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Abstract: Landslides are one of the most destructive geo-hazards that can bring about great threats
to both human lives and infrastructures. Landslide monitoring has been always a research hotspot.
In particular, landslide simulation experimentation is an effective tool in landslide research to obtain
critical parameters that help understand the mechanism and evaluate the triggering and controlling
factors of slope failure. Compared with other traditional geotechnical monitoring approaches, the
close-range photogrammetry technique shows potential in tracking and recording the 3D surface
deformation and failure processes. In such cases, image matching usually plays a critical role in stereo
image processing for the 3D geometric reconstruction. However, the complex imaging conditions
such as rainfall, mass movement, illumination, and ponding will reduce the texture quality of the
stereo images, bringing about difficulties in the image matching process and resulting in very sparse
matches. To address this problem, this paper presents a multiple-constraints based robust image
matching approach for poor-texture close-range images particularly useful in monitoring a simulated
landslide. The Scale Invariant Feature Transform (SIFT) algorithm was first applied to the stereo
images for generation of scale-invariate feature points, followed by a two-step matching process:
feature-based image matching and area-based image matching. In the first feature-based matching
step, the triangulation process was performed based on the SIFT matches filtered by the Fundamental
Matrix (FM) and a robust checking procedure, to serve as the basic constraints for feature-based
iterated matching of all the non-matched SIFT-derived feature points inside each triangle. In the
following area-based image-matching step, the corresponding points of the non-matched features
in each triangle of the master image were predicted in the homologous triangle of the searching
image by using geometric constraints, followed by a refinement course with similarity constraint
and robust checking. A series of temporal Single-Lens Reflex (SLR) and High-Speed Camera (HSC)
stereo images captured during the simulated landslide experiment performed on the campus of
Tongji University, Shanghai, were employed to illustrate the proposed method, and the dense and
reliable image matching results were obtained. Finally, a series of temporal Digital Surface Models
(DSM) in the landslide process were constructed using the close-range photogrammetry technique,
followed by the discussion of the landslide volume changes and surface elevation changes during the
simulation experiment.
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1. Introduction

Landslides are one of the most destructive geo-hazards in mountain regions that can lead to great
threats to human lives, as well as infrastructure damage in a very short time [1–8]. This trend is likely
to worsen in the future with the development of urbanization and economics, deforestation, and the
increased regional rainfall in landslide-prone areas [9]. Therefore, landslide monitoring and prediction
has always been drawing great attention in both the engineering field and research community [10–17].

Generally speaking, landslides are usually triggered by some disastrous natural events (e.g., a
great earthquake happening within a few seconds that brings tremendous damages, and a long period
of heavy rainfall resulting from atrocious weather) or violent human activities (for example, excavating
mountains using explosive when building a road or building) [18–23] with limited monitoring
conditions, making it very difficult to get the real-time monitoring data for an in situ monitoring
system during a typical landslide collapse process, thus reducing the feasibility in mechanism research
of the landslide failure event [24]. Sometimes an in situ monitoring system may record continuous
data for very long time with no landslide happening, but the system could stop working under
harsh weather conditions just before the landslide occurs. In this situation, the landslide simulation
becomes a useful approach for obtaining critical parameters by allowing different types of monitoring
sensors to work continuously during the landslide failure events in an controllable environment,
being an important complement in landslide research [25–29]. The landslide simulation platform
also provides the possibility of employing photogrammetry, a non-contact and fast surface recording
and reconstruction technology, in landslide research. The close-range photogrammetry in a landslide
simulation can track and record the geometric deformation processes before and during the landslide
failure event, providing an important input for understanding the landslide mechanism and evaluating
the effects [30–32].

Image matching is a critical component in the stereo image processing to obtain the 3D information
from image space, and this problem has long been studied in both photogrammetry and computer
vision [33–35]. A number of algorithms have been proposed on stereo image matching in different
aspects [36–43]. Lhuillier and Quan [44] proposed a quasi-dense matching algorithm between
images based on the match propagation principle with discrete 2D gradient disparity limit and the
uniqueness constraint. Furukawa and Ponce [45] implemented stereopsis as a match, expand, and filter
procedure enforcing local photometric consistency and global visibility constraints. Zhu and Deng [46]
used gradient orientation selective cross-correlation excluding the wrong points from correlation to
image matching. Stentoumis et al. [47] provided an accurate dense matching using a local adaptive
multi-cost approach, typical in hierarchical matching. Zhu et al. [48] and Song et al. [49] proposed a
propagation-based stereo-matching algorithm. The former was under the dynamic triangle constraint;
the latter constructed a line segment region for each pixel with local color and connectivity constraints.
Stumpf et al. [50] used the algorithm implemented in Co-registration of Optically Sensed Images and
Correlation (COSI-Corr) [51], which is based on phase correlation in the frequency domain, to achieve
sub-pixel image correlation. These methods work very well on stereo images with good texture and
can get dense matches, but only sparse conjugate points could be obtained for poor-texture images.

Recently, the Semi Global Matching (SGM) algorithm was proposed by Hirschmuller [52] and was
first employed in HRSC Mars Express images, as well as in structured environments [53,54], for stereo
matching before it was widely used in the computer vision society. As a dense image-matching
algorithm, SGM has been applied to aerial full frame images and aerial pushbroom images in
densely-populated regions for 3D reconstruction [55], high building roofs and facades for 3D
models [56], as well as high-resolution satellite images for high mountain and glacier mapping [57].
This algorithm has now been extended in many aspects including hardware implementation
(CPU/GPU/FPGA) for real-time 3D mapping and navigation purposes [58,59].

Some image matching research has also been carried out for poor-texture stereo images.
Wu et al. [60] presented an image matching method by integration of points and edges for dense
image-matching on poor-texture images and good matches were obtained from space-borne, airborne,
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and terrestrial images with poor textures. Chen et al. [61] proposed a line-based matching method in
low-texture area for high-resolution images with a narrow field-of-view camera or a short baseline.
Bulatov et al. [62] used multi-view images and developed a dense matching method supported by
triangular meshes, which is suitable for poor-texture images.

The above mentioned methods are effective for the stereo images with relatively poor textures,
and edge information or multi-view images is essential for the reliable and dense matching in these
methods. For the close-range stereo images obtained from landslide simulation observation (shown in
Figure 1, two stereo image pairs captured by Single-Lens Reflex (SLR) and High-Speed Cameras (HSC),
respectively), it is very difficult to find edge information on the landslide body. In these images, the
landslide mass, itself, composed of soil, sand, and pebbles, shows similar surface characteristics, and
other factors during the imaging process such as rainfall, mass movement, illumination, and ponding
further reduce the texture quality in the regions to be matched, resulting in similar, homogeneous,
low, or no textures. Figure 1a,b show similar or homogeneous textures in the landslide body collected
by the SLR cameras before the landslide failure event. Figure 1c,d present the moment during the
failure event when there are also many blank spots without textures induced by the reflection of water
areas, which usually result in ambiguities during the matching process. Commercial software usually
fails when doing dense image matching for this kind of images. For example, PMS (PhotoModeler
Scanner, Vancouver, BC, Canada) [63] is a renowned software known for close-range image analysis
and applications, but it requires images with good texture, and the matching result is not satisfactory
for poor quality images. In this case, the exiting matching methods and software cannot generate
good matches, and a new matching method is needed for effective image matching of the close-range
landslide simulation images.
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Taking SLR stereo image pairs as an example, the overall workflow and the respective principles are 
depicted in this section to help readers understand the details. In Section 4, the SLR and HSC stereo 
image series are processed for image matching and the matching results are evaluated. In Section 5, 
the Digital Surface Model (DSM) series are first generated, then the experimental results obtained by 
the close-range photogrammetric systems are reported before and during the landslide slope failure 
process, including the landslide volume change analysis and the surface elevation changes. Section 6 
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Figure 1. Examples of stereo images with poor texture in landslide simulation. Note: the red boxes
represent the Ground Control Point (GCP) marks. (a) left image of the SLR stereo pair; (b) right image
of SLR stereo pair; (c) left image of the HSC stereo pair; and (d) right image of the HSC stereo pair.

This paper presents a multiple constraints-based robust matching approach for poor-texture
close-range images in simulated landslide monitoring, as well as imaged landslide surface changes
caused by slope failure process. The proposed image matching approach includes two steps,
feature-based image matching mainly constrained by triangulation, and area-based image matching
confined by triangulation, regional Perspective Transformation (PT), and Epipolar Line (EL).
The landslide simulation platform and experiment is first introduced in Section 2. The methodology is
then presented in Section 3, including feature extraction and the two-step image matching process.
Taking SLR stereo image pairs as an example, the overall workflow and the respective principles are
depicted in this section to help readers understand the details. In Section 4, the SLR and HSC stereo
image series are processed for image matching and the matching results are evaluated. In Section 5,
the Digital Surface Model (DSM) series are first generated, then the experimental results obtained by
the close-range photogrammetric systems are reported before and during the landslide slope failure
process, including the landslide volume change analysis and the surface elevation changes. Section 6
gives the discussion. Finally, Section 7 describes the conclusions.
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2. Landslide Platform Set Up and Simulation Experiment

In this study, a scaled-down simulation platform was constructed on the campus of Tongji
University in Shanghai, China, to reproduce a landslide-prone slope near the small town of Taziping in
Sichuan Province, Western China, where the 2008 Wenchuan Earthquake left great threats of susceptible
landslides due to the loose soil layers afterwards [27], shown as in Figure 2. The dimension of the
landslide body was 6 m ˆ 1.5 m ˆ 3 m (length, width, and height), with three slope sections featuring
inclinations of 30˝, 15˝, and 5˝. For real-time monitoring and early warning purposes, this platform
was designed and implemented to include an artificial rainfall system, a sensor network, a subsystem
for data collection and communication, a data server for storage, and a screen panel for visualization,
for more details readers can refer to Qiao et al. [27] and Lu et al. [64].
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Figure 2. Landslide simulation platform used for collection of HSC and SLR stereo images. Note:
(a) installation of the stereo camera systems on the landslide simulation platform; and (b) side view of
the landslide simulation platform geometry.

The sensor network contains contact sensors that were installed in the landslide mass and used
to record the environmental conditions to derive the geotechnical parameters of the landslide body,
and the detailed research and discussion in this aspect can be found in [28,64]. On the other hand,
the non-contact/imaging sensors (cameras and video) capture the geometric changes in the slope
surface during a simulated landslide deformation process. A stereo pair of NIKON D200 SLR cameras
was deployed to collect the landslide surface changes during the entire simulation experiment at a
relatively low frequency (a few seconds). To interpret the transient slope-failure process in detail,
a HSC system, composed of a pair of synchronized DALSA Falcon 4M60 high-speed cameras that
can capture images at high frequency (up to 62 Hz) with a synchronization accuracy of 0.1 ms, was
employed. The cameras are designed mainly to capture the surface movement of the landslide body,
and the locations of both the cameras and the waterway are restrained by the experiment site. In the
landslide simulation experiment, the total amount of rainfall is huge, so the waterway is designed
with holes (see Figure 2) to filter the water and guide the landslide mass to a designated area; thus, it
has very little influence on the landslide process.

A set of well-distributed marked points (shown in Figure 1) that were fixed on the facility and
measured by a total station were employed as GCPs to provide reference for recovery of the orientation
parameters of the camera systems.

In this experiment, the SLR camera system was employed to record the entire landslide process
from 12:25:00 to 14:50:00 at a frequency of 6 frames/min, and a total of 737 stereo image pairs were
obtained. During the final failure event at 14:27:22, the low-frequency SLR camera system was unable to
capture the detailed changes that occurred within only a few seconds, and the HSC system was started,
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and a total of 95 stereo image pairs were captured at a frequency of 20 frames/s. The experiment
settings of the two stereo camera systems are listed in Table 1.

Table 1. Parameters of the stereo camera systems in the landslide simulation experiment.

Items SLR Camera HSC Camera

Sensor CCD CMOS
Image size (pixel by pixel) 2896 ˆ 1944 2352 ˆ 1728

Focal length (mm) 35.0 20.0
Starting time 12:25:00 14:27:22.000
Ending time 14:50:00 14:27:26.750

Camera frequency 6 frames/min 20 frames/s
Number of image pairs 737 95

Examples of the stereo images with poor-texture collected during the landslide simulation
experiment are shown in Figure 1.

3. Methodology

Figure 3 illustrates the workflow of poor-texture close-range image processing proposed in this
research. It is composed of two parts, the image geometry determination part before the simulation
experiment (shown as green box in Figure 3) for 3D geo-referencing of the close-range photogrammetric
systems, and the image processing and matching part (shown as blue box in Figure 3) for surface
modeling during the landslide simulation experiment. Before the experiment, camera calibration is first
performed and the GCPs are set up and measured for determination of Internal Orientation (IO) and
External Orientation (EO) elements, which will be further employed in the process of image matching
and 3D point calculation. After the landslide experiment, Scale Invariant Feature Transform (SIFT)
algorithm is first applied to the poor-texture close-range stereo images for feature extraction, and then
the images are processed for the two-step matching procedure, namely feature-based image-matching
and area-based image matching; finally, the 3D points are obtained with orientation parameters (IOs
and EOs) and a DSM is generated.
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At the very beginning, the camera calibration was carried out by PMS Software using the markers
automatically identified from the calibration plates, and the initial IOs were then obtained using a
self-calibrated bundle adjustment. The GCPs were pasted on the steel framework of the simulation



Remote Sens. 2016, 8, 396 6 of 24

platform, shown in Figure 1 as the red box. The GCP coordinates in object space were determined
by a Sokkia total station with an accuracy of ˘1 mm, and those in image space were measured in
PMS. The IOs and EOs were finally solved and refined simultaneously using PMS. In the following
sub-sections, the multi-constraints based robust matching approach is described in detail based on a
randomly selected SLR stereo image pair (Figure 1).

3.1. Feature Extraction

The feature points are needed for the image matching step and the feature extraction method is
very important for the generation of dense point matching results. Here, we compared the performance
of three commonly used feature extraction operators: SIFT, SURF, and STAR [37,65–68]. After trial and
error, the maximum number of detected feature points of each method with the best settings is listed
in Table 2, from which one can observe that the SIFT operator generates the most features. In fact,
visual inspection also shows that the SIFT detector generated feature points everywhere, whereas
other operators did not. So the SIFT operator was applied to the entire landslide body region and large
amount of feature points (48,735 in left image and 21,548 in right image, respectively) were extracted
from the stereo image pair, illustrated as Figure 4. Here, the difference of number of extracted features
is mainly caused by the image quality. Compared with the left image, the right image is more blurred
due to the imaging conditions. This large number of feature points is enough to provide the seeds
for the image matching in the landslide simulation application. The next step is to match the feature
points through the feature-to-area matching process.
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Figure 4. Feature points extracted by the SIFT operator in the SLR stereo image pair . Note: each point
is a red dot, and the total numbers are 48,735 (a) and 21,548 (b), respectively.

Table 2. Comparison of detected feature points using different feature detection methods. Note: the
HSC stereo image pair here is the same as that in Section 4.1.

Camera Type Selected Image
Number of Detected Features

SIFT STAR SURF

SLR
Left 48,735 7049 23,694

Right 21,548 3182 19,609

HSC
Left 34,759 4146 28,479

Right 43,412 5750 20,907

3.2. Feature-Based Image-Matching

Figure 5 shows the flowchart of the feature-based matching process. In the first-level feature-based
matching, the feature points derived from SIFT operator were matched by using the SIFT descriptor
along the EL, followed by Fundemental Matrix (FM) filtering and robust checking process to distinguish
the matched features and mismatches. Due to the poor and similar textures in the landslide body
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region, the SIFT descriptor is not capable of producing satisfying dense matches in a relatively large
region [69,70], so more specific geometric constraints should be provided. A triangulation process was
then performed based on the matched feature points to serve as the basic constraints, and for all the
non-matched SIFT-derived feature points inside each triangle, the second-level feature-based matching
result was obtained using the same matching and refinement strategy (SIFT operator, FM filtering, and
robust checking) as that in the first-level process. The triangulation process was performed for all the
refined matched feature points of the first- and second- levels feature-based matching, and a new level
of feature-based matching will then be iterated. During this procedure, the number of refined matched
feature points will be growing gradually to serve as the feature-based feature matching result, and this
process will continue until the threshold of the triangle sizes is satisfied.
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According to the EL principle, in stereo vision, for each point observed in one image, the
corresponding point must be observed on the corresponding EL in the other image determined
by the orientation parameters [71,72]. For each of the SIFT feature points in left image, the SIFT
descriptor was used for matching along the corresponding EL in the right image that was calculated
by the IO and EO parameters. Here, the distance between the corresponding point and this EL was
defined to be two pixels, considering the possible orientation errors induced by GCP measurement
and camera calibration. After this process, the SIFT matches were obtained and the outliers were then
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filtered out by the FM that relates the corresponding points in stereo images. In computer vision, the
FM F satisfies the condition that for any pair of corresponding points x Ø x1 in the two images [72]:

x1T Fx “ 0 (1)

In this research, F can be estimated by the known IO and EO parameters of the stereo images [72].
The result of SIFT matching and mismatches filtering is presented in Figure 6, where all the points in
the green quadrangle (Figure 6a,b) were the initial matched features by the SIFT operator along EL.
The pseudo corresponding points in Figure 6 were first filtered out by FM. In view of the orientation
errors, the left part of Equation (1) x1T Fx with normalized point coordinates for x and x’ was set to
be less than 0.01 during the filtering process. The SIFT matches that do not satisfy condition will be
regarded as mismatches and will be filtered out, shown as the blue points in Figure 6 (LB and RB).
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The next step is to refine the matched feature points using more robust constraint, such as a
selected matching cost function. A Normalized Correlation Coefficient (NCC) [71] was employed to
examine the similarity of the matched feature points. Compared with other matching cost functions
such as Sum of Absolute Difference s (SAD) and Census, NCC is statistically optimal for dealing
with Gaussian noise [73] contained in the landslide simulation images. For each pair of matched
feature points in the two images, NCC was calculated with a window size of 17-pixels by 17-pixels.
The threshold of the NCC was set to 0.65, relatively low due to the fact that the candidates had been
refined by FM. The yellow points in Figure 6 (LA and RA, LB and RB) are the pseudo corresponding
points detected using NCC with the given threshold. It should be noted that, here, the purpose of
FM filtering and robust checking is to remove all the pseudo corresponding points, leaving the real
matches for first-level matching to serve as further constraints, so in this process some of the real
matches may also be removed due to the rigid parameters. The remainder after this process are marked
as red points in Figure 6.

The first-level refined matched feature points were then triangulated using the Delaunay
criterion [74] for further matching. Figure 7 shows the Delaunay triangulation result of the first-level
matched features. For each triangle satisfying the size requirement (for example, the yellow triangle
in Figure 7), the second-level feature-based matching process was performed, during which all the
none matched SIFT feature points were refined using the same matching-filtering-robust checking
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procedure as the first-level process. The triangle size requirement mainly relates to the lengths of its
edges, for computation efficiency, we define two thresholds of the image coordinate differences in
X and Y directions, respectively (here both five pixels), for every two of the three vertices. Only the
triangle with all the coordinate differences larger than the corresponding thresholds will be employed
for the next-level feature-based matching.
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The matching-filtering-robust checking process was iterated to obtain as many matched features
as possible, at each iteration, all the refined matched feature points were used for triangulation for
next level matching process. This process ended when no triangle meets the size requirement. In this
way, the feature points in the landslide body can be sparsely matched, the result of which is presented
in Figure 8.
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3.3. Area-Based Image-Matching

Generally, a large collection of local feature points could be generated from an image by the
SIFT algorithm, and these feature points are good candidates for feature matching to produce DSM.
During the feature-based matching step, only part of the corresponding feature points from SIFT
algorithm in the stereo pair were correctly matched. The area-based image matching step here
is to try to match the remaining none-matched features by using a multiple-constraints assisted
matching method.

Figure 9 shows the flowchart of area-based image matching process for both the left and right
images (see the rhombuses). In this process, the sparsely-matched feature points derived from
Section 3.2 were first triangulated using the Delaunay principle in the stereo image pair, respectively.
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Then, the area-based image-matching procedure was implemented for both the right image and left
image, shown as the blue and red boxes in Figure 9. In each situation, the master image and searching
image were first determined, and the corresponding points of the non-matched feature points in each
triangle of the master image were then predicted in the homologous triangle of the searching image by
using geometric constraint, followed by a refinement course with a similarity constraint and robust
checking. Finally, the repeated matches were removed by using a redundancy checking procedure,
and the area-based matching points were then obtained.Remote Sens. 2016, 8, 396 10 of 24 
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This area-based image-matching algorithm is essentially an area-based correspondence approach
assisted by multiple constraints for the matching of non-matched feature points in each triangle of
the master image. Figure 10 shows an example of the area-based image matching process, in which
the left image is the master image and the right image is the searching image, and here only the
sparsely matched features are plotted out as red dots in the green boxes for visual effect, followed
by a triangulation procedure that generates triangles as basic constraints [48]. Figure 10A,B illustrate
the details of the area-based matching process for the non-matched feature points within a triangle
(with yellow edges). For a feature point Pm in the master triangle, the region containing the conjugate
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point in searching triangle is first predicted by using geometric constraints including EL and PT.
Theoretically, the conjugate point Pc should lie on the EL L derived from the orientation parameters of
the two images. Additionally, Pm and its corresponding point should also follow the PT principle [75]
that can be realized by the existing sparsely-matched feature points. In this study, the PT matrix [72]
between Pm and its corresponding point is determined by six corresponding feature points including
the three vertices of the corresponding triangle and the vertices of the three triangles that connect
with the corresponding triangle. The predicted conjugate point by PT is Ppt, the projection of which
to the EL is Pp, shown in Figure 10C. The searching window for corresponding point of Pm is then
determined as the rectangle in Figure 10C with Pp as its center, one side parallel to L, with a given
side length (here 10 pixels). After applying the geometric constraint, the searching area for a matching
point is restricted in a reasonable searching window, improving the matching reliability and efficiency,
followed by the similarity constraint with NCC to determine the corresponding point. NCC is, thus,
estimated between feature point Pm and each pixel within the searching window (rectangle) with a
given window size (here also 17-pixels by 17-pixels), and the point corresponding to the maximum
NCC value is then obtained. The corresponding point of Pm can be determined if the maximum
NCC is larger than the given threshold (here is set to 0.78, larger than that in feature-based matching
process according to the related reference [76] and manual interactive checking of the matching results),
shown as Pc in Figure 10C. After that, a robust checking step was applied by bilateral matching that
inversely determines the matching point of Pc in the previous master triangle (Figure 10A) using the
same geometric and similarity constraints as described above, to check whether the matching result
is Pm, which helped to remove the erroneous matches and enhance the robustness of the area-based
matching result.
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The area-based image-matching procedure was implemented in both the left image and right
image by switching the master image and searching image which, on one hand, produced as many
densely matched points as possible, and on the other, generated some repeated matches. A redundancy
checking procedure was applied to remove the reduplicate matched points for those within one pixel
difference. The final area-based matching result was then obtained, shown as in Figure 11.
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4. Results of Image Matching

In this paper, the landslide surface deformation description and analysis during the simulation
process recorded by the stereo images using the proposed methodology was focused on. The landslide
surface changes mainly appeared before and during the failure process, and there were no obvious
changes occurred afterwards, so in this research we will only process and analyze the 568 SLR stereo
image pairs acquired before the final failure event (12:25:00 to 14:27:20, hereafter the pre-failure
stage) and 95 HSC stereo image pairs recorded during the failure process (14:27:22:000 to 14:27:26:700,
hereafter the failure stage).

4.1. Image Processing for Stereo Image Series Recording Landslide Simulation Experiment

The low-quality landslide images were first preprocessed by using image enhancement techniques,
such as a Wallis filter [77], in the landslide region to enhance and sharpen the texture patterns and
increase the signal-to-noise ratio. The proposed image matching approach was then implemented on
the stereo SLR and HSC image series to produce matched points. Figure 12 gives an example of the
area-based image matching result for a pair of HSC stereo images.
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cameras (35.0 mm vs. 20.0 mm, 75% larger) can help to capture more details in the landslide surface 
compared with HSC cameras, although the distance to the landslide platform is a bit longer for SLR 
cameras than that of HSC cameras; and (3) more importantly, the images taken by SLR cameras are 
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flow, while the images captured by HSC cameras in landslide failure process are more inclined to be 
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matched points from SLR image series goes down towards the occurrence of the landslide failure. 
Nonetheless, the almost evenly-distributed matched point pairs generated by the proposed 
approach meet the requirement of landslide surface monitoring in the simulated experiment. 

Figure 12. Example of area-based image matching for a pair of HSC stereo images. Note: (a) original
HSC image pair; (b) SIFT features (23,250 points in the left image and 23,583 points in the right
image); (c) feature-based image-matching result (4999 matched feature points); and (d) area-based
image-matching result (17,426 matched feature points).

The area-based image-matching method was employed to the simulated landslide stereo image
series, and the resulting number of matched point pairs for both SLR and HSC images is shown in
Figure 13, from which we can see that there are apparently more matched point pairs from SLR image
series (around 32,000) than those from HSC images (around 15,000). The reason of this difference could
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be summarized as follows: (1) the texture in color images (SLR) are usually easier to be processed and
recognized than that in grayscale images (HSC); (2) the larger focal length of SLR cameras (35.0 mm
vs. 20.0 mm, 75% larger) can help to capture more details in the landslide surface compared with
HSC cameras, although the distance to the landslide platform is a bit longer for SLR cameras than
that of HSC cameras; and (3) more importantly, the images taken by SLR cameras are mostly before
the landslide failure event, with more distinct texture and less influence from debris flow, while the
images captured by HSC cameras in landslide failure process are more inclined to be jeopardized by
the debris flow and water reflection. This is also the reason that the number of matched points from
SLR image series goes down towards the occurrence of the landslide failure. Nonetheless, the almost
evenly-distributed matched point pairs generated by the proposed approach meet the requirement of
landslide surface monitoring in the simulated experiment.Remote Sens. 2016, 8, 396 13 of 24 
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4.2. Evaluation of Image Matching Results

To assess the reliability of the proposed matching method on the stereo image series, the image
matching results are evaluated both qualitatively (distribution and NCC of the matches, see Figure 14)
and quantitatively (manual checking of the matching points).

Figure 14 gives an example of the evaluation of the image matching result, it can be observed
that most of the landslide body surface is covered by the densely-matched point pairs for the SLR
and HSC image, respectively. The total number of matched point pairs for this SLR stereo images
is 32,821, more than the number of feature points extracted in the right image due to the area-based
matching step. It is noteworthy that there are some small regions or spots that are sparsely matched or
non-matched in both SLR and HSC images, mainly caused by the shadows that produced by different
illumination conditions, influence from cables of the underground sensors that are used to collect other
information related to landslide event [27,64], and occlusion of a borehole pressure gauge (the blue
pipe in Figure 11). To further evaluate the image matching result, NCC is calculated for each pair of
matched points with a 17-pixel by 17-pixel window size. The distribution and statistic of NCC are
shown in Figure 14. We can see that the NCC ranges from 0.65 to 1.0, within the thresholds that were
set in the feature-based and area-based matching processes. The NCC histograms of the SLR and HSC
images present similar distribution, indicating the reliability of the area-based matching result.

To evaluate the image matching reliability quantitatively, 10% evenly-distributed matched point
pairs were randomly selected as samples from all the matched points, and visual checking was
applied to examine the correctness of each matched point pair with a threshold of two pixels for the
corresponding points. For the exampled SLR image pair, 3282 (10% of 32,821) matched point pairs
were checked and 51 mismatches were found, showing a correctness of 98.45%; for the HSC image
pair, 1743 (10% of 17,426) matched point pairs were checked and 38 mismatches were countered, a
correctness of 97.82%. This evaluation result shows the reliability of the image matching result in
the experiment.
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different illumination conditions, influence from cables of the underground sensors that are used to 
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Figure 14. Distribution and statistics of NCC of the image matching result for SLR and HSC stereo
image pairs. Note: (a,b) are NCC distribution for SLR and HSC images, respectively, and (c,d) are the
corresponding NCC statistics.

5. Results of Landslide Surface and Volume Changes

This part will mainly analyze the changes of the landslide surface from two aspects, including
landslide volume changes and surface elevation changes.

5.1. DSM Generation

On the basis of the matched point pairs and the corresponding image EOs and IOs, a forward
intersection method [71] is used to calculate the space coordinates, followed by denoising [78] and
natural neighbor interpolation [79] of the point cloud to generate landslide DSM series. Figure 15 gives
examples of the generated DSMs from both SLR stereo images and HSC stereo images, respectively.
Especially, a video clip based on the DSMs from HSC stereo images is generated to depict the
simulated landslide surface changes during the approximate five-second slope failure process (see the
Supplementary File).

Remote Sens. 2016, 8, 396 14 of 24 

 

gauge (the blue pipe in Figure 11). To further evaluate the image matching result, NCC is calculated 
for each pair of matched points with a 17-pixel by 17-pixel window size. The distribution and 
statistic of NCC are shown in Figure 14. We can see that the NCC ranges from 0.65 to 1.0, within the 
thresholds that were set in the feature-based and area-based matching processes. The NCC 
histograms of the SLR and HSC images present similar distribution, indicating the reliability of the 
area-based matching result. 

To evaluate the image matching reliability quantitatively, 10% evenly-distributed matched 
point pairs were randomly selected as samples from all the matched points, and visual checking was 
applied to examine the correctness of each matched point pair with a threshold of two pixels for the 
corresponding points. For the exampled SLR image pair, 3282 (10% of 32,821) matched point pairs 
were checked and 51 mismatches were found, showing a correctness of 98.45%; for the HSC image 
pair, 1743 (10% of 17,426) matched point pairs were checked and 38 mismatches were countered, a 
correctness of 97.82%. This evaluation result shows the reliability of the image matching result in the 
experiment. 

5. Results of Landslide Surface and Volume Changes 

This part will mainly analyze the changes of the landslide surface from two aspects, including 
landslide volume changes and surface elevation changes. 

5.1. DSM Generation 

On the basis of the matched point pairs and the corresponding image EOs and IOs, a forward 
intersection method [71] is used to calculate the space coordinates, followed by denoising [78] and 
natural neighbor interpolation [79] of the point cloud to generate landslide DSM series. Figure 15 
gives examples of the generated DSMs from both SLR stereo images and HSC stereo images, 
respectively. Especially, a video clip based on the DSMs from HSC stereo images is generated to 
depict the simulated landslide surface changes during the approximate five-second slope failure 
process (see the Supplementary File). 

  

 

(a)

  
(b)

Figure15. Selected examples of DSMs from SLR and HSC stereo images. Note: (a) left SLR image and 
DSM at13:40:40; and (b) left HSC image and DSM at 14:27:25:700. 

5.2. Landslide Volume Changes 

To analyze the volume changes at different regions caused by rainfall-induced landslide 
experiment, the landslide simulation platform was divided into three sections based on the slopes, 
sections 1–3. The landslide volume changes at each section was obtained by subtracting the initial 
DSMs at 12:25:00 and 14:27:22.000 for SLR cameras and HSC cameras, respectively, shown in Figure 16. 

Figure 15. Selected examples of DSMs from SLR and HSC stereo images. Note: (a) left SLR image and
DSM at13:40:40; and (b) left HSC image and DSM at 14:27:25:700.



Remote Sens. 2016, 8, 396 15 of 24

5.2. Landslide Volume Changes

To analyze the volume changes at different regions caused by rainfall-induced landslide
experiment, the landslide simulation platform was divided into three sections based on the slopes,
Sections 1–3. The landslide volume changes at each section was obtained by subtracting the initial
DSMs at 12:25:00 and 14:27:22.000 for SLR cameras and HSC cameras, respectively, shown in Figure 16.Remote Sens. 2016, 8, 396 15 of 24 
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Figure 16. Landslide volume changes at each Section during the simulated experiment. Note:
(a) pre-failure process recorded by SLR stereo images; (b) failure event captured by HSC stereo images.

The volume changes at each section before landslide failure are illustrated in Figure 16a. Due to
power issues, there are two data loss periods (13:14:30–13:31:50 and13:52:40–14:02:50), yet this does not
affect the analysis of the landslide change tendency. It can be observed that, in this stage, the landslide
mass changed slightly: Section 2 is reducing, Section 3 increasing, and barely changes in Section 1,
indicating the major changes at the middle and toe parts of the landslide body during 12:25:00 to
14:27:20. Although no collapse occurs, this process has been accompanied by an increase of landslide
sliding energy. With the persistent rainfall and landslide mass sliding, the energy reached its limit and
triggered the collapse event which was recorded by the HSC system from 14:27:22.000 to 14:27:26.700,
and distinct changes in all the three sections were presented in Figure 16b. In contrast to the pre-failure
stage, in this stage the landslide mass in Section 1 reduced rapidly, in Section 3 increased significantly,
and in Section 2 endured a slowly increase manner.

The landslide surface volume at each section in the two stages was also estimated by setting the
reference level at the bottom of the platform (2.5 m). Table 3 shows the landslide surface volume and
volume difference recorded by SLR and HSC cameras. Surface volume changes at each section varied
throughout different stages. Slight changes occurred in thepre-failure process (12:25:00–14:27:20) for
all the three sections. Section 2, serving as the initialization zone that provided input to Section 3, lost
about 0.30 m3 in volume. Significant volume changes substantially occurred in the slope failure process
(14:27:22.000–14:27:26.700). Section 1 lost about 0.84 m3 landslide mass, supplementing Sections 2
and 3. In addition, the volume of Section 3 increased 0.80 m3, indicating the major deposition zone.
A noticeable feature of the surface volume is that there is an extraordinarily huge difference for the
surface volumes of section 1 between 14:27:20 and 14:27:22.000, recorded by SLR and HSC cameras,
respectively. This difference is mainly caused by the different Vertical Field Views (VFVs) of the
two camera systems. As shown in Figure 17, the VFV of SLR cameras is smaller (18˝) than that of
HSC cameras (26˝), resulting in a smaller imaging region and leading to significantly smaller surface
volume in section 1 compared with the HSC cameras.
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Table 3. Landslide surface volume and volume difference recorded by the SLR and HSC cameras.

Item Surface Volume (m3) Volume Difference (m3)

Camera SLR HSC SLR HSC

Time 12:25:00 14:27:20 14:27:22.000 14:27:26.700 12:25:00–14:27:20 14:27:22.000–14:27:26.700
Section 1 3.53 3.53 5.59 4.75 ´0.00 ´0.84
Section 2 2.96 2.66 2.58 2.79 ´0.30 0.21
Section 3 0.18 0.30 0.31 1.11 0.12 0.80

Surface Volume Changes (m3) ´0.18 0.17

Although the change tendency of the landslide mass agrees with the actual process in the
two stages, the calculated overall surface volumes of the landslide mass are not consistent during the
experiment. Table 3 gives the calculated surface volume differences, and it can be seen that in the
pre-failure stage the volume change was negative (´0.18 m3), while in the failure stage it was positive
(0.17 m3). This phenomenon was also caused by the difference of the VFVs of the two camera systems,
as illustrated in Figure 17. In the pre-failure stage, the view of the SLR cameras was obstructed by
the waterway at the landslide toe, resulting in the blind spot in which the shaded region (Figure 17a)
cannot be included to calculate the surface volume; therefore, the surface volume change was negative.
In the failure stage, the reason for superfluous surface volume was that the shaded region in Figure 17b
cannot be included into the surface volume calculation due to the VFV of the HSC system at the
beginning (14:27:22.000) but, in the end (14:27:26:700), this shaded region was added to the surface
volume calculation. Nonetheless, the small volume differences induced from VFVs are not significant
to the surface volume comparison in the experiment.

5.3. Landslide Surface Elevation Changes

This section will describe the landslide surface elevation evolution during the sliding process by
comparison of the DSMs at different times. Since there were no obvious changes in the pre-failure stage,
here we only select two moments to demonstrate, and will pay more attention to the surface elevation
changes in the failure stage. Figure 18 shows the elevation difference series of DSMs generated by
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ArcGIS 10.0 software at 12:58:10 and 13:14:00 compared to DSM at 12:25:00 in the pre-failure stage,
and DSMs at 14:27:22.950 (II), 14:27:23.950 (III), 14:27:24.950 (IV), 14:27:25.950 (V) and 14:27:26.700 (VI)
compared to DSM at 14:27:22.000 (I) in the failure stage. The results showed that in the pre-failure
stage, the sliding surface was partly outcropping at the foot of the slope with slight landslide mass
sliding. Major and rapid sliding processes and sudden surface collapse happened in the failure stage.
The landslide mass in Section 2 first slid into Section 3, and then a large amount of the landslide mass
slid down the slope; meanwhile, the sliding area continued to move upward to Section 1. This process
continued until the landside failure event stopped.Remote Sens. 2016, 8, 396 17 of 24 
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Figure 19. All profiles show clearly that the boundary of sliding area and deposition area was 3.5 m 
far away from the front edge of platform. A loss of material up to 0.5 m in thickness occurred in the 
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Figure 18. Landslide surface elevation changes at some critical moments in the pre-failure and failure
stages. Note: the first row is the pre-failure stage, the second and third rows are the failure stage.
The figures of surface elevation difference are generated via 3D Analyst Tools of ArcGIS 10.0 software
using two DSMs.

To further investigate the surface elevation changes in the failure stage, the elevation profiles of
the center line of the selected DSMs at the six key moments (same as Figure 18) are shown in Figure 19.
All profiles show clearly that the boundary of sliding area and deposition area was 3.5 m far away
from the front edge of platform. A loss of material up to 0.5 m in thickness occurred in the sliding area
(upper part of Section 1), and a large amount of material (up to 0.3 m in thickness) was accumulated
downward the slope. In the end, the landslide toe crossed the barrier of the waterway and rushed out
of the platform.
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6. Discussion

6.1. Comparison with Result of SGM Algorithm

In the landslide simulation experiment, the constantly changing landslide surface makes it very
difficult to obtain transient ground truth of the landslide surface with high-precision using a laser
scanner or other structured light sensor, such as the Microsoft Kinect [80]. Commonly used ground
laser scanners usually generate noise when scanning moving objects, especially for a non-rigid surface,
such as that in the landslide failure process. In contrast, the Microsoft Kinect can record the sliding
landslide surface in 3D with high frequency, but the poor positioning accuracy resulted from the low
image resolution and the short ranging limit constrains its application for ground truth in the setup
of the landslide simulation platform. Thus, we compare the image-matching result in this research
with that from SGM, the commonly used algorithm in stereo computer vision that was employed to
match glacier images with poor texture similar to the landslide surface [81]. SGM performs pixel-wise
matching based on a certain matching cost (such as mutual information or census) [73] and the
approximation of a global smoothness constraint [52]. The comparison is focused on the number and
distribution of the matches, and the reliability of the matching result.

The SGM code employed in this research is from the LibTSgm library developed by the Institute
for Photogrammetry at the University of Stuttgart [82], and can be downloaded freely from their
website [83]. Practical experience has shown that SGM is very robust in different applications and
does not require parameter tuning [81], so here the SGM code is fully automated. The SGM algorithm
was applied to the exampled SLR and HSC stereo image pairs and the image matching results were
obtained. The numbers of matches from the SLR images and HSC images were 1,006,691 and 404,005,
respectively, vastly outnumbering those from the proposed method due to the nature of per-pixel
matching of SGM. The SGM matches are distributed evenly on the landslide surface of the SLR image,
while there was a blank region on the bottom left side of the HSC image, as shown in Figure 20, mainly
caused by the reflection of water areas.

Next, a similar matching reliability evaluation described in Section 4.2 was performed for the
SGM results. Here we randomly selected 2000 evenly-distributed matched points from SLR and HSC
stereo image pairs for visual inspection using the same threshold of two pixels. Results showed that
the correctness of the matching result for SLR and HSC images was 75.70% (486 mismatches) and
70.50% (590 mismatches), respectively. Compared with the correctness rates evaluated in Section 4.2,
we found that the proposed image matching algorithm significantly outweighed SGM method for
both SLR (98.45% vs. 75.70%) and HSC (97.82% vs. 70.50%) stereo image pairs.

From the above analysis, we can see that although the SGM method generates matches much
more as a result of per-pixel dense matching, our proposed method is more robust on the overall
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distribution of matched points and the reliability of the matching result for both SLR and HSC images
in the landslide simulation experiment.
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6.2. Accuracy Evaluation

The geometric accuracy of the detected feature points is very important for the reliable estimation
of the landslide volume and surface elevation changes in the simulation experiment. Taking the HSC
system as an example, the average ground position accuracy of the surface features is estimated in
the following.

The coordinates of GCPs were measured by a Sokkia total station with an accuracy of ˘1 mm.
The estimated accuracy of the EO parameters given by PhotoModeler software for the HSC system
includes: (a) 0.3 mm in the X (horizontal) and Z (vertical) directions, and 0.4 mm in the Y (depth)
direction for the camera center; and (b) 0.006˝, 0.021˝, and 0.018˝ for the orientation angles about
the X, Z, and Y coordinate axes, respectively. The calculated RMSEs of the ground coordinates were
0.9 mm in the X and Z directions, and 1.9 mm in the Y direction. Thus, the ground position accuracy
was 2.3 mm. This estimated accuracy is considered as an internal accuracy that is caused by the EO
parameter errors.

The detected surface features were generally non-structured image features. They were identified
and matched at an estimated accuracy of 0.25 pixels. Given the camera baseline of 1.16 m for HSC
system, and a depth of 5 m from the baseline to the middle of the slope, the computed ground position
accuracy was 0.7 mm in the X and Z directions and 2.8 mm in the Y direction. Hence, the position error
of surface features in the middle of the slope caused by the image feature measurement errors was
3.0 mm. Similarly, we can estimate that this error ranges from 1.1 mm for the closest surface features
to 5.6 mm for the farthest features on the slope. Sicne the surface features changed constantly and
were not accessible during the experiment, no ground truth was available to verify the accuracy of
these moving surface features. Overall, the average ground position accuracy of the surface features
was approximately 3.8 mm, as estimated using the error propagation law from the above-discussed
position error components caused by errors of the EO parameters (2.3 mm), and image coordinate
measurement (3.0 mm) under the assumption that these errors are independent.

In a similar manner, the average ground position accuracy of the surface features detected by the
SLR camera system was approximately 3.2 mm. Considering the dimension of the landslide simulation
platform (6 m ˆ 1.5 m ˆ 3 m), the estimated ground position accuracy of 3.2 mm and 3.8 mm is
sufficient for reliable estimation of landslide volume and elevation changes.

7. Conclusions

This paper presents a novel robust image-matching approach for poor-texture, close-range images,
composed of two steps: multiple-constraints assisted feature-based image matching and area-based
image matching. The SLR and HSC stereo image series in the simulated landslide experiment
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were employed to illustrate the proposed method, and the reliable image matching results were
obtained. Then the corresponding DSM series during the landslide process were constructed using the
close-range photogrammetry technique, followed by the discussion of the landslide volume changes
and surface elevation changes in the simulation experiment.

The research results support the following conclusions:

(1) The proposed multiple-constraints based feature- to area- image matching methodology is
capable of robustly matching the close-range, poor-texture images, obtaining almost evenly- and
densely-distributed matches with sufficient matching accuracy.

(2) The matching result of this method is relevant to the image quality that is usually affected by
both the camera and capture settings, such as the image resolution and surface reflex of the object.
For example, in the simulated landslide experiment, more matched points could be obtained from
the color SLR images than from the grayscale HSC images due to the better imaging condition
(e.g., higher resolution, less influence by water-pond regions).

(3) The proposed robust image-matching method can be successfully applied to the low-frequency
SLR and high-frequency HSC stereo image series collected in the simulated landslide experiment
for generation of sequential DSMs, which helps to reveal the landslide evolution process triggered
by rainfall, especially based on the volume and surface elevation changes in the instantaneous
failure event.

Despite the achievements in this research, there are currently several limitations that need further
improvement in the future. For example, there are still very sparse, or even non-matched, regions
affected by different factors, such as sensor cables and sliding fissures (see Figures 12 and 16). Due to
the main objective in this research to observe the landslide surface changes, the accuracy of the
generated DSMs is not discussed in detail in this paper. These limitations, which would be involved in
imaged landslide surface deformation analysis, call for further comprehensive research in the future.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/5/396/s1,
Video S1: Simulated Landslide Surface Changes during Slope Failure Process.
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DSM Digital Surface Model
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COSI-Corr Co-registration of Optically Sensed Images and Correlation
PMS PhotoModeler Scanner
GCP Ground Control Point
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