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Abstract: This work introduces a new classification method in the remote sensing domain, suitably
adapted to dealing with the challenges posed by the big data processing and analytics framework.
The method is based on symbolic learning techniques, and it is designed to work in complex and
information-abundant environments, where relationships among different data layers are assessed
in model-free and computationally-effective modalities. The two main stages of the method are the
data reduction-sequencing and the association analysis. The former refers to data representation; the
latter searches for systematic relationships between data instances derived from images and spatial
information encoded in supervisory signals. Subsequently, a new measure named the evidence-based
normalized differential index, inspired by the probability-based family of objective interestingness
measures, evaluates these associations. Additional information about the computational complexity
of the classification algorithm and some critical remarks are briefly introduced. An application of
land cover mapping where the input image features are morphological and radiometric descriptors
demonstrates the capacity of the method; in this instructive application, a subset of eight classes from
the Corine Land Cover is used as the reference source to guide the training phase.

Keywords: automatic classification; remote sensing; symbolic machine learning; supervised learning;
association analysis; interestingness measures; big data

1. Introduction

Since the 1970s, Earth observation or remote sensing (RS) data have been acknowledged as
relevant sources of information for a long list of disciplines, including (but not limited to) Earth
sciences and geology, environmental sciences, water and coastal management, territorial planning,
forestry and agriculture [1,2]. Nowadays, digital Earth observation data and geo-spatial information
are considered key assets for understanding the processes shaping the planet Earth [3-5]. They
can provide fundamental inputs needed for improving global evidence-based decision-making
processes, as the ones envisaged in the United Nations Sustainable Development Goals
(https:/ /sustainabledevelopment.un.org/sdgs), the Post-2015 Framework for Disaster Risk Reduction
(http:/ /www.unisdr.org/we/coordinate/hfa-post2015) and the United Nations Framework
Convention on Climate Change (http:/ /newsroom.unfccc.int/).

In our current age, data are abundant, exponentially growing in volume, but only partially
structured and harmonized. Generated by different agents and serving diverse objectives over time,
the accumulated data compose a rich source of information, yet are difficult to effectively explore
and analyze globally. Furthermore, the increasing need to collect new data establishes advanced
standards regarding the capacity to organize collective volunteer efforts in geographical information
gathering [6] and the capacity to design and operate new automatic satellite sensors and platforms
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improving the spatial, spectral, and temporal resolution of the available remotely-sensed data. In 2008,
the U.S. Geological Survey (USGS) released for free to the public its Landsat archive, historical records
of Earth observation technology dating back to the 1970s [5,7]; this progression dramatically increases
the scale detail and the amount of remote sensing data available for scientific purposes. Moreover, the
EU Copernicus space program, started in 2014, is expected to increase the global open and free data
collection capacity even more by some orders of magnitude [8].

As a corollary of the above trend, and given the fact that the planet surface is of finite dimensions,
a general increase of spatial information redundancy can be expected: nowadays, the chance to find
alternative and only partially-harmonized descriptions of the same piece of land made by different
geo-spatial information products at different scale, time and thematic technical specifications is much
higher than in the very recent past.

Furthermore, our capacity to process and extract significant global information from this
exponentially-increasing volume and detail of an only partially-structured and rapidly-changing
mass of data is not developing with the same rapidity and effectiveness [9]. The standard
causal-deterministic remote sensing data classification models require large amounts of human
resources (data experts, domain experts) dedicated to tune, test and adapt the image information
extraction models to the specific and rapidly-changing set of data, sensors and target classes.
Supervised data classification and machine learning techniques can contribute to mitigating some of
these issues by the automatic generation of the inferential models linking the image data with the high
abstraction information required by the analytical tasks. However, today’s state of the art machine
learning techniques employed in remote sensing applications show severe drawbacks in scenarios
where large training sets are used together with large input data. These algorithms have been designed
and tested on small to medium data instances (if compared to fine-scale global RS data scenarios)
with a moderate to large number of attributes or features and are difficult to scale to geo-spatial big
data machine learning problems [10]. These drawbacks are largely amplified in the case of complex
and ill-defined target classes’ analytics and in the case of partially-inconsistent, global fine-scale
data scenarios.

This manuscript introduces in the remote sensing domain a new generic supervised classification
framework that may contribute to solving geo-spatial big data problems. It is based on symbolic machine
learning (SML) techniques. As introduced here, the SML consists of two basic processes, namely: (i)
input image data reduction sequencing; and (ii) association analysis. During the sequencing stage, the input
data are reduced to a set of sequences represented in a symbolic, compact and multidimensionally-sparse
mode. The subsequent association analysis stage is used as an automatic inferential engine constructing
the rules that are associating the data sequences with a given high-abstraction information layer (the
terms reference set, supervisory signal and high-abstraction information layer are used with the same
meaning to denote the class set). In the SML name, the term symbolic refers to the fact that the input
data are represented by a finite set of symbols, the alphabet of sequences. The term machine learning is
used in the general sense introduced in computer science as the field of study that gives computers the
ability to learn without being explicitly programmed [11].

The SML framework shows some analogies with data analytics tools already developed and
largely applied in other disciplines, such as the genetic association techniques. The association rules in
genes (or genetic association) are extensively used in bio-informatics to reveal biologically-relevant
associations between different genes or between environmental effects and gene expression [12-15].
By analogy with the genetic association applied in bio-informatics, the SML association classifier
searches for relevant, systematic relationships between sequenced image data instances and
supervisory (spatial) information encoded in selected reference sets.

So far, these paradigms have been very rarely applied in the remote sensing community that is
dominated by continuous numeric representation of the input signal, which is typically postulated by
physical causal-explanatory paradigms [9,16,17].
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From the use domain perspective, the SML supervised approach has been formulated as a
contribution to tackle the challenges posed by the geo-spatial big data processing and analytics
framework [9,16,17]. In this new approach, analogously as argued by [18], causal deterministic models
are largely complemented by data-driven inductive inferential reasoning. Moreover, the whole data
volume ( samples = all available data) is typically used for making the inferences.

This is in contrast to other approaches focusing on the search of laws (or continuous functions in
the model-fitting perspective) explaining the relationships among a few carefully-sampled points in
the same data universe. In the SML, the goal is the identification of the association rules among parts
of comprehensive data series that fully describe the whole universe.

Our goal herein is limited to firstly introduce the SML classifier and then to provide some didactic
use examples, helping the reader to understand the basic features of the new general supervised
classification framework. The purpose of the manuscript is not to present an application of remote
sensing data classification aiming to detect specific land use or land cover classes using specific data
as the input. Furthermore, the purpose is not to benchmark or compare the SML with respect
to other known supervised classification methods. These points related to the application and
benchmarking of SML have been developed in other publications presenting experiments of the
automatic recognition of built-up areas from satellite imagery. In [19], SML classifiers are tested in
the frame of the Global Human Settlement Layer (GHSL) production workflow. In that experiment,
more than 30,000 individual Landsat satellite scenes have been automatically classified using SML for
the discrimination of the land vs. water and built-up vs. not built-up target classes. The experiment
included satellite data collected by the Landsat platform in the past 40 years with MSS, ETM, and
ETM-+ sensors, producing data with different spectral characteristics and spatial resolutions of 75 m,
30 m and 15 m. According to the quality tests developed in that experiment, the discrimination
of the built-up class in the GHSL product is superior to any other global product available today
and generated exclusively by automatic classification techniques. In [20], the SML techniques are
tested for the update of the GHSL using Sentinel satellite data input. Finally, in [16], the SML was
benchmarked with other well-known parametric and non-parametric classifiers as regards the capacity
to discriminate ill-defined information in a controlled experiment connoted by constant input and
test data, but considering three scenarios of increasing noise modifying the supervisory signals.
According to these experiments, at the parity of data conditions (same input image features and same
quality or same noise level of the reference set), the SML approach was generally outperforming both
parametric and non-parametric classifiers. For example, considering the average performance of all
of the tests elaborated, in terms of informedness (average + standard deviation), the SML classifier
achieved the highest result (0.6098 & 0.0567). Other classifiers attained inferior average performance
(e.g., maximum likelihood: 0.5842 £ 0.0252; support vector machine: 0.5588 + 0.0678; and random
forest: 0.4451 4 0.1046). For a detailed description of the obtained results, the reader can refer
to [16]. Moreover, as related to non-parametric methods, the SML achieved this performance with a
computational cost decreased by one to two orders of magnitude.

The remainder of the paper is organized as follows: The basic components of the new symbolic
machine learning approach are presented in Section 2. The adopted data reduction-sequencing
procedure is detailed in Section 2.1. Section 2.2 introduces the stage of association analysis based on
the evidence-based normalized differential index (ENDI). A computational complexity analysis of
the algorithmic modules is presented in Section 2.3. Section 3 contains an application of the SML in a
specific showcase using multi-spectral Spot 5 data pan-sharpened at a spatial resolution of 2.5 m; as
already remarked above, the purpose of these examples is purely didactic in order to show an example
of the use of the general SML framework. The data and the target classes used in the experiments are
largely arbitrary and selected for didactic purposes: they are not representative of all of the applications
that can be developed by the use of the SML classifier. Discussions and conclusions are included in the
last Section 4.
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2. Basic Components

The method is based on the concept of the empirical multidimensional histogram. Briefly,
associations among class labels and tuples of features are defined; feature values have been derived
from the grouping/binning of the multidimensional histogram that describes the data under
consideration. Then, a normalized measure scores these tuples according to the number of their
occurrences in each class. The analysis of the cumulative distribution of the estimated scores results, at
the end, in their reclassification. Contiguous concepts have been used in the past, such as the histogram
distance index (HDI) [21] and the ‘wave hedges’ [22,23]; more recently, in [24], a similar approach
has been employed for the objective evaluation of the information merit in the case of input imagery
provided by different sensor platforms.

The SML schema is based on two relatively independent steps:

—_

Reduce the data instances to a symbolic representation;
2. Evaluate the association between the symbolic data instances subdivided into two parts: X (input
data) and Y (known class memberships).

The first step can also be called data reduction, and it is mostly required when the input data have
a quantitative nature; typically, it involves a grouping/aggregation technique. The second step regards
the application of a frequency-based supervised classification. As already mentioned, the two steps
are relatively independent: different techniques can be chained in the two components.

Figure 1 shows the specific implementation of an SML classifier as proposed in this manuscript.
The features (attributes; in our context, the terms attribute and feature are used interchangeably) of the
input dataset are all descriptors of the spatial samples. The pre-processing stage for data reduction
consists of three main phases. The first one implies generating a taxonomy (in the case of numerical
values, this process usually takes the form of a quantization or discretization); in the second, data
sequences are constructed; in the last one, the unique sequences are identified, and their frequencies of
occurrence are calculated (frequency analysis). The last action is equivalent to the determination of
the support set. If the input data have a symbolic nature, they can be used directly in the association
analysis stage. Optionally, taxonomies in the form of recoding tables can be applied on the symbolic
data input depending on knowledge-driven reasoning. For example, integrating a specific already
available land cover class as the input of a given image classification workflow could be useful.

Data Reduction ° Association Analysis

_No | frequency . ,
S No quF analysis ! (@  interestingness % A
- unique sequences measures

is
4 taxonomy
BN needed?

Figure 1. The general workflow of the symbolic machine learning (SML) classifier.

Remote sensing data are digitized by a process of sampling and quantization of the
electro-magnetic energy that is detected by a remote sensor. Usually, these data are available
as quasi-continuous numeric values quantized in a given number of levels. Some sensors can
collect the information about the energy reflected/emitted by targets in different wavelengths.
Consequently, they can produce a string of values associated with each sample (pixel). Moreover,
some second-order features can be extracted from the pixel values. Band ratios or combinations
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implemented in the spectral domain or textural and morphological filtering applied in the spatial
domain are typical examples of image transformations in remote sensing. Finally, all of these
data may have a multi-temporal nature, producing remote sensing data cubes (an approach
for analyzing and visualizing massive datasets used, for instance, by Geoscience Australia
(Australian Geoscience Data Cube project http://www.ga.gov.au/about/what-we-do/projects/
earth-observation-and-satellite-imagery/australian-geoscience-data-cube) and Google Earth Engine
(platform for environmental data analysis https:/ /earthengine.google.com/). All of these features
may contribute to the formation of attribute-value sequences and used as input to the SML classifier.

The results of the input data reduction stage, that is the attribute-value sequences )A(qi r, are the
antecedent of the following association analysis stage. The consequent in this stage is constituted by
data originating from available high-abstraction semantic layers Y. In the typical use scenarios of the
SML classifier, Y are proxies of the target categorical information describing the whole data universe
under analysis or a large portion of it. For example, they may include land cover data approximating
thematically and/or, in the space-time domains, the information to be extracted from the satellite data.
Finally, the output of the association analysis is the ® values given by an interestingness measure; these
values are mapped to the single spatial sample (pixel) and used as the decision criterion translating
the feature space into the final classification output.

2.1. Data Reduction Sequencing

Numerous methods are available in literature to approach the issues of data reduction, cluster
analysis and taxonomy. It is a main task of exploratory data mining, which has appeared in many
fields, including remote sensing data analysis, information retrieval and bio-informatics. An extensive
introduction and overview to the topic can be found in [25,26].

In this work, the approach of data quantization followed by data sequencing has been chosen.
Two main criteria were used to select the proposed data quantization sequencing method. The
first criterion comes from the exigency of an objective method, as much as possible independent
from assumptions about specific statistical distributions of the input data. This is important in real
big remote sensing data scenarios (RBRSDS), because just the analysis of the statistical distribution
of specific input data volumes may become computationally very expensive or even prohibitive.
This is especially true in rapidly-changing and highly heterogeneous RBRSDs, including continuous
streams of image data, which would force the application of ad hoc data reduction approaches. The
second criterion is linked to the necessity of adopting a sparse representation of the input data features.
Such coding allows the compression of the feature space and increases the computational efficiency in
RBRSDs. Recently, in the computer vision community, such representations have been successfully
proposed to solve image compression, pattern recognition and image classification tasks: see, for
example, [27-30].

Let Dy, xF be a dataset with m x n = mn spatial samples or pixels and F features or descriptors.
Let Xy« F be a two-dimensional data matrix, X = [x1,X2,...,X;, ..., Xg], with F expressing the number
of used features and x; € Z7". Let X be the set of all of the unique data instances of X, having as

cardinality ’}A( ‘ < mn; this magnitude depends on the specific number of symbols s; used to encode

the x; values and on the number of features F. The average support of X can be estimated as:
suppy = X1 /|| (1)

The ‘)A(‘ influences both the computational and generalization performance of the classifier.
Too small of a supp, may lead to over-fitting issues at the successive phase of association analysis.
Thus, very often, a re-discretization of x values must be considered in order to keep this issue
under control.
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Several quantization or discretization methods, including uniform, adaptive and statistical
approaches, may be found in the literature as reviewed by [31]. They are all compatible with the
general SML framework. In the application presented later on, a uniform quantization approach was
implemented, with the quantized data instances defined as follows:

Xgr = [[x+05] /g; : x € Xi),ur 2)

with gq; = max(x;)/s; and i = 1, ..., F. Accordingly, the respective quantized unique data sequences
are denoted by )A(qi r- The justification of this choice relies on the fact that it is the computationally
least expensive and the most objective method, being independent from the specific statistical data
distributions found in the different datasets under processing. The s; number of eligible symbols per
each descriptor is derived by the combination of the raw digital number encoding the specific data D
and the quantization parameter g;.

2.2. Association Analysis

Let A = {A1, Az, ...,Aj,Aj41} be a set of j+ 1 distinct attributes. For any two disjoint
attribute-value subsets {X} and {Y} of A, the patterns of the form X — Y are called association
rules, where X N'Y = @. The attribute-value sets X and Y are called the antecedent and consequent
of the association rule, respectively. In the associative classification (AC) framework started by [32],
the class association rules are the association rules with a class label attribute as the only consequent
(X={A\C}andY = A;;; = C, where C is the attribute set containing the class labels).

The proposed method consists of using AC to quantify the association X — Y between
multi-attribute data sequences (X = }A(qi r in our case) and the available high-abstraction semantic layers
Y, using a measure inspired by probability-based objective interestingness measures. The objective
measures are those that are not application-specific or user-specific and depend only on the data.

A large set of interestingness measures exists in literature: extensive reviews can be found in [33]
and [34]. In this manuscript, a new measure with the name of evidence-based normalized differential
index (ENDI) is introduced. It is a generalization of a measure from the confidence family to the case
in which a set of positive/negative not-mutually-exclusive examples is provided. The main properties
of this index that make it a sound solution in the proposed framework are the following: (1) it is an
objective measure; (2) it is algorithmically fast; (3) it is a descriptive measure that does not vary with
the cardinality expansion; and (4) it belongs to the measures of deviation from equilibrium [35] taking
a fixed value with equilibrium (equiprobability, equal number of positive and negative examples),
a necessary property for applications that involve decision- or prediction-making about the consequent.
Three variations of the ENDI measure (®f) are proposed herein: they are named @4, % and &%

The ENDI confidence measure ®% of the (antecedent) data instances X (= )A(q,. ), provided the
positive Y and negative Y~ (consequent) data instances, is defined as follows:

a + v\ — f — f B

OF (X, YT, Y )—W ®)
where f* and f~ are the frequencies of the joint occurrences among X (antecedent) data
instances and the positive and negative Y (consequent) reference instances, respectively. If only
one mutually-exclusive binary training set is provided, the ®% index can be reduced to the measure
known as the Charade/Ganascia index proposed by [36] or descriptive confirmed-confidence, as renamed
by [37]. The ENDI confidence measure % is analogously defined as ®% by substituting the frequencies
f* and f~ with the empirical probabilities p™ and p~ calculated as p* = f*/NT andp~ = f~ /N,
with N*, N~ denoting, respectively, the numerosity of the positive and negative training samples. The
ENDI confidence measure dD‘]’_:b is defined as the median decision between the CD‘}_: and the QD% indices,
DY = (B + DY) /2
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With the balanced distribution of the target class (foreground information to be detected in the
image data) and its inverse (the background), the different formulations of the ®%, CID?5 and @%b indices
will produce the same or very similar results. They will diverge for increasing unbalance on the classes’
appearance. In particular, assuming the target class referring to the foreground information is very rare
in the specific data under analysis, the ®% index will provide a very conservative decision function,
minimizing commission error, while on the opposite side, the ®% index will provide a very optimistic
decision function, minimizing the omission error. The ® index provides an intermediate solution of
compromise in the case of an unknown prior distribution of the target class.

2.3. Computational Complexity

In this section, m denotes the number of data instances/examples/observations, n the number of
features/dimensions/variables, v the number of distinct values per variable, v<<m (for simplification
reasons, we assume v = v;,j =1,...,nand V = H}Ll v;) and | Y| the number of classes. The total time
complexity for the SML training is composed of: (1) the taxonomy of the dataset values; and (2) the
data frequencies’ computation, giving a cost of O(m-n). The brute-force approach yields a worst-case
upper bound of order O(m?-n). However, in satellite imagery, the practical dynamic range is reaching
the level of 16 bits at most; in addition and after the taxonomy application, the range of values can
be reduced considerably. Exploiting techniques like bit arrays and hash tables, a pragmatic time
complexity can reach the order of ® (v"), with integer v < 65,535. In terms of memory requirements,
the worst case scenario is realized when all of the data instances of the initial dataset are unique,
O(m-(n+1Y|)); the extra structure of size (m-|Y|) contains the occurrences of every unique data
instance observed in each of the classes. According to the previous analysis, the pragmatic space
complexity is © (|Y|-v"). At the classification stage, a new n-datum receives a score based on its
frequency in every class and gets a class label depending on the threshold applied over the score,
resulting in O(|Y]); there is also an additional cost O(V-n) to match the n-datum with an element of
the unique data instances matrix, a cost that becomes O(1) in the case of hashing; the space complexity
remains the same, O(|Y| -0").

2.4. Critical Remarks

There is a sharp difference in the way SML and other formal machine learning techniques are
operating. With the standard classifiers, there is a small, representative training set over which the
model is being adapted (divided often into the training and validation set) and a different testing set
where the generalization capacity of the model is tested. The hypothesis for the training set is that
it represents at the micro-scale the ideal partitioning of the complete universe of events. SML as it is
employed in RBRSDS directly encounters the complete universe of events in the following way:

e Dejure, X and Y cannot be associated directly due to their dissimilarity in terms of their spatial
scale. The reference set Y is downscaled (usually via a brute force interpolation technique, like
nearest neighbor) to match the finer spatial resolution of the X set; in that way, every member of X

obtains an approximate class label.
o Instead of sub-sampling the initial dataset, adapting a classification model to the subspace and then

generalizing back on the initial dataset, SML is using associative analysis in order to identify the
strong (confident) relationships between X and Y; in fact, SML re-classifies/corrects the reference
set Y or, putting it in another way, it downscales the low resolution reference set in a more
sophisticated and robust way.

3. Practical Considerations: An Application of Land Cover Mapping

In this section, an example of the application of SML information extraction is provided. The
purpose is purely demonstrative and didactic. Figure 2 shows the selected data sample in an RGB
“false-color” composite image. The selected data sample was available through the Copernicus
program [38].
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The data were collected in 2012 by the Spot 5 satellite that is equipped with a panchromatic and a
multispectral sensor (supporting 2.5 and 10 m of spatial resolution, respectively), covering the towns
of Pisa and Lucca in the Tuscany region of Italy. The images were available as pan-sharpened products
with three multispectral channels (green, red and near infrared) sharpened at the resolution of the
panchromatic one. No detailed metadata regarding the pre-processing procedure, including the exact
parameters used for image data calibration and pan-sharpening, were available at the time of the test.
De facto, this would have prevented the application of any physical-deterministic information retrieval
tasks. In this showcase, the image data are ingested as-is in the feature extraction and classification
processes. The rules linking image features to the target information are discovered by automatic
inference in the SML procedure.

10°25'0"E 10°30'0"E

Figure 2. The Spot 5 input image employed in the example, in an RGB “false-color”
composite representation (the marked zone from the bottom right corresponds to the area presented in
Figure 3).

Morphological multiscale and radiometric image descriptors have been used as input for the
SML showcase in the example. A brief description of their derivation follows. A luminance channel
Xjum Was calculated as the point-wise maximum of the red and green visible channels xjym = Xr V Xg.
The luminance xj,;, Was used as the input of a multi-scale morphological decomposition based on
the characteristic saliency leveling (CSL) model [39]. The CSL model used lambda = [0, 80, 800, 8000]
pixels corresponding to the scales of 0, 500, 5000, and 50,000 m?2, with 2.52 = 6.25 m? to be the surface
of the pixel. Thus, the sequencing was made using six image descriptors: three of them derived from
the CSL and the other three from the radiometric information stored in the green (G), red (R) and near
infrared (NIR) image channels. The characteristic (C) layer of the CSL was not quantized, because
it has inherently a symbolic representation, coded in seven symbols (3 + 3 scales in the concave and
convex signal domains, plus the flat code 0). The saliency (S), leveling (L), G, R and NIR layers were
quantized into eight levels.
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Figure 3. The SML classification. Top: input data in “false color” composite; center: classes of
the reference set extracted from the CLC source at a 100-m spatial resolution: water (blue), generic
forest (green), generic urban (white) and other (black); bottom: result of SML classification at a 2.5-m
spatial resolution.

The high-abstraction semantic layer Y used in the example as the reference set was derived from
the Corine Land Cover (CLC) 2006 database (available at http://www.eea.europa.eu/data-and-maps/
data/clc-2006-vector-data-version-3). The data were accessed at 100 m x 100 m of spatial resolution.
As already mentioned in the Introduction, this is the typical scenario of the SML classifier. A redundant
description of the same land surface is provided by different geo-spatial information sources. The link
between the two sources is exclusively the spatial encoding. No harmonization of scale and thematic
contents is postulated for the exercise. In this showcase, the image features extracted from the Spot 5
data to be classified and the classification of other satellite data embedded in the CLC final product
are available and are describing the same land surface. CLC is considered a proxy of the information
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contained in the Spot 5 satellite image that must be detected. This proxy describes the whole universe
of data with a given abstract thematic content (in both spatial and temporal domains). In this example,
the spatial scale difference between the two sources is equal to 1002/2.5? = 1600 image samples for
each reference sample, and the temporal difference is six years. In the showcase, the expert selects in
the reference data the positive and negative examples to provide to the SML according to the specific
classification needs. After that, the reference data are downscaled via nearest neighbor interpolation
to reach the spatial resolution of the input features. Then, the machine automatically analyzes the
relationships between the data instances (sequences) and the reference instances through association
analysis and calculates the ENDI measure that may be used for the classification purposes.

For the purpose of this example, the original Y. encoding (Corine Land Cover Legend
http:/ /sia.eionet.europa.eu/CLC2006/CLC_Legeng.pdf) was re-coded into eight classes according
to the classes grid codes (z) as follows: clc_water = {z:z € N,40 < z <50}, clc_agri ={z:z €N,
12 < z < 22}, cle_forest = {z : z € N,23 < z < 25}, clc_broadl = {23}, clc_conifer =€ {24},
cleurban = {z : z € N,1 < z < 9}, clc_indu = {z : z € N,3 < z < 5}, cle_res = {z :
z € N, 1 <z <2}, C = clc_water U clc_agri U clc_forest U clc_broadl U clc_conifer U clc_urban U
cle_indu U clc_res.

3.1. On Sequencing

Figure 4 shows the quantization sequencing obtained in the data example: for each row (in total,
2268 rows in the figure), the values of the input features and of ®f for the selected land cover classes
are represented column-wise. In this case, the ENDI ®} measure is used; analogous observations can
be derived from the ®% and ®¥ indices. From left to right, the first six columns represent the input
image features: (1) the morphological characteristic C; (2) the saliency S; and (3) the leveling L; and
the spectral bands: (4) green G; (5) red R; and (6) near infrared NIR. The data sequences are the rows
consisting of the values of these first six columns. The next columns show the values of ENDI for each
sequence, measuring the association between the image data instances and eight different CLC classes:
water (7); agricultural (8); generic forest (9); broad-leaved forest cover (10); coniferous forest cover (11);
generic urban (12); industrial areas (13); and residential areas (14). The used color code rises from black
(lowest level) to dark-red (highest level). The color map was applied per column; that means, there
is not a straightforward connection between the colors of adjacent columns. The coding of the first
six columns denotes the quantized values of the input features, while for the remaining columns, it
represents the ENDI values.

In general, very sharp boundaries of the ®g can be observed in Figure 4. This means that, in some
cases, very small variations in the image feature values may generate quite large effects on the decision
about class membership based on learned confidences. Such a sharp and detailed behavior of the
decision map is very difficult to obtain using continuous discriminant functions in the image feature
space. It is worth noting that most of the standard classifiers (both parametric and non-parametric)
used in remote sensing postulate the continuity of the discriminant functions: consequently, they are
expected to produce much more simplified or blurred decision boundaries. Some classes (such as
water (7), forest (9), broad-leaved (10) and coniferous (11)) show a more compact & distribution in
the feature space, as compared to agricultural (8) and urban (12), for example, which seem much more
spread in the sequence list and, consequently, in the feature space. This compact distribution can be
explained by the fact that they are pure classes describing almost the same physical characteristics in
the same abstraction, then translated into a specific set of sequences delimiting a compact region in the
feature space. On the other hand, classes, such as agricultural and urban, typically aggregate in the
same abstraction very different physical characteristics, especially if observed in only one arbitrary
point in time, as in the proposed example. Thus, they are translated into a discriminant function
assuming complex and spread patterns in the whole feature space. While the pure classes are relatively
easy to describe with continuous functions, the latter would be much more difficult. Finally, a kind of
complementarity can be observed between the classes: if, in a specific data sequence and in a specific
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class, high ®f values are observed, then the other classes generally show lower ® values. The other
way around also applies. This characteristic allows one to apply the HDI techniques for the estimation
of inter-class separability.

Input features Evidence-based Normalized Difference Index (ENDI)

Figure 4. Sequences obtained using the Spot 5 data and the Corine Land Cover (CLC) reference. From
left to right, the first six columns represent the quantized values of the input image features: (1) C,
(2)S,(3) L, (4) G, (5) R and (6) NIR. The following columns show the ®r values for eight CLC classes:
water (7), agricultural (8), generic forest (9), broad-leaved forest cover (10), coniferous forest cover (11),
generic urban (12), industrial areas (13) and residential areas (14).
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3.2. On Class Separability

The ®¢ can be used to estimate the class separability given a set of data sequences. The more the
classes are complementary regarding their ®f distribution, the more they are separable based on the
specific set of data sequences in use. This principle can be generalized and quantified using the HDI
translated into the data sequences and ®r domains. The HDI between two classes characterized by
their probability density functions is defined as the complement of the ratio between the integral of
the intersection and the integral of the union of the two histogram frequency density functions [21].
The HDI is a number in the range of [0, 1], having the zero value in the case of complete overlapping
of the different probability density functions and the value of “1” in the case of complete separation.
Table 1 presents the inter-class separation capability of the discriminant function as defined by & in
the feature space using the sequencing as shown in Figure 4.

Table 1. Class separability by the histogram distance index (HDI) of the ®F on data sequences generated
from Spot 5 satellite data. Top: mutual class separability based on joint sequencing of morphological
multiscale (characteristic saliency leveling (CSL)) and radiometric image descriptors. Bottom: average
class separability for different sequencing options. CSLRAD joint morphological and radiometric
descriptors; CSL morphological descriptors only; RAD radiometric descriptors only.

al W Aericul 1 Generic Broad Coniferous Generic Industrial Residential
ass ater Agricultural g, oot Leaved Forest  Forest Urban Areas Areas
Water 0 0.9760 0.9482 0.9064 0.9231 0.9740 0.9502 0.9638
Agricultural  0.9760 0 0.9102 0.9604 0.9662 0.6902 0.8701 0.7312
Generic forest  0.9482 0.9102 0 0.7219 0.7581 0.9596 0.9614 0.9434
Broad-leaved 0.9064 0.9604 0.7219 0 0.5809 0.9787 0.9712 0.9674
Coniferous  0.9231 0.9662 0.7581 0.5809 0 0.9814 0.9782 0.9714
Generic urban 0.9740 0.6902 0.9596 0.9787 0.9814 0 0.7122 0.4035
Industrial 0.9502 0.8701 0.9614 0.9712 0.9782 0.7122 0 0.7450
Residential  0.9638 0.7312 0.9434 0.9674 0.9714 0.4035 0.7450 0
Totals F " Aericul 1 Generic Broad Coniferous Generic Industrial Residential
otals Features Water Agricultural g, ot eaved Forest  Forest Urban Areas Areas
CSLRAD
0.8716 0.9488 0.8720 0.8861 0.8696 0.8799 0.8142 0.8840 0.8180
CSL
0.8546 0.9543 0.8327 0.8803 0.8180 0.8188 0.8317 0.8723 0.8289
RAD
0.8542 0.9450 0.8238 0.8714 0.8699 0.8866 0.7915 0.8671 0.7779

The table is produced by calculating the ®¢ HDI values for each pair of CLC classes adopted in
the example. Some class-specific considerations can be extracted from the table. For example, it can
be noticed that the water class is well separated from all of the other classes showing generally high
HDI values, while the agricultural class shows a relatively low separability score with the urban class
(0.6902): this may be empirical evidence of the scattered rural settlement pattern existing in the area
used as an example, and it should be further analyzed for improvement of the specific classification
scheme. Similar considerations can be extracted regarding the other classes and are not included here.

These ®¢ HDI measures can be helpful for the general evaluation of the goodness of the SML
information extraction model, the suitability of the quantization scheme applied and the suitability of
the image features used as input for discrimination of the target classes. Moreover, they can be used in
the feature selection phase for the evaluation of the overall discrimination performances of different
sets of input features. For example, at the bottom of Table 1, the total average HDI inter-class scores
for three alternative sequencing approaches are reported. CSLRAD, CSL and RAD options select
the integrated morphological and radiometric, morphological only and radiometric only features,
respectively. It can be observed that the integrated CSLRAD option appears the best, separating the
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target classes with a total HDI of 0.8716 as compared to the CSL and RAD options that get a total HDI
of 0.8546 and 0.8542, correspondingly, if used separately. Going deeper into the analysis, it could be
interesting to notice that in the data used as an example, the CSL-only sequencing option seems to best
separate the classes related to the urban fabric, while the RAD-only sequencing option works better in
separating coniferous and broad-leaves forest classes. This can be supported by empirical evidence
on known characteristics of the target classes. Urban fabric is made of heterogeneous materials with
various mixing spatial patterns, but it is also made of the structures included in a specific range of
scales (sizes), as compared to the other structures present in the image. Thus, at the input resolution of
the sensor considered in the example, the CSL features better separate them compared to the RAD
ones. On the other hand, broad-leaves and coniferous classes, if observed in only one point in time, are
mostly distinguishable from the background because of their specific radiometric characteristics, and
this is translated into the HDI values of the RAD-only sequencing option. Remarkable is also the fact
that the industrial class is best separated by the integrated CSLRAD sequencing option (0.8840) scoring
better than the CSL-only option (0.8723). This confirms the observation that the specific class is made by
structures having unique morphological characteristics and the explicit reflectance signature generated
by more uniform building practices, compared to the residential and urban classes in general.

3.3. On Classification

Figure 5 shows some examples of the ®¢ mapped to the spatial domain of the image, for some
of the CLC classes discussed here. The left column contains the high-abstraction semantic layers C
(C =), while on the right column, there are the corresponding ®r of the image data sequences. In
the ®f images, the color code is from black (P = —1) to white (&g = +1). In these images, the zero
level of the ®f corresponds to 50% gray. From top to bottom; the reference set and the @ related to
the classes of water, generic forest and generic urban are displayed. From these examples, we can see
that the SML classifier output may significantly contradict the information provided by the reference
set if the evidence collected from the image data sufficiently supports this decision; for instance, thin
water channels and small water bodies have been identified and classified accordingly. Similarly, for
the generic urban CLC class, several scattered settlements, thin structures or open spaces are identified
even if neglected by the reference.

As already introduced, the & output maps report the association between image data instances
and high-level abstraction semantics or supervisory signals. They can be used as input for subsequent
steps of classification in several ways. If a binary classification is required by the specific application,
it can be derived by thresholding the ®r outputs. Both single and multiple-class approaches can be
designed as in [19,20]. A large variety of unsupervised or supervised techniques can be applied when
searching for the optimal thresholding in the single or multiple ®f, but they are not discussed in
this manuscript. In [16], some supervised techniques are introduced and evaluated for classification
accuracy and robustness against noise.

The @ outputs can also be interpreted as memberships to the target classes when using fuzzy
or continuous logic multi-criteria frameworks. A simple application follows: let y. = (®Pg. +1)/2
be the membership to the class ¢ € C = {other, water, generic forest, generic urban} obtained by a
simple linear rescaling of the ®. in the range [0, 1]. Let piwater, H forest, Hurban be the memberships to
the classes water, generic forest and generic urban as estimated using the CLC land cover reference
data and the satellite input data instances sequenced in their morphological and radiometric features.
Let the membership pomer = 1 — (Hwater V 1 Forest V Hurban) be the complement of the union (calculated
as the point-wise maximum) of the three considered class memberships expressing the background
information or the anything else membership class. Then, the class of the data X can be estimated by
maximization of the memberships as: argmax(p., Vc € C).
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Figure 5. The reference images (left) and the respective images of ®r values (right) for water (top),
generic forest (center) and generic urban (bottom) classes.

Figure 6 displays the classification output by considering input data shown in Figure 2.
The applied sequencing uses morphological and radiometric image features, as shown in Figure 4.
The pixels that are classified to the four classes—other, water, generic forest and generic urban—are
represented in black, blue, green and white colors, respectively. The classification was made through
the ranking of their memberships to these four classes and derived from the estimated ENDI values.

Figure 3 illustrates the same classification exercise in a subset of the data corresponding to the
region marked in Figures 2 and 6: (top) the “false color” composite representation of the input data,
(center) the classes used as the reference set for the SML, extracted from the CLC source having
100 m of spatial resolution, (bottom) the output of the classification procedure at 2.5 m of spatial
resolution. The color coding is the same as in Figure 6. We can notice the increased detail of the
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classification output based on image data instances with a finer scale than the land cover data used
as the supervisory signal by the SML. Furthermore, the presence of large fields with bare soil can be
noticed in the input image. In standard classifiers, these targets are often confused with urban surfaces
because of their similarity with the reflectance of roofing materials, road pavements and similar. The
reasons why the proposed approach performs better in the discrimination of complex targets, like
urban surface from bare soil, as shown in the specific example, are: (i) the capacity of SML to include
seamlessly symbolic (morphological multiscale) and quantitative (radiometric multi-band reflectance)
input features permitting the estimation of their joint contribution directly; and (ii) the distribution-free
approach of SML that makes inferences in a pure data-driven way turns out in practice to partition the
feature space effectively and decompose the intermixed signals accurately.

10°25'0"E 10°30'0"E 10°35'0"E

T
e Kilometers

43°52'0"N 43°52'0"N

43°48'0"N

43°48'0"N

43°44'0"N

10°250°E 10°30'0"E 10°350°E
Figure 6. The classification result when considering the following target classes: water (blue), generic
forest (green), generic urban (white) and other (black).

4. Conclusions

A new method for supervised classification of remotely-sensed data was presented by
analogy with the classification techniques used in bioinformatics and genome expression analysis.
The method is defined in the frame of symbolic learning, and it is based on two main steps
(i) data quantization-sequencing; and (ii) association analysis. In the application presented here, the
quantization-sequencing process employs a uniform quantization, and it is independent from
assumptions about specific statistical distributions. These choices allow the increase of computational
efficiency and classification performance. The association analysis quantifies the associations between
multi-attribute data sequences and available high-abstraction semantic layers used as a reference.
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The quantification takes place through ENDI (evidence-based normalized differential index), a new
measure inspired by probability-based objective interestingness measures.

A land cover mapping application of SML techniques to 2.5-m resolution satellite data was
presented, as well. The input image features were morphological multi-scale (CSL) and radiometric
(G, R, NIR) descriptors. A subset of eight classes from the Corine Land Cover (CLC) available at 100 m
of spatial resolution was used as the reference source for the training phase. Some considerations
related to the data sequencing, the class separability and possible options for solving the final
classification step were also presented.

The competitive characteristics of the proposed method for satellite data analytics are briefly
listed below:

e The input data values are treated as symbols and not as numbers, a feature that facilitates the data

fusion with nominal and categorical variables.
e Itis a non-parametric technique. The learning is driven by the data and in particular by the pattern

appearance frequency in each class. This feature facilitates the data fusion of heterogeneous sources

having different statistical distributions that are not known or it is very difficult to approximate.
o The workflow is controlled by very few, easily tunable parameters and can be modulated effortlessly

and smoothly to any low to moderate computing machinery.
e The algorithm’s computational complexity turns out to be adequate in the context of big

data analytics.
o Given a specific quantization parameter set and the same input data, the SML classification

provides a fully automatic and repeatable result.
o The method provides inferential rules easily understandable by humans.

The strength of the SML classifier consists in the fact that it is largely agnostic both with respect to
the statistical distribution of the input data and to the relationships between the image data and the
information to be detected. It can constitute an efficient candidate for large-scale processing that runs
smoothly within the big data context [17]. Furthermore, it has proven to be robust and able to extract
complex information in the presence of noisy reference sets [16].

Finally, it is worth noting that the last two items of the list above (full repeatability and easy
interpretation of the detected rules) facilitate the use of satellite-derived information products in
evidence-based decision support processes.

On the other hand, weak points related to the new method as proposed in this manuscript are
related to the combinatorial nature of the approach. The risk of over-fitting the data increases by
augmenting the number of features or by increasing the length of the data sequences. A trade-off
between the number of features and the number of encoded symbols must be taken into account
in order to avoid such risk. Another weak point is its dependence on the quality of the data. Even
if experiments exhibit a good level of robustness against noisy data, the fact that the inferences are
drawn through a pure data-driven mechanism makes the validation of the results complex. Mitigation
measures can be taken to reduce this risk by including tests on class separability based on observation
of @ distributions and by including knowledge-driven reasoning in the general classification design,
as proposed, for example, in [19].

The next interesting research topics related to SML classifier will be the testing of inter-scene model
transferability and generalization, the development of adaptive feature selection and quantization
sequencing techniques, the testing of alternative measures in the association analysis phase
and the experimentation with supervised and unsupervised thresholding techniques and other
classification indices.
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