensors were considered.

2. Estimate the associated uncertainties of the cross-calibrated coefficients and assess their
performance for the calibrated reflectance.

Furthermore, there are four WFV cameras (WFV1–4) on-board Gaofen-1 satellite, where the
radiometric cross calibration needs to be implemented separately for each camera. To simplify the
description, WFV3 was taken as an example in this study to show the critical procedures of WFV–OLI
cross-calibration. The method for other cameras should be the same, and the calibration coefficients
were also provided in the results.

In this paper, the characteristics of WFV and OLI instruments are first compared, followed by the
method of using simultaneous OLI data as reference to cross calibrate WFV cameras. Then the results



Remote Sens. 2016, 8, 411 3 of 19

of the cross calibration are presented and validated. Finally, the uncertainties of the cross calibration
method and its future applications are discussed.

2. Sensor Comparison and Data Selection

Both Gaofen-1 and Landsat-8 satellites are on sun-synchronous orbits, with an inclination of 98.2˝,
and their nominal altitudes are 650 km and 705 km, respectively. Similar orbits mean that all the image
data over a given location should be collected within 30 min of each other on the same day for the
two satellites. Gaofen-1 WFVs are high-resolution push-broom cameras with their spatial resolution of
16 ˆ 24 m (see Table 1). Configured with four cameras, the swath could reach up to ~800 km, resulting
in a re-visiting period of four days. Figure 1 shows the footprint of the four cameras in China in
a single day, which clearly reveals their superiority in data coverage. There are four spectral bands
between visible to NIR, which are quantified over 10-bit digital number (DN). The ground resolution of
OLI is 30 m, which is the same as the previous Landsat TM/ETM+ data. The radiometric performance
of OLI has been improved with the data quantified in 12-bit. The swath of OLI is 185 km, making the
overpass period four times longer than that of Gaofen-1 WFV. The spectral range of the analogous
Landsat-8 OLI bands is similar to the WFV, except for a wider bandwidth in NIR (see Table 1). The normalized
relative spectral response (RSR) profiles for the two instruments are plotted in Figure 2. In short,
Gaofen-1 WFV and Landsat-8 OLI only have small differences in acquisition time within 30 min (see
Table 2), band spectral ranges, and ground resolution, thus the well-calibrated OLI appears to be
a suitable reference instrument to cross-calibrate WFV observations.
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Table 1. Comparison of the parameters between Gaofen-1 WFV (Wide Field of View) and Landsat-8
OLI (Operational Land Imager).

GF-1 WFV Landsat8 OLI

Band (µm)

Blue 0.45–0.52 0.45–0.51
Green 0.52–0.59 0.53–0.59
Red 0.63–0.69 0.64–0.67
NIR 0.77–0.89 0.85–0.88

Resolution (m) 16 ˆ 24 30 ˆ 30
Quantization (bits) 10 12 1

Swath (km) 800 180
Re-visiting period (days) 4 16

1 although the OLI products are delivered as 16-bit images, the real quantization is 12-bit.

Table 2. Gaofen-1 WFV3 and Landsat-8 OLI image pairs used in this study.

Date Sensor Location 1 Time (GMT) Sun Elevation (˝)

Calibration 2

2013-9-30
WFV3 E128.1/N45.5 2:43:06 A.M. 41.06

OLI 118/028 2:22:54 A.M. 39.47

2013-11-11
WFV3 E116.5/N42.2 3:23:41 A.M. 29.86

OLI 124/030 3:00:38 A.M. 28.07

2013-12-12
WFV3 E100.1/N37.3 4:29:27 A.M. 28.82

OLI 133/034 3:57:41 A.M. 27.13

2014-1-7
WFV3 E88.9/N32.3 5:10:43 A.M. 33.55

OLI 139/038 4:36:06 A.M. 31.71

2014-1-28
WFV3 E85.1/N32.3 5:27:08 A.M. 37.17

OLI 142/038 4:54:26 A.M. 34.83

Validation 2

2013-7-23
WFV3 E131.3/N47.2 2:29:42 A.M. 60.91

OLI 115/027 2:04:02 A.M. 58.71

2013-9-30
WFV3 E126.9/N42.2 2:44:01 A.M. 44.13

OLI 118030 2:23:41 A.M. 41.91

2013-11-11
WFV3 E117.0/N43.9 3:23:13 A.M. 28.28

OLI 124030 3:00:38 A.M. 28.07
1 Central longitude/latitude for WFV and path/row for OLI; 2 Calibration refers to the WFV–OLI image pairs
used for cross calibration process, and validation means the WFV–OLI image pairs used to validate the derived
calibration coefficients.

Landsat-8 OLI and Gaofen-1 WFV3 image pairs with quasi-synchronous acquisition time, large
dynamic range (with various surface features) and minimal cloud coverage were selected in this study
for both cross calibration and validation. The general information is listed in Table 2. Landsat-8 OLI
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images were downloaded from United States Geological Survey (USGS, http://glovis.usgs.gov/)
and Gaofen-1 WFV data were obtained from CCRSDA (http://www.cresda.com/n16/index.html).
To minimize the differences in surface and atmospheric conditions between the observations from
reference and target instruments, all WFV–OLI image pairs were acquired within 30 min apart from
each other. In addition, visual examinations were conducted to avoid large aerosol changes within these
selected image pairs. Changes in sun angle could be corrected with the conversion to TOA reflectance,
and a more detailed treatment of the calibration method is given below. Note that reflectance refers to
the hemispherical directional reflectance factor (HDRF) throughout this paper [16,17].

The USGS spectral library (splib06a, [18]) was used in this study to correct the potential difference
in spectral response caused by different types of surface materials (see details below). The library
achieves more than 1300 spectra with spectral range from UV to mid-infrared. The spectral samples
were collected from a variety of minerals, plants and manmade materials, assuring that most remotely
detected spectral features could find its corresponding spectrum in the library.

3. Method

3.1. Cross Calibration

Remote sensors often respond linearly to the incoming signal. Thus, the quantified standard DNs
can be converted to TOA spectral radiance L (wm´2¨ sr´1¨ um´ 1) using the radiance rescaling gains
and bias. As for WFV, for a given band i,

LWFV,i “ MWFV,i¨DNWFV,i ` AWFV,i (1)

where MWFV,i is the band-specific rescaling multiplier and AWFV,i is the band-specific bias.
The radiance is then converted to TOA reflectance by

ρWFV,i “ π¨ LWFV,i¨ d2{
`

EWFV,i¨ cosθWFV
˘

(2)

where θWFV is the solar zenith angle, d is the Earth–Sun distance in Astronomical Units [2], and EWFV,i
is the exo-atmospheric solar irradiance (wm´2¨ um´1), which can be calculated as follow:

EWFV,i “

ż b

a
f pλq ¨ Si pλq dλ{

ż b

a
Si pλq dλ (3)

where Si (non-dimensional) is the normalized spectral response function of the corresponding band, f
is the continuous exo-atmospheric solar irradiance [19], a and b are the lower and upper bounds of the
spectral range for band i.

Meanwhile, the OLI data can be converted to TOA planetary reflectance using
reflectance rescaling coefficients provided in the product’s metadata file (MTL file)
(http://landsat.usgs.gov/Landsat8_Using_Product.php). The following equation (Equation (4))
is used to convert the quantified and calibrated standard product pixel values (DNOLI,i) to TOA
reflectance with a correction for the sun angle:

ρOLI,i “
`

MOLI,i¨DNOLI,i ` AOLI,i
˘

{sinθOLI (4)

where MOLI,i and AOLI,i are the band-specific rescaling multiplier and bias from the metadata,
respectively, and θOLI is the solar elevation angle.

Figure 3 plots the randomly selected Landsat-8 OLI TOA reflectance against Gaofen-1 WFV3
DNs, with each symbol on the plot correspond to mean values of one pair of homogeneous ROIs
in the two instruments (see method of ROI selection below). It shows that the WFV3 DNs increase
monotonically with the elevated OLI reflectance for the four bands over a wide reflectance coverage
(0–0.5). Note that all the image pairs were used to give an objective view for the saturation of the
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two instruments. The tight linear relationship between WFV3 and OLI signals further confirms the
feasibility of using the well performed OLI to cross calibrate the recently launched WFV cameras.
Additionally, the results also show that the WFV3 tends to saturate at ~1000 of DN, thus WFV3 data
with DN > 1000 were excluded in this study, and the same for other three WFVs.
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Since the data of the two sensors were acquired within 30 min apart, the changes in surface
reflectance and the atmospheric conditions were not significant in such a short period. Given the
similarity of the spectral bands between the two instruments, the signals received by the target (WFV)
and reference sensor (OLI) are the same after accounting for the differences in spectral response, which
could be expressed as:

ρ1OLI,i “ ρOLI,i¨QEi “ ρWFV,i (5)

where ρ1OLI,i is the modified TOA reflectance of OLI data, with the spectral and illumination differences
between OLI and WFV adjusted; QEi is the spectral band adjustment factor to adjust the differences in
relative spectral response profiles and exo-atmospheric solar irradiance between corresponding OLI
and WFV spectral bands. The factor varies between different atmospheric transmittances and surface
reflectance [12]. With Equations (1)–(4), Equation (5) can be rewritten as:

ρOLI,i¨QEi¨ EWFV,i¨ cosθWFV{
´

π¨ d2
¯

“ MWFV,i¨DNWFV,i ` AWFV,i (6)

The objective of cross calibration is to generate calibration coefficients (rescaling gains MWFV,i
and offsets AWFV,i) by using TOA reflectance of Landsat-8 OLI and digital number of Gaofen-1 WFV.

For the reference sensor of OLI, essential coefficients are provided in the metadata file and the
DNs can be easily converted to radiance and reflectance. In addition, the information of solar angles
is provided in the metadata files of the two types of instruments. Therefore, if the only unknown
parameter QEi in Equation (6) is given, calibration coefficients could be obtained using a linear
regression between the left side of Equation (6) and digital number of Gaofen-1 WFV on the right side.
Thus, to yield cross calibration coefficients for WFV cameras, two critical issues need to be addressed:

1. Find sufficient calibration sites (e.g., WFV–OLI matching windows) to establish a statistically
meaningful linear fit.

2. Determine the spectral band adjustment factor QE.
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3.2. Calibration Sites Selection

The Landsat-8 OLI and Gaofen-1 WFV differ in their along- and across-track pixel sampling.
A feature concurrently observed by these sensors is represented by slightly different numbers of image
pixels because of the differences in spatial resolution, viewing geometry and sensor scanning times.
This makes it difficult to establish direct comparisons on a point-by-point basis. A typical solution is to
manually delineate large homogenous areas (or region of interest, ROIs), with the mean statistics of
these areas used for both target and reference sensors [12,20–23]. However, relatively large variations
may exist over those visually selected ROIs (say as much as 10 DNs), leading to potential uncertainties
in the calibration coefficients. Furthermore, the manual method often suffers from the limitation in
data coverage of the two sensors. Thus, an objective and automatic method is proposed in this study to
address this challenge. In short, if the coefficient of variation (CV, calculated by standard deviation and
mean value, that is stdev/mean) within a window is small enough (<1%), the surface in this window
could be considered as homogenous. In practice, a window size of 4 ˆ 3 pixels for OLI image was
used, which was close to an area of 5 ˆ 4 window in WFV. The selection of such window sizes is to
minimize the variations within the individual windows where the surface changes could be neglected.
Additionally, CV with 1% was used as the threshold to determine the potential homogenous regions.
The steps of the method are as follows:

1. The WFV–OLI image pairs were clipped into the same geographic area with an exclusion of
clouds and cloud shadows.

2. For each data pair, more than 100,000 random points were generated within the Landsat-8 OLI
reflectance image. The random points were based on various combinations of latitudes and
longitudes. Then, 4 ˆ 3 windows centered at these points were selected, where the CV were
calculated for each window.

3. For OLI windows with CV < 1%, the corresponding 5 ˆ 4 windows at the same location were
found in the raw WFV image. If the CV for the WFV window is also <1%, the corresponding
windows in WFV and OLI were selected as a ROI for further analysis.

The steps were repeated for four bands of the two instruments (see Figure 4), and for all image
pairs used for calibration (see Table 2). The mean values of all the homogenous calibration sites
were then estimated for both WFV and OLI images, representing ρOLI,i and DNWFV,i in Equation (6).
A linear regression was conducted to generate calibration coefficients of WFV. As the image pairs
covered various surface features, dynamic ranges of the randomly calibration sites (or ROIs) should be
sufficient for radiometric calibration.
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3.3. Adjustment of the Spectral Band Differences

Figure 2 shows the differences in relative spectral response profiles between corresponding
(analogous) spectral bands.

In order to adjust the spectral band differences, first the definition of TOA reflectance is used in
cross-calibration. For a given band i, reflectance EWFV,i can be defined as:

EWFV,i “

ż b

a
ρi pλq ¨ f pλq ¨ Si pλq dλ

N
ż b

a
f pλq ¨ Si pλq dλ (7)

The only unknown coefficient ρ pλq is the incident continuous spectral reflectance
(non-dimensional). Since the incident spectral reflectance of the two sensors is assumed to be the same,
the spectral adjustment factor QEi can be defined as:

QEi “
ρWFV,i

ρOLI,i
“

şbWFV,i
aWFV,i

ρ pλq ¨ SWFV,i pλq ¨ f pλq dλ
şbWFV,i

aWFV,i
SWFV,i pλq ¨ f pλq dλ

N

şbOLI,i
aOLI,i

ρ pλq ¨ SOLI,i pλq ¨ f pλq dλ
şbOLI,i

aOLI,i
SOLI,i pλq ¨ f pλq dλ

(8)

As normalized spectral response function S pλq for the sensors is provided by the manufacturer,
the spectral adjustment factor QEi only depends on the incident continuous spectral reflectance ρ pλq.

To estimate spectral adjustment factors for different ROIs is not trivial, as ρ pλq changes
significantly over different surface conditions, leading to varied QEi for the selected calibration sites.
Besides, it seems impossible to obtain accurate ρ pλq for these calibration sites since they were selected
randomly. Fortunately, similar spectrum could be found in some of the predefined spectral library,
such as the USGS spectral library. After atmospheric correction through FLAASH module in ENVI4.8,
the surface reflectance for each Landsat-8 OLI image could be obtained. The key parameters used in the
FLAASH module are selected as follows: Mid-Latitude Winter for atmospheric model, Rural for aerosol
model (because the selected images is located far away from urban or industrial sources), and 2-Band
(K-T) for the aerosol retrieval; the initial visibility was chosen as 20–40 km depending on the image
quality. As the hyper-spectral data in the USGS spectral library were collected from numerous surface
conditions, the most approximate spectrum can be found to match the atmospherically corrected
OLI reflectance correspondingly. In practice, minimum mahalanobis distance was used to determine
the similarity between the OLI reflectance and continuous spectral data in the library. Figure 5
demonstrates two typical examples of the matched OLI reflectance (points) and hyper-spectral data
(curves) of the USGS library for different surface types. The spectral shapes and magnitudes between
the two different measurements are close to each other, suggesting that the hyper-spectral data matches
very well to the OLI reflectance, which could be used to calculate the spectral adjustment factors for
the corresponding OLI pixels. As such, QE for all of the selected calibration sites could be estimated
using the above method. It should be noted that the only purpose of the atmospheric correction for
OLI images was spectrum matching, and the input of the cross calibration equation in Equation (6) is
TOA reflectance.
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(red points) in two ROIs and their matched spectrum in the USGS spectral library (curves): (a) desert;
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Theoretically, simultaneously measured in situ hyper-spectral data or hyperspectral images (such
as Hyperion) should be used to calculate QE [24,25]. While in practice, to obtain sufficient concurrent
spectral measurements for randomly selected calibration sites of a large coverage is very difficult.
As a solution in this study, atmospherically corrected surface reflectance of Landsat-8 OLI was used
to find the “most approximate” hyperspectral data in the USGS spectral library, with which the QE
can be calculated. In order to do the atmospheric correction, the MODTRAN4 radiation transfer code
incorporated in FLAASH module of ENVI4.8 software was used, which is considered to be a good
solution for atmospheric corrections for terrestrial applications [26]. As long as the spectral shape is
similar, the spectral matching and QE estimation should be immune to the residual errors caused by
atmospheric correction. In addition, the accuracy of the USGS-estimated QE can be partially validated
with sporadic Hyperion images. Concurrently collected OLI and Hyperion images were downloaded
and ROIs with CV < 1% in the OLI image were selected. Then, the corresponding QEs could be
estimated using either the matched USGS spectral library or the geo-matched Hyperion data. As for
two typical surface features (see Figure 6), the spectral shapes are similar for the two independent
measurements (USGS library and Hyperion), and the differences between the two QEs are <1% for
blue to red bands and <3% for NIR bands, respectively. ROIs of other surface types also show similar
results, suggesting that the use of USGS spectral library in this study is valid.
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4. Results and Validations

4.1. Results of cross Calibration

With sufficient calibration sites (from all five selected image pairs, see Table 2) and close estimates
of spectral adjustment factors, a linear regression based on Equation (6) could yield cross calibration
coefficients (both gains and offsets) for Gaofen-1 WFV cameras. Figure 7 plots the left side of
Equation (6) (or adjusted OLI radiance) and DNs of WFV3 for all four spectral bands. Within a large
dynamic range, the >800 points for each band are aligned along the fitting line, suggesting that the
performance of the linear fits are satisfactory and the regression coefficients should be valid. Tests of
the hypothesis of zero gain and offset has been rejected for all the bands (using SPSS software), with
a significant level of <0.01. Additionally, the mean relative difference (MD) and root mean square
root mean difference (RMSD) between the linear relations estimated radiance using DN of WFV and
the adjusted OLI radiance were very small for each band (see Figure 7). Note that, when randomly
selecting half of the points, the produced coefficients were almost identical to the current form.

Using the same cross calibration method of WFV3, the radiometric calibration coefficients for
the other three WFV cameras (WFV1, WFV2 and WFV4) were also generated. Table 3 compares the
officially provided (old) and the newly-generated (new) gains and offsets for all of the four WFV
instruments, with the differences between the two sets of calibration coefficients evaluated. Generally,
the cross-calibrated gains in green and red bands show small differences to the old gains, with <6%
differences for four cameras and almost identical gains for WFV1. However, large discrepancies could
still be observed in blue and NIR bands. The blue band shows new/old gain ratios of 1.16 for WFV2
and 1.17 for WFV3, respectively, and ratio of 1.15 is observed in the NIR band of WFV4. Furthermore,
the ratio for NIR band of WFV2 even reached 1.41.
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Figure 7. TOA radiance of selected calibration sites from Landsat-8 OLI plotted against the digital
number of Gaofen-1 WFV3: (a) Blue band; (b) Green band; (c) Red band; and (d) NIR band. Linear fits
between them resulted in cross calibration coefficients for the WFV instrument. Note that the RSR
differences between the two sensors were adjusted.
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Table 3. Cross-calibrated gains and offsets (new) for four WFV sensors of Gaofen-1 satellites, also listed
are the officially provided calibration coefficients (old). Differences between the two sets of calibration
coefficients were calculated.

Sensor Band
New
Gain

New
Offset

Old
Gain

Old
Offset

Gain
Ratio 1

Offset

Difference 2 DN 3

WFV1

Blue 0.1611 ´0.3075 0.1709 ´0.0039 0.94 0.3036 1.9
Green 0.1400 ´4.8499 0.1398 ´0.0047 1.00 4.8452 34.6
Red 0.1192 ´0.6033 0.1195 ´0.0030 1.00 0.6003 5.0
NIR 0.1369 ´2.2004 0.1338 ´0.0274 1.02 2.1730 15.9

WFV2

Blue 0.1840 ´1.2455 0.1588 5.5303 1.16 6.7758 36.8
Green 0.1548 ´6.9623 0.1515 ´13.6420 1.02 6.6797 43.2
Red 0.1317 ´4.7976 0.1251 ´15.3820 1.05 10.5844 80.4
NIR 0.1699 ´11.3110 0.1209 ´7.9850 1.41 3.3260 19.6

WFV3

Blue 0.1828 ´0.8439 0.1556 12.2800 1.17 13.1239 71.8
Green 0.1595 ´1.6577 0.1700 ´7.9336 0.94 6.2759 39.3
Red 0.1376 0.4252 0.1392 ´7.0310 0.99 7.4562 54.2
NIR 0.1560 ´0.7951 0.1354 ´4.3578 1.15 3.5627 22.8

WFV4

Blue 0.1862 ´1.1885 0.1819 3.6469 1.02 4.8354 26.0
Green 0.1727 ´5.2595 0.1762 ´13.5400 0.98 8.2805 47.9
Red 0.1501 0.3948 0.1463 ´10.9980 1.03 11.3928 75.9
NIR 0.1755 ´7.7135 0.1522 ´12.1420 1.15 4.4285 25.2

1 is defined as new gain/old gain; 2 is the absolute difference between new and old offset; 3 is the corresponding
digital count of the offset difference between two sensors, which is estimated as (new offset-old offset)/new gain.

In addition, large differences exist between the officially provided offset and that of the
re-calibrated, which can be observed in almost all spectral bands for the four WFV instruments.
Table 3 lists the differences between the new and the old offsets (see column “Difference”), and the
corresponding digital numbers are also calculated (Difference/new gain). The absolute values of old
gains appear to be much larger than their cross-calibrated counterparts across different spectral bands
and instruments. For example, the old offset of the red band in WFV2 is 15.3820 (wm´2¨ sr´1¨µm´ 1)
larger than the newly-yielded offset, corresponding to 80.4 digital counts when the new gain is used.
Overall, the offset differences were generally larger than 15 DNs, with only two exceptions in blue
(1.9 DNs) and red (5.0 DNs) bands of WFV1, respectively.

4.2. Validations

Concurrent radiometrically calibrated TOA reflectance of Landsat 8 OLI images, after correction
of the spectral response difference with WFV, was considered as the ground truth to validate the
performance of the newly-produced calibration coefficients. Note that the image pairs for validation
are not the same as that were used for cross calibration (see Table 2), and the surface and atmospheric
conditions were assumed the same for each images pairs.

To calculate the difference between the cross-calibrated Gaofen-1 WFV3 and Landsat-8 OLI
reflectance in a statistically meaningful way, over 1000 random points from concurrent WFV–OLI image
pairs were selected. Then the difference (in percentage) of the reflectance between the two sensors
was calculated for each point, and the accuracy statistics were based on the results of all the random
selected points. Figure 8 plots the mean differences and their associated standard deviations for
different reflectance ranges of the four spectral bands. For comparison, the differences between WFV3
reflectance calibrated with official (old) coefficients and OLI reflectance are also plotted in Figure 8.
The detailed data are listed in Table 4.
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band. For comparison, the differences using the officially provided calibration coefficients of WFV
cameras were also plotted (in blue). The RSR differences between the two sensors were adjusted.

Table 4. The differences between the radiometrically calibrated Landsat-8 OLI and WFV3 reflectance
in different reflectance ranges, the calculations were conducted using both new and old calibration
coefficients of WFV3. The last column estimated the improvements of WFV3 after cross calibration.
Note that the RSR differences between the two sensors were adjusted.

Reflectance Range New (%) Old (%) Improvement (%)
Mean Stdev Mean Stdev

Blue

0–0.1 0.71 0.51 27.19 0.73 26.66
0.1–0.2 2.61 1.79 16.77 4.04 14.41
0.2–0.3 1.89 1.07 3.00 1.90 1.30
0.3–0.4 0.91 2.31 4.61 2.03 3.36

>0.4 3.94 2.74 10.01 3.00 6.75

Green

0–0.1 3.41 2.15 21.58 4.43 17.61
0.1–0.2 2.54 1.96 12.16 3.29 8.75
0.2–0.3 2.42 2.91 4.68 2.97 0.72
0.3–0.4 4.87 4.15 8.17 4.72 0.03

>0.4 3.83 3.25 3.59 2.97 0.82

Red

0–0.1 29.56 11.87 61.37 23.67 27.33
0.1–0.2 3.26 2.30 20.38 2.60 16.78
0.2–0.3 4.43 3.63 15.90 4.48 9.05
0.3–0.4 6.86 1.70 19.82 2.00 13.14

>0.4 5.20 3.02 15.08 4.41 8.69

NIR

0–0.1 10.69 40.00 39.41 50.50 34.09
0.1–0.2 7.33 5.68 24.43 4.13 16.55
0.2–0.3 4.29 2.52 26.47 2.26 21.89
0.3–0.4 3.75 2.89 23.04 3.57 18.03

>0.4 4.33 1.85 22.71 2.60 18.11



Remote Sens. 2016, 8, 411 13 of 19

The cross-calibrated reflectance agrees very well with the OLI reflectance, with the mean
differences between the two sensors <5% for most of the reflectance ranges of the four spectral
bands. Since the radiometric calibration error of Landsat-8 OLI reflectance is <3% [14], the uncertainty
of the newly-calibrated WFV reflectance should be within 8%. When compared with the results of
the old calibration coefficients, the improvements are between 1% and 26% for difference bands and
reflectance ranges, and the overall improvement of the cross calibration is 13.67% for all four spectral
bands. However, the differences and standard deviations at low reflectance (0–0.1) of red and NIR
bands are relatively larger than other bands. The surface type associates with low reflectance in red
and NIR bands is likely to be water, as the water absorbs most of the solar radiances in these spectral
ranges [27]. The radiance interactions with the air and water surface were not considered in this study,
which may explain the large discrepancies in these two bands. Additional water-target based cross
calibration method is required to improve the performance in the low reflectance ranges of the two
bands [28]. In addition, half of the validation points were randomly selected, and the uncertainty
estimates were very similar to the current form.

To visualize the improvements of cross calibration, four-band spectrum from typical surface
features are plotted (Figure 9). For water surface, large gaps can be observed in all of the four spectral
bands between WFV reflectance calibrated with official coefficients and OLI reflectance. In contrast,
WFV reflectance calibrated with new coefficients appears to be much closer to OLI reflectance in
terms of both spectral shapes and magnitudes. The reflectance of vegetation and desert using new
coefficients is also much closer to the OLI reflectance, suggesting that WFV cameras are able to have
similar observations as OLI when the new calibration coefficients are applied.
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Figure 9. Comparison of the reflectance between Landsat 8 OLI and Gaofen-1 WFV under typical
surface conditions: (a) water; (b) desert; and (c) vegetation. Both cross calibrated (new) and officially
coefficients calibrated (old) WFV reflectance were plotted. The cross calibrated WFV agreed much
better with the OLI reflectance.
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To further validate the reflectance distributions of the cross-calibration coefficients, reflectance
histograms for different bands of one typical OLI-WFV image pair were generated. Figure 10 shows
the histogram comparisons for the four bands. Similar to the point-to-point and typical surface
feature comparisons, differences between WFV and OLI has considerably decreased when new
calibration coefficients are used, with the reflectance histograms matching very well in blue to red
bands. Nevertheless, the relative larger uncertainties of the cross-calibration coefficients at the low
reflectance range (see above analysis and Figure 8) may have led to the mismatched histogram in
NIR band.
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Figure 10. Comparison of the reflectance histograms in one WFV–OLI image pair for four bands:
(a) Blue band; (b) Green band; (c) Red band; and (d) NIR band. Both cross calibrated (new) and
officially calibrated (old) WFV reflectance were included.

To explore the application of the cross-calibration results, Normalized Difference Vegetation Index
(NDVI) of Gaofen-1 WFV camera were validated, where NDVI “ pρnir ´ ρredq { pρnir ` ρredq (ρ is the
TOA reflectance [12]). Figure 11 compares the histograms and statistics of NDVI for WFV and OLI in
farmland and forest, where both new and old calibration results of WFV are included. Clearly, NDVI
results using newly-calibrated coefficients are more consistent with the OLI than those calculated with
the officially provided coefficients (see Figure 11), and the statistics (including maximum, minimum
and mean values) and histograms are much closer to the Landsat-8 OLI estimates for the two different
types of vegetation.
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farmland and forest, where both cross calibrated (new) and officially calibrated data (old) for WFV
were calculated.

5. Discussion

With data collected by Landsat-8 OLI as reference, Gaofen-1 WFV instruments were re-calibrated
using a novel cross calibration scheme. The reflectance estimated using the officially provided
calibration coefficients showed large differences from the concurrent OLI images. In comparison,
the radiometric performance of the cross-calibrated WFV cameras has improved significantly, as the
spectral shapes, reflectance magnitudes and distributions, as well as the estimated vegetation index
(NDVI) agreed very well with those of the tandem Landsat-8 OLI measurements. We attribute the
success of the cross-calibration to two factors: (1) An objective method to select sufficient homogenous
calibration sites, where good linear regressions could be established with large dynamic ranges;
(2) Continuous hyper-spectral data in the USGS spectral library used to estimate the factors to adjust
differences in the relative spectral response profiles between the reference and target sensors.

To guarantee the homogeneity of the selected calibration sites, a small window size of 4 ˆ 3 pixels
for Landsat-8 OLI was used to geo-match the window in WFV images to assure minimal variations
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within each site, as a larger window could result in a higher likelihood of with-in site heterogeneity,
which could propagate into the cross calibration coefficients. The threshold of 1% for CV was
a compromise between the uncertainties of linear regressions and the number of calibration sites, as
smaller thresholds could result in less data coverage, and larger values often lead to more potential
uncertainties. To test the rationality of the use of 1% [29], Gaussian noise with a standard deviation
of 1% were added to the selected sites for both OLI and WFV instruments. Results show that the
difference of each band between the noise-added and the presented coefficients were within 0.3% for
gain and <0.15 wm´2¨ sr´1¨µm´ 1 for offset, respectively, suggesting that the uncertainty resulted
from the 1% CV criteria can be ignored.

Although the spectral ranges of Gaofen-1 WFV cameras are similar to the analogous wavelengths
of Lansat-8 OLI (especially for the blue and green bands, see Table 1), the relative spectral response
varies, resulting in different reflectance even for the same target between the two sensors. Thus, the
correction of RSR differences appears to be a critical step in the cross calibration method. Using the
USGS spectral library, we estimated the ranges of RSR adjustment factors (QE) for different types
of surface features, where the data were classified (or chartered) following same convention of the
USGS library. The range of QE changes significantly among different surface types and spectral bands,
with the maximum and minimum values observed in the red (0.8908) and green (1.3929), respectively
(Table 5). In other words, the reflectance differences for the same target observed by the two sensors
could reach ~40%, suggesting the crucial role of RSR adjustments in cross calibration between OLI and
WFV instruments.

Table 5. The range of RSR adjustment factors for different surface features, which were estimated using
the USGS spectral library, the chapters were followed the same convention of the library.

CHAPTER 1 Blue Green Red NIR

max min max min max min max min

A 1.0278 0.9842 1.1892 0.9684 1.3432 0.9482 1.0070 0.9023
C 1.0080 0.9991 1.0583 0.9495 1.0255 1.0005 1.0219 0.9800
L 1.0136 0.9951 1.0161 0.9616 1.0178 0.9669 1.0187 1.0006
M 1.0236 0.9830 1.0783 0.9363 1.0498 0.9554 1.1225 0.9386
S 1.0146 0.9998 1.0165 0.9430 1.0179 0.9856 1.0133 0.9884
V 1.1185 0.9624 1.3117 0.8908 1.3929 0.9657 1.0367 0.9831
all 1.1185 0.9624 1.3117 0.8908 1.3929 0.9482 1.1225 0.9023

1 A is the abbreviation of Artificial (Manmade), including Manufactured Chemicals; C is the abbreviation of
Coatings; L is the abbreviation of Liquids, Liquid Mixtures, Water, Other Volatiles, and Frozen Volatiles; M is
the abbreviation of Minerals; S is the abbreviation of Soils, Rocks, and Mixtures (except those with vegetation);
and V is the abbreviation of Plants, Vegetation Communities, Mixtures with Vegetation, and Microorganisms.

Why was Landsat-8 OLI selected as the reference rather than other accurately calibrated
instruments? For example, MODIS instruments (Terra and Aqua) have demonstrated stable calibrations
over the last decades [3], and have similar spectral bands with those of WFV. However, the one order
of differences in the ground resolutions (250–500 m for MODIS) may lead to potential uncertainties
to the calibration results. To compare, the two 250 m MODIS bands (red and NIR) were also used
to cross calibrate the analogues WFV bands, where the ROIs were manually selected following the
similar method as described by Chander et al. [10] and the differences in spectral responses were
also adjusted with the USGS spectral library. As shown in Figure 12, although the performance of
the linear regressions is acceptable for all of the four WFV sensors, the differences in gains between
the MODIS- and OLI-derived coefficients appear to be too large. The differences in gains for the red
and NIR bands between the two methods even reach up to >30% for a certain WFV band. Given the
accurate calibration of the OLI data [15] and the high agreement of its cross calibrated WFV reflectance
(differences <5% for any given bands, see Figure 8 and Table 4), the calibration coefficients with MODIS
are likely to be problematic.
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Figure 12. Cross calibration results using Moderate Resolution Imaging Spectroradiometer (MODIS)
250 m bands, where the homogenous ROIs were manually selected and the differences in spectral
responses were adjusted. The differences between the MODIS- and OLI-cross calibrated gains
(in percentage) for each band are also shown in the parentheses. (a) WFV1; (b) WFVV2; (c) WFVV3;
(d) WFVV4.

For the predecessors of Landsat ETM+, the SLC failures will lead to difficulties in ROI selection.
Moreover, the mission has exceeded its designed life (5 years) and can terminate at any time, thus the
newly-launched OLI appears to be more appropriate as it can be used in the future for radiometric
degradation correction of WFVs. The Gaofen-1 WFV cameras have already been collecting data for
nearly three years, yet optical remote sensors often suffer from signal degradations after a certain
period of operation [30]. The method in this study can be used frequently to monitor and correct the
potential reflectance biases caused by sensor degradation of WFV cameras, as long as a stable reference
data can be obtained. This is particularly true for the instruments on-board Landsat series satellites [5].
Furthermore, the Chinese government has approved CHEOS to continue launching another four or
five satellites as complementary missions for Gaofen-1 [31]. The proposed method here can be used in
the future to provide accurate and consistent observations for these planned missions.

Of the four WFV cameras onboard Gaofen-1 satellite, two of them are close-nadir view (WFV2
and WFV3) and the other two are of off-nadir view (WFV1 and WFV4). The large view angle of the
two latter instruments may lead to relatively longer atmospheric path and thus larger path radiance
than the OLI. When the view angle increase from 0˝ to 40˝, the atmospheric path radiance can increase
by 15%~30% depending on the different aerosol conditions [32]. Additionally, many bi-directional
effects may also occur with large sensor zenith angles. Therefore, the uncertainty of the calibration
coefficients derived for WFV1 and WFV4 in this study could be larger than the other two close-nadir
instruments, and a more sophisticated method is required to solve the large view angle associated
problems [32].

6. Conclusions

A simple cross calibration method has been proposed and implemented to radiometrically cross
calibrate the Gaofen-1 WFV cameras using simultaneously collected Landsat-8 OLI data. An objective
method was proposed to select sufficient homogeneous calibration sites with a large dynamic
coverage for both the reference and target instruments. Then, the atmospherically corrected OLI
reflectance for each calibration site was used to match the hyper-spectral data in USGS spectral library.
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The adjustment factor estimated by the matched spectrum was then used to correct the spectral band
(or response) differences between the two sensors. Compared with the officially provided coefficients,
the performance of the cross calibrated coefficients improved significantly. The newly calibrated
reflectance showed small difference (<5%) with the calibrated OLI reflectance for the four spectral
bands over a large reflectance range. Similar consistencies between the cross-calibrated WFV and OLI
were also found for their reflectance distributions and vegetation index statistics. Considering the
~3% calibration uncertainty of OLI, the errors of the newly-calibrated WFV reflectance (at least for
close-nadir instruments) should be within 8%. Although with much improvements over the original
coefficients, more sophisticated method and thus higher calibration accuracy may be required for
quantitative remote sensing applications in the future.

Landsat series of satellites have been providing consistent long term global observations, and
on-board and vicarious calibrations for these instruments are performed constantly to guarantee
their high accuracy in radiometric calibration. Because of availability of Landsat data, the approach
developed here can be easily extended to future satellite missions of China or other countries to obtain
valid radiometric calibration coefficients.
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