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Abstract: The Geostationary Ocean Color Imager (GOCI) is the world’s first ocean color sensor in
geostationary orbit. Although the GOCI has shown excellent radiometric performance with little
long-term radiometric degradation and a high signal-to-noise ratio, there are radiometric artefacts
in GOCI Level 1 products caused by stray light detected within the GOCI optics. To correct the
radiometric bias, we developed an image-based correction algorithm called the correction of the
interslot discrepancy using the minimum noise fraction transform (CIDUM) in a previous study
and evaluated its performance with respect to the physical radiometric quantity stored in Level 1
products, i.e., top-of-atmosphere radiance. This study evaluated the performance of the CIDUM
algorithm in terms of remote sensing reflectance, which is one of the most important products in
ocean color remote sensing. The resultant CIDUM-corrected remote sensing reflectance products
were validated using both relative (within the image) and absolute references (in situ measurements).
Image validation showed that CIDUM corrected the bias in remote sensing reflectance (up to 20%)
and reduced the bias to ď5% in the tested image. In situ validation showed that relative uncertainty
was reduced by around 10% within the visible bands and the correlation between the in situ and
GOCI radiometric data was enhanced.

Keywords: GOCI; ocean color; stray light; CIDUM; remote sensing reflectance; atmospheric
correction; validation; in situ measurements

1. Introduction

The Geostationary Ocean Color Imager (GOCI) was launched in June 2010 and has produced
regional-scale ocean color data over areas of East Asia around the Korean Peninsula [1,2]. GOCI
acquires images of the target area (2500 ˆ 2500 km area; centered at 36˝N, 130˝E) through the
“step-and-stare” method, where the entire target area is subdivided into 16 (4 ˆ 4) areas, each of which
is sequentially covered by a single 2-dimensional CMOS detector [3]. In the sequential acquisition,
the area or portion covered by the single acquisition is referred to as a “slot”. Radiometric data for
each slot is stored in a Level 1A (L1A) file and the images for all the slots are later combined into
a mosaicked image (Level 1B (L1B) data) of the entire target area through re-projection to the GOCI
orthogonal map projection.

Ideally, boundary areas between adjacent slots should not exhibit any systematic radiometric
discontinuity other than that created by natural variability. This is induced mainly through differences
in image acquisition times and it usually does not exceed 3% in the normalized top-of-atmosphere
(TOA) radiance [4]. However, previous experiments [4] have shown that strong interslot radiometric
discrepancy (ISRD) of up to 20% exists in the normalized TOA radiance in the red (680 nm) and
near-infrared (NIR) (865 nm) bands for slot pairs with N–S alignment. The requirement of radiometric
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uncertainty for the visible to NIR bands of earth observing satellites is usually ~2% and there are
stricter requirements for ocean color sensors. Thus, an ISRD of 20% is an extraordinarily large bias that
could jeopardize the atmospheric correction procedure. Moreover, radiometric bias causes significant
problems in the algorithms that use information from the spectral bands that are affected by ISRD (e.g.,
the fluorescence line height method for estimating chlorophyll concentration).

One of the major artificial sources of ISRD is stray light that occurs within the sensor optics.
A ray-tracing simulation [5] demonstrated that stray light from various optical paths within the
GOCI sensor optics could generate radiometric inflation, particularly for the lower parts of each slot.
We refer to the radiometric anomaly caused by stray light within the sensor optics as stray-light-driven
radiometric inflation (SLRI). Naturally, the existence of SLRI in one slot creates ISRD between adjacent
slots. The intensity of SLRI depends on both the location and the reflectivity of bright targets near the
target area (mostly from northern parts of the target point), making the spatiotemporal pattern of SLRI
variability dependent on the surrounding environment.

To mitigate the degree of SLRI in GOCI L1B images, we proposed an image-based correction
algorithm called the correction of inter-slot radiometric discrepancy using the minimum noise fraction
transform (CIDUM) [4]. The CIDUM algorithm comprises three steps. (1) First, the spatial distribution
of SLRI is identified in individual slots using the minimum noise fraction (MNF) transform [6]; (2) Then,
the extracted pattern is scaled to the actual SLRI using the pixels in the slot overlaps; (3) Finally, the
estimated SLRI is subtracted from the original L1A image. CIDUM recovers the discontinuity in the
slot boundaries in L1B data (TOA radiance) successfully, reducing the large SLRI that can reach up to
20% to less than 3% in all the slot boundaries of the tested GOCI data sets [4].

In this study, we performed further validation on the CIDUM algorithm, focusing particularly
on the quality of remote sensing reflectance (Rrs) that is derived from the atmospheric correction
process. Remote sensing reflectance is an important product in ocean color remote sensing because it
plays a critical role in the estimation of the concentrations of optically active water constituents
such as chlorophyll pigment concentration, suspended sediment concentrations, and dissolved
organic matter. The impact of the CIDUM correction on Rrs data is not as straightforward as in
TOA radiance data. The atmospheric correction process is a nonlinear process that involves an iterative
aerosol-estimation procedure, in which a positive bias in TOA radiance does not necessarily induce
a positive bias in remote sensing reflectance. Furthermore, the relative portion of SLRI is greater in the
Rayleigh-corrected radiance than in TOA radiance, making the aerosol-estimation process based on
band ratios more sensitive to SLRI.

Two approaches were adopted to validate the results in Rrs. In the first approach, improvements
in Rrs after the application of CIDUM were quantified at the slot boundary by comparing the Rrs

of nearby pixels from different slots. A ray-tracing simulation [5] has shown that the upper part
of a slot is affected little by SLRI, allowing those boundary areas beneath the slot boundary to be
used as the reference spectrum for the assessment of the results of the correction in the upper slot.
Although there is a difference between the acquisition times of the two slots, comparison of both the
corrected and the uncorrected data with the reference data can provide insight into the correction
quality. The second approach used an absolute validation based on independent in situ radiometric
measurements. Whereas the first approach (hereafter, referred to as “boundary analysis”) evaluated the
relative performance of the correction within the restricted area (feasible only near the slot boundary),
the second approach evaluated the absolute performance of the correction, including those areas far
from the slot boundary.

2. Materials and Methods

2.1. CIDUM Algorithm with Minor Modification

For the validation in this study, a slight modification was applied to the previously proposed
CIDUM algorithm [4] to improve the removal of SLRI from the data. Previously, in the original
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proposal, the SLRI pattern extracted from the MNF transform was scaled based on the radiometric
differences of the slot overlaps after normalization to the sun elevation angle, i.e., the normalized
TOA radiance. However, the sun elevation angle differs for the different slots causing variation in the
level of Rayleigh scattering, which increases the uncertainty in the comparison of the TOA radiances
in the slot overlaps. In the modified CIDUM, pixels in the slot overlaps were compared in terms of
Rayleigh-corrected reflectance rather than normalized TOA radiance.

Here, we provide a brief description of the modified CIDUM algorithm. CIDUM utilizes the MNF
transform for the extraction of the SLRI pattern from individual L1A images. The MNF transform
is efficient in detecting image artefacts that have strong spatial autocorrelation. For example, the
smile effect in Hyperion data, which causes a gradual alteration of the measured radiance in marginal
areas of images with a wide angle of view was identified and corrected using the MNF transform [7].
Formulation of the MNF transform was presented in Appendix.

The SLRI patterns extracted from the L1A images are calibrated against the adjacent slots in such
a way that the mean statistics of the pixels in the overlapped region are equalized. Specifically, for
a pair of slots, the mean Rayleigh-corrected reflectances are supposed equal if there is no SLRI effect, i.e.,:

ρ
p1q
rc “ ρ

p2q
rc (1)

where ρ
piq
rc denotes the Rayleigh-corrected reflectance in the i-th slot. The value of ρ

piq
rc is calculated

from the TOA radiance (LpiqTOA) as follows:

ρ
piq
rc “ ρ

piq
TOA ´ ρ

piq
r (2)

“
πLpiqTOA

cosθ
piq
s Fpiq0

´ ρ
piq
r (3)

where ρ
piq
TOA is the TOA reflectance, θ

piq
s is the solar zenith angle, and ρ

piq
r is the Rayleigh reflectance

computed using the 6S code [8]. The unbiased TOA radiance (LpiqTOA) is computed by subtracting the

SLRI radiance (LpiqSLRI) from the observed at-sensor radiance (Lpiqobs) as

LpiqTOA “ Lpiqobs ´ LpiqSLRI (4)

If we define kpiq as
kpiq “

π

cosθ
piq
s Fpiq0

(5)

where F0 is the solar irradiance, then Equation (1) can be formulated in terms of the known variables
(Lpiqobs, kpiq, and ρ

piq
r ) and the unknown variables (LpiqSLRI) as:

kp1q
´

Lp1qobs ´ Lp1qSLRI

¯

´ ρ
p1q
r “ kp2q

´

Lp2qobs ´ Lp2qSLRI

¯

´ ρ
p2q
r (6)

”

kp1qLp1qobs ´ ρ
p1q
r

ı

´

”

kp2qLp2qobs ´ ρ
p2q
r

ı

“ kp1qLp1qSLRI ´ kp2qLp2qSLRI (7)

The SLRI radiance (LpiqSLRI) is computed from the MNF transform after applying the slot-dependent
calibration factor αpiq:

LpiqSLRI “ αpiqXpiqMNF (8)

where XpiqMNF is the SLRI signal image extracted from the MNF transform. Now, constructing the
equations for all 24 slot pairs generates the linear system that has 16 unknowns (calibration factors for
16 slots) and 24 constraints. Solving the linear system provides an optimal set of calibration factors
that minimizes the overall ISRD between all the slot pairs.
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2.2. Study Area and Field Measurements

For an independent evaluation of the algorithm, above-water radiometric measurements were
acquired off the west coast of Korea using the ASD® and TriOS® hyperspectral radiometers.
After a quality control process that screened the in situ measurements for poor-quality data [9],
26 match-up pairs between the in situ and the GOCI Rrs were identified in the GOCI data over
three days (31 July 2012, 16 October 2012, and 23 October 2013), which are dates that had strong SLRI
in the corresponding L1B images. Since GOCI images were taken every hour, the maximum time
difference between in situ measurements and the corresponding GOCI data is 30 min if the in situ data
were collected between 00:16 UTC and 07:46 UTC. This study used the GOCI Data Processing System
(GDPS) atmospheric correction process (version 1.31) [10].

The locations of the 26 measurement stations are displayed in Figure 1 with the background
image of LTOA p680q acquired on 31 July 2012 (UTC 02). This area has large spatiotemporal variability
in Rrs, which is dominated by the variation in suspended sediment concentration. Resuspension
from tidal movement in the shallow water and the existence of a mud belt (Heuksan mud belt) in the
offshore area cause high concentrations of suspended sediment of 10–100 g/m3. The acquisition times
and the geographic coordinates of the in situ data are presented in Table 1 for the 26 stations used in
the validation.
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Figure 1. Locations of the study area (a) and the in situ measurement sites (b) in the SW coast of Korea
are presented. For the station map (b), GOCI image of TOA radiance in the 680-nm band is used
as background.

Table 1. Times and locations of the 26 in situ radiometric measurements used for this study. Time is in
Coordinated Universal Time (UTC).

ID Year Month Day Latitude Longitude Hour Minute

1 2012 07 31 35.5179 126.3264 02 04
2 35.5178 126.2855 02 23
3 35.6653 126.1580 05 10
4 2012 10 16 34.9686 126.0695 00 10
5 34.9671 126.0255 00 28
6 34.9656 125.9816 00 47
7 34.9642 125.9377 01 04
8 34.9626 125.8938 01 24
9 34.9611 125.8498 01 40
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Table 1. Cont.

ID Year Month Day Latitude Longitude Hour Minute

10 34.9596 125.8059 02 02
11 34.9564 125.7180 02 40
12 34.9533 125.6302 03 02
13 35.0219 125.5384 04 27
14 35.0251 125.6263 04 54
15 35.0283 125.7143 05 21
16 35.0315 125.8022 05 48
17 2013 10 23 35.1479 125.8511 00 20
18 35.1497 125.8528 01 25
19 35.1826 125.8072 01 58
20 35.1465 125.8483 02 27
21 35.1830 125.8476 02 52
22 35.1477 125.8503 03 22
23 35.1442 125.8495 04 27
24 35.1811 125.8887 04 52
25 35.1425 125.8474 06 23
26 35.1061 125.8036 06 53

2.3. Aerosol Estimation Process for Turbid Waters

To analyze the effect of the stray light in the course of atmospheric correction, it is necessary
to observe how the radiometric artefact propagates during the aerosol estimation process which is
typically initiated in turbid waters. The iterative process of aerosol estimation embedded in the GDPS
1.3 atmospheric correction [9,11], is described briefly in the following.

(Step 1) Estimating aerosol reflectance in the NIR bands (745 and 865 nm)

Under a given reflectance budget of Rayleigh-corrected reflectance (ρa), the aerosol reflectance is
obtained by subtracting t ρw from ρrc as in

ρa pNIRq Ð ρrc pNIRq ´ tρw pNIRq (9)

The water reflectance in the NIR bands is assumed zero at the first iteration; however, it will have
non-zero values for turbid water as the iteration progresses.

ρw pNIRq “ 0 pat the first iterationq (10)

(Step 2) Selecting the aerosol models and estimating aerosol reflectance

Based on the multiple-scattering ε, defined as

ε “
ρa p745q
ρa p865q

(11)

the most probable aerosol models and their weightings are computed using the look-up table that
relates multiple-scattering εwith single-scattering ε.

(Step 3) Updating t ρw for the visible bands

Now that the aerosol reflectances for the visible bands (ρa pVISq) are available, following Step 2,
the water reflectance at 660 nm is updated as in

tρw p660q Ð ρrc p660q ´ ρa p660q (12)
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(Step 4) Estimating water reflectance at the NIR bands

According to the water reflectance model in the NIR wavelength region [12], the ρw of the NIR
bands have a monotonic relationship with ρw p660q formulated by a fourth-order polynomial.

ρw p745q , ρw p865q “ f pρw p660qq (13)

The water reflectances of the NIR bands are determined based on Equation (13).

(Step 5) Repeating Steps 1 through 4 until convergence

In the process, Steps 1 through 4 are repeated until ρa and ρw at a certain run have no significant
changes compared with the previous iteration.

3. Results

As briefly mentioned in Introduction, CIDUM results are assessed with two approaches:
(1) boundary analysis; and (2) in situ analysis. In the boundary analysis (Section 3.1), remote
sensing reflectance data near a slot boundary are compared between an original image and the
CIDUM-corrected image, where the differences in the atmospheric correction results are quantified in
terms of Rayleigh-corrected, aerosol, and remote sensing reflectance. In the in situ analysis (Section 3.2),
the changes in the reflectance variables before and after the CIDUM algorithm are assessed using
in situ radiometric measurements, which are available not only in the slot boundary area but also in
remote areas from the boundary.

3.1. Boundary Analysis

Before analyzing the results in Rrs, the correction results in the TOA radiance (L1B) data are
first shown in Figure 2. Figure 2 shows images of TOA radiance both before and after the CIDUM
correction: Band 6 (LTOA p680q) in Figure 2a and Band 8 (LTOA p865q) in Figure 2b. The color scales of
the figures are adjusted to the areas of the ocean that are relatively clear, which makes high-reflectance
targets such as clouds, high concentrations of aerosols, land areas, and ocean areas of high turbidity
have saturated values (white). In both spectral bands, the discontinuity across the slot boundary
between Slot 7 (upper slot) and Slot 10 (lower slot) is shown mitigated in the corrected images (right),
recovering the continuity of the natural variability. Note that a certain amount of discontinuity is
unavoidable because of the difference in acquisition time between the upper and lower slots (the
difference in acquisition time between Slots 7 and 10 is around 5 min). To assess the improvement
achieved by the correction, the ISRD is measured in terms of the relative mean difference (ψ) of the
Rayleigh-corrected reflectance (ρrc) between the pixels in the slot overlaps:

ψρrc “

N
ÿ

i

ρrc
pupper slotq ´ ρrc

plower slotq

ρrcplower slotq
(14)

where N is the total number of samples in the slot overlap used to compute the statistics. While the slot
boundary with no evident SLRI had a value of ψρrc < 5%, according to the previous observations, this
slot pair has large values of ψρrc of 6.9%, 15.6%, and 17.5% for Bands 5, 6, and 8, which were reduced
to 2.4%, 4.9%, and 5.2%, respectively, after the correction.

Figure 3 shows the image of Rrs for Band 6 together with the Rrs profile along transect PQ. In the
figure, high-reflectance targets that are ineligible for the regular atmospheric correction algorithm
(e.g., land and cloud) are filled with the lowest values of the color scale and excluded from the
analysis. In the Rrs image (Figure 3a), the effect of SLRI is clear in the upper slot (Slot 7) before the
correction (left-hand figure), which induces overestimation in Rrs (660) in the upper slot and significant
discontinuity at the slot boundary. The Rrs profile along the vertical transect between points P and Q
reveals that the discontinuity at the boundary point is due to overestimation. The correction removes
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the overestimation from Rrs in the upper slot (right-hand figure), while maintaining the original local
variability in the profile. The Rrs bias is largest at the bottom of the slot and it tapers off further north.Remote Sens. 2016, 8, 378 7 of 16 
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Figure 3. (a) Images of GOCI remote sensing reflectance acquired on 16 October 2012 (UTC 04) for
Band 6 both before and after the CIDUM correction; (b) Profile of remote sensing reflectance along
transect PQ.

To further investigate the impact on the atmospheric correction process, reflectance spectra of
the intermediate products are plotted for the pixels in a small area (Box C) at the slot boundary.
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The atmospheric correction process removes the reflectance contributed by Rayleigh scattering and
aerosol scattering from the TOA reflectance measured at the sensor. TOA reflectance is expressed as

ρTOA “ ρr ` ρa ` tu ρw (15)

ρrc “ ρa ` tu ρw (16)

where ρa is aerosol reflectance, ρw is water reflectance, and tu is upward diffuse transmittance.
The water reflectance is related to ρrs through

ρw “ f td Rrs{π (17)

where f is the coefficient for the bidirectional effect, and td is downward diffuse transmittance. We can
obtain Rrs from ρTOA through the atmospheric correction. The effect of CIDUM can be assessed in
terms of the three intermediate reflectance products in the process: the Rayleigh-corrected reflectance
(ρrc), aerosol reflectance (ρa), and remote sensing reflectance (Rrs). Figure 4 presents the mean spectra
of the three types of reflectance for the pixels of box C in Figure 3. For each type of reflectance, three
different data sources were used: (1) pixels in the box that belong to the upper slot before the CIDUM
correction (ρSLRI) (red line); (2) the same pixels as (1) but with SLRI corrected by CIDUM (ρCorr)
(blue line); and (3) pixels in the box that belong to the lower slot (ρRe f ) (green line). As mentioned
earlier, because the uppermost part of the lower slot was assumed to have no SLRI, the statistics
obtained from the lower slot pixels can be considered references under the assumption that the optical
environment (e.g., aerosol loading and concentration of water constituents) does not vary significantly
across the slots.
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Figure 4. Spectra for (a) Rayleigh-corrected reflectance (ρrc); (b) aerosol reflectance (ρa); and (c) remote
sensing reflectance for three types of data source (Rrs): (red) SLRI-present data, (blue) data corrected
by CIDUM, and (green) reference data from the lower slot.

The ρrc spectra (Figure 4a) show that ρSLRI
rc is overestimated compared with ρCorr

rc with a relative
difference of 4.8%, 18.1%, and 17.3% for Bands 5, 6, and 8, respectively. The large overestimation in
Band 8 (865 nm) is critical in deriving Rrs, because the aerosol model and loading for the pixel location
is estimated primarily based on the ρrc ratio of the two NIR bands (Bands 7 and 8), i.e., the multiple
scattering epsilon (ε). The values of ε before and after the correction are 3.4 and 6.5, respectively, which
led to the significantly different aerosol reflectance spectrum over the GOCI spectral range, as shown in
Figure 4b. The large ρSLRI

rc p865q values (which consequently led to low values of ε) caused ρSLRI
a p865q

to be greatly overestimated and made ρSLRI
a of the visible bands (Bands 1–6) underestimated. Under

the fixed total reflectance budget, the underestimation in ρSLRI
a in turn caused the overestimation

of RSLRI
rs in the corresponding spectral range, as shown in Figure 4c CIDUM successfully corrected

biases in all the three GOCI reflectance estimates induced by SLRI, producing GOCI remote sensing
reflectance (RCorr

rs ) very close to that from the reference data (RRe f
rs ) (relative difference of <1% in all
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bands except Band 1 and 2). The abrupt decreases in Rrs in the blue bands (Bands 1 and 2) that are
unique in the samples in the upper slot are due to pixel response non-uniformity, where the detectors
in the marginal area of the 2-dimensional detector array have non-uniform photo responsivity for
Bands 1 and 2 [13]. The slight difference between the spectra of ρCorr

rc and ρ
Re f
rc which is considered to be

induced by local variability in the aerosol condition was properly explained in the aerosol reflectance
in Figure 4b, which then resulted in consistent remote sensing reflectance in ocean waters.

3.2. Assessment with in Situ Radiometric Measurements

In this section, the uncertainty of the GOCI Rrs is computed using the in situ Rrs measurements
collected at the 26 stations near the slot boundary between Slots 7 and 10. For each in situ measurement,
the temporally closest GOCI scene was selected and the average value of a 3ˆ 3 pixel window, centered
at the in situ location, was compared with the in situ measurement. The maximum time difference
between the GOCI and in situ data allowed in this validation was 1 h. Because of the high temporal
resolution of GOCI (hourly from 09:00 to 16:00 local time), there are usually two GOCI scenes available
for match-up. When multiple GOCI data were available for the match-up, the temporally closest GOCI
data were used. A spatial homogeneity test was performed for the pixels in the window to verify
whether the average values of the window were representative of the window area (the coefficient
of variation was <5% in all the stations). Two statistics were used to evaluate the uncertainty in the
resultant GOCI Rrs: the absolute mean percentage difference (APD, |ψRrs|) and the relative mean
percentage difference (RPD, ψRrs), which are given as:

|ψRrs| “

N
ÿ

i

ˇ

ˇ

ˇ

ˇ

ˇ

Rrs
pGOCIq ´ Rrs

pinsituq

Rrspinsituq

ˇ

ˇ

ˇ

ˇ

ˇ

(18)

ψRrs “

N
ÿ

i

Rrs
pGOCIq ´ Rrs

pinsituq

Rrspinsituq
(19)

Figure 5a,b presents scatter plots of Rrs p555q between the GOCI and in situ data before and after
the application of CIDUM, respectively. The overall data scatter (i.e., APD=|ψRrs|) was 16.1% before
the correction, which was reduced to 11.1% after the correction, primarily because of the mitigated
underestimation in the CIDUM-corrected data (Figure 5b), particularly for the Rrs range of 0.02–0.025.
We defined the amount of correction (Corr) as

Corr “ Rrs
Corr ´ Rrs

SLRI (20)

and plotted the quantity (Rrs
in´situ + Corr) against the in situ Rrs in Figure 5c and d (i.e., the small and

large ranges of Rrs are shown in Figure 5c,d, respectively). While Corr is relatively small for stations
with Rrs(555) < 0.02 (Figure 5c), larger corrections can be observed for stations with higher Rrs(555),
i.e., samples from water with greater turbidity. In Figure 5d, most of the correction was positive for
samples with Rrs (555) > 0.02 and it was greatest for the stations located closest to the slot boundary
(e.g., Stations 5–7, 9, 10 and 16). The mean suspended particulate matter (SPM) concentration of these
six stations is above 40 g/m3, whereas the SPM of the stations in clear water is around 1 g/m3. The
largest correction was made for Station 16 (SPM = 48.65 g/m3), where Corr is ~0.006, which accounts
for ~25% of the corrected Rrs (Rrs

Corr).
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one-to-one line with station ID’s: (c) small Rrs values and (d) large Rrs values.

Spectrum analysis was performed for two stations selected from non-turbid and turbid waters:
Station 14 was in relatively clear water (SPM = 1.41 g/m3) and Station 16 was in a turbid area
(SPM = 48.65 g/m3). The Rayleigh-corrected reflectance (ρrcq spectra before and after the correction
(Figure 6a,b) showed that the CIDUM effectively corrected the ρrc in the SLRI-affected bands. The Corr
in Bands 5, 6, and 8 was 0.0020, 0.0048, and 0.0036 for Station 14 and 0.0031, 0.0070, and 0.0052 for
Station 16. Note that the correction appears smaller in the figure for Station 16 because of the different
scales of the y-axes. The relative corrections against the corrected ρrc values are 3.4%, 8.0%, and 16.2%
for Station 14 and 8.0%, 19.5%, and 22.5% for Station 16 for Bands 5, 6, and 8, respectively.

Similar to the case in the previous boundary analysis, a large positive bias in ρrc(865) before the
CIDUM correction induced an overestimation of the aerosol loading (i.e., high ρa p865q at the both
stations. At Station 14, the smaller values of ε (“ ρrc p745q {ρrc p865qq induced relatively flat aerosol
reflectance over the entire wavelength range, which led to the underestimation of ρa in the visible
bands. The underestimation of ρa induced an overestimation of Rrs, not only in the SLRI-affected
bands but also in the other visible bands.
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Contrary to the case of Station 14, the underestimated values of ε by SLRI for Station 16 led to
greatly overestimated values of ρa across the entire spectral range (red curve in Figure 6d), which led
to significant underestimation of Rrs across the entire range (red curve in Figure 6f). This opposite
pattern stems from the complicated process of aerosol estimation that involves an iterative process
for the separation of the aerosol and water reflectances from the Rayleigh-corrected reflectance. The
discussion on the detailed mechanism is presented in Section 4.
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Figure 6. Spectra are presented for ((a) and (d)) Rayleigh-corrected reflectance (ρrc); ((b) and (e)) aerosol
reflectance (ρa), and ((c) and (f)) remote sensing reflectance (Rrs). The upper row figures (a), (b), and
(c) are for Station 14, and the bottom row figures (d); (e); and (f) are for Station 16. In each figure,
reflectance curves for both SLRI-present data before CIDUM (red) and data corrected by CIDUM (blue)
are presented. For remote sensing reflectance ((c) and (f)), reflectance spectra for in situ measurements
(green) are presented additionally.

The resultant Rrs spectra show that the CIDUM correction generally mitigates both the
overestimation and the underestimation caused by SLRI, making the GOCI Rrs much closer to the
in situ Rrs. At Station 14, the overestimation of ρrs before the correction was 23%, 18%, 53%, and
113%, which was reduced to 4%, 8%, 8%, and 8% after the correction for Bands 3–6, respectively. The
improvement was particularly significant for Band 6, which has a large impact on the estimation of the
fluorescence signal from phytoplankton. The bias in the turbid water (Station 16) was ´70%, ´64%,
´51%, ´42%, ´34%, and ´30% before the correction, which was also greatly mitigated to 15%, 6%,
5%, 6%, 13%, and 12% for Bands 1–6, respectively.

The validation results for the other GOCI visible bands are presented in Table 2. Generally, the
CIDUM improves the correlation between GOCI and in situ Rrs and it reduces data scatter. The
improvement was largest in the blue bands, where the improvement in correlation was around 0.2
and the APD improvement was nearly 10% in the 412-nm band. The improvement in bias (RPD) is
band-dependent, whereby the bias is generally reduced but some bands have poorer RPDs.
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Table 2. Match-up validation results between in situ and GOCI data before and after the CIDUM
correction for the six visible bands.

Correlation APD (|ψRrs|) RPD (ψRrs)

Before After Before After Before After
Band 1 0.55 0.74 40.4 29.7 ´1.4 3.1
Band 2 0.79 0.87 30.0 22.9 ´13.4 ´13.8
Band 3 0.90 0.92 21.3 14.2 ´7.7 ´4.9
Band 4 0.94 0.95 16.1 11.1 ´7.1 ´1.2
Band 5 0.96 0.97 37.3 27.6 ´22.3 ´19.1
Band 6 0.96 0.96 35.4 24.4 ´3.6 ´12.8

4. Discussion

SLRI creates a positive bias in TOA radiance and consequently also in Rayleigh-corrected
radiance/reflectance. However, in Rrs the bias is not necessarily positive because of the complicated
process of aerosol estimation in the atmospheric correction as shown in our results. A question remains
regarding the specific mechanism in the iterative process that decides the sign of the bias in Rrs.
To analyze the mechanism, changes in the aerosol and water reflectances in the iterative process of
aerosol estimation described in Section 2.3 were tracked over five iterations at the end of the iteration.

The iterative process is basically controlled by three constraints: (1) the total reflectance budget
given by ρrc, as specified in Equation (15); (2) types of aerosol models and associated aerosol loadings,
determined in Step 2 in Section 2.3; and (3) water reflectance relationship between the 660-, 745-, and
865-nm bands, as specified in Equation (13). The iterative process finds the combination of ρa and tρw

that best fits the constraints under the reflectance budget of ρrc. Radiance data affected by SLRI will
definitely produce different results from the case without SLRI in all or any of ρrc, ρa, and ρw. The aim
here is to investigate how the radiance bias that is created by SLRI is propagated to the reflectance
products in the process of aerosol estimation. Because the impact of SLRI in the NIR bands is most
critical to the atmospheric correction process, we focused on tracking how the SLRI bias in the 865-nm
band was resolved in the process, by comparing the reflectance values of the 865-nm band to the
adjacent NIR band (745-nm band) that is free of SLRI. If we define the reflectance difference between
the two NIR bands ∆ρ as

∆ρ “ ρ p745q ´ ρ p865q (21)

then three types of reflectance difference ∆ρrc, ∆ρa, and ∆tρw can be defined accordingly for ρrc, ρa,
and tρw. The value ∆ρrc is always smaller in SLRI-affected data than in SLRI-corrected data, because
SLRI (which is always positive) is present only in the 865-nm band and not in the 745-nm band.
Figure 7 shows how the iterative process resolves the smaller ∆ρrc (solid red line) in the SLRI-affected
data by changing ∆ρa and ∆tρw over the five iterations. Our observations are focused on how the
converged ∆ρ’s (i.e., values at the 5-th iteration in the figures) differ between the SLRI-affected and the
SLRI-corrected data. At Station 14 (Figure 7a), when SLRI existed, it can be seen that the final values of
∆ρa and ∆tρw are reduced in comparison with the values of ∆ρa and ∆tρw in the SLRI-corrected data
(blue). The reductions in ∆ρa and ∆tρw are natural because the overall ∆ρrc budget is much tighter in
the SLRI-affected data; thereby, the iterative process forced the values of ∆ρa and ∆tρw to diminish to
satisfy the reduced budget. Conversely, at Station 16 (Figure 7b), it can be seen that despite the smaller
∆ρrc budget in the SLRI-affected data, the value of ∆ρa increased. Figure 7b shows that even if the
value of ∆ρa increases, the quantity of ∆ρa + ∆tρw is able to meet the reduced ∆ρrc budget because of
the sufficiently large decrease in ∆tρw.

A question then arises regarding what is responsible for this difference in the mechanism resolving
the SLRI in the 865-nm band between clear and turbid waters. The suggested explanation is that
water reflectance in turbid waters (Station 16) has much greater flexibility in the water reflectance
constraint specified in Equation (13) than in clear waters (Station 14). In turbid waters, water reflectance
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in the red and NIR bands might have much larger values because of the high scattering by the
suspended sediments, whereas clear waters have near-zero reflectance for the wavelength longer than
700 nm because of increasing water absorption. To resolve both the SLRI in the 865-nm band and
the corresponding smaller ∆ρrc, in the case of turbid waters, the aerosol estimation process changes
the estimated turbidity and correspondingly, the ∆tρw, which leads to erroneous water reflectance.
However, in the case of clear waters, there are no such water constituents to affect the optical properties
in the red and NIR wavelengths (neither phytoplankton pigments nor dissolved organic matter play
an important role in this wavelength region), which prohibits the aerosol-estimation process from
altering the water reflectance to resolve the artifact caused by SLRI.
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for (a) Station 14; and (b) Station 16.

Errors due to radiometric artefacts do not disappear in the iterative scheme unless the artefact is
removed prior to the atmospheric correction. The errors oscillate between the atmospheric reflectance
and water reflectance, and end up being more in one type of reflectance than in the other depending
on the factors such as magnitude of artefact, aerosol types, and water types. It is highly likely that this
is the case for other ocean color satellites [14,15], because they adopt a similar iterative approach for
atmospheric correction in turbid waters. A major difference is that a biogenic optical model is used in
the satellites for regulating the inter-band water reflectance rather than polynomial relationships as
in GOCI’s case. Atmospheric correction algorithms that assume inter-band relationship for aerosol
reflectance [16,17] also seem vulnerable to this type of radiometric artefact that has band-specific effects.
While the regulation of the shape of aerosol reflectance makes the estimation of aerosol reflectance
less sensitive to the band-specific artefact, the effect of the artefact would be then more salient in the
estimated water reflectance.

5. Conclusions

In this study, we validated the results of the correction of the interslot discrepancy using the
minimum noise fraction transform (CIDUM) algorithm for Geostationary Ocean Color Imager remote
sensing reflectance (Rrs) data using both image analysis and in situ radiometric measurements
collected around the Korean Peninsula. For the test scene, CIDUM mitigated the interslot radiometric
discontinuity by reducing the relative bias measured in terms of the Rayleigh-corrected reflectance to
<5% in the stray-light-driven radiometric inflation (SLRI)-affected bands (660, 680, and 865 nm), and
it also recovered the natural variability of remote sensing reflectance in the slot boundary area. The
validation, performed with the 26 in situ radiometric measurements, showed that CIDUM improved
Rrs accuracy in the visible bands, producing lower absolute mean percentage differences (by up to
10%) and higher correlations (by up to 0.2).
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Contrary to the intuitive belief that the effect of SLRI would be less significant in turbid water,
because the proportion of the SLRI of the total radiance is smaller in turbid water than in clear water,
the impact of SLRI was larger for Rrs in turbid water, inducing significant underestimation in the
visible bands. In both clear and turbid waters, SLRI in the 865-nm band induced inflated aerosol
reflectance, but the repercussions in other spectral bands differed depending on turbidity. At the
station in relatively clear water, SLRI induced a lower aerosol reflectance slope (ρa p745q { ρa p865q),
and consequently, an underestimation of aerosol reflectance and an overestimation of remote sensing
reflectance (Rrsq in the visible bands. In turbid water, the lower slope in the Rayleigh-corrected
reflectance (ρrc p745q { ρrc p865q) induced by SLRI was mostly accounted for by the change in remote
sensing reflectance, which led to significant underestimation of the remote sensing reflectance in the
visible bands. Analysis of the aerosol estimation process suggested that the reason for the different
responses to SLRI in clear and turbid waters was that SLRI is resolved primarily by falsely adjusting
the estimated turbidity in the case of turbid waters, whereas in the case of clear waters, it primarily
relies on adjusting the aerosol reflectance because of the lack of room for alteration in water reflectance
as there are not sufficient optically active constituents in the red and NIR wavelengths in clear waters.
As a result, the errors attributable to SLRI are greater in turbid waters because of the high flexibility in
water reflectance models in the red and near-infrared (NIR) wavelength regions.

Future work will include the enhancement of the CIDUM algorithm for terrestrial areas.
Currently, CIDUM is intended for ocean areas only, so all validation work has been performed
for top-of-atmosphere radiance and remote sensing reflectance over such areas. As shown in the
analysis in this study, the impact of SLRI is not necessarily smaller in high-radiance areas. The impact
of SLRI and the improvement by the CIDUM algorithm should also be assessed with respect to the
atmospheric correction algorithm for terrestrial areas.
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The following abbreviations are used in this manuscript:

ISRD: Interslot radiometric discrepancy
SLRI: Stray-light-driven radiometric inflation
CIDUM: Correction of the interslot discrepancy using the minimum noise fraction transform
GOCI: Geostationary ocean color imager
MNF: Minimum noise fraction
TOA: Top of atmosphere
L1A: Level 1A
L1B: Level 1B
APD: Absolute mean percentage difference
RPD: Relative mean percentage difference
SPM: Suspended particulate matter
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Appendix: The Minimum Noise Fraction (MNF) Transform

The MNF transform is composed of a series of linear transforms. Input signal (Li) is defined as
the sum of signal and noise which are mutually uncorrelated for i-th pixel as in

Li “ Si ` Ni (A1)

where Si and Ni are the signal and noise for the pixel. The first transform performs noise whitening of
the input data (Li) using a noise statistics derived from the noise component (Ni). The noise covariance
matrix (CN) is decomposed through eigen-decomposition as in

CN “ VNΛNVT
N (A2)

WN “ VΛ´
1
2

N (A3)

WT
NCNWN “ I (A4)

where VN and ΛN are the eigenvector and the eigenvalue matrix, respectively. Multiplication of Λ´
1
2

N to
the eigenvalue matrix (V) leads to the noise-whitening matrix (WN), which makes the noise covariance
matrix into the identity matrix as in Equation (A4). The noise-whitening process uncorrelates the
noises present in the input data, and normalizes the magnitude of the uncorrelated noises into ones,
allowing the noise-whitened data interpreted as the signal-to-noise ratio of the input data.

The covariance matrix of the noise-whitened data (xCL) is computed as

xCL “ WT
NCLWN (A5)

and the second eigen-decomposition is applied to the matrix as

VT
L
xCLVL “ ΛL (A6)

where VL and ΛL are the eigenvector and the eigenvalue matrix of the noise-whitened covariance
matrix xCL. The final MNF transform is the multiplication of the two eigenvector matrices as

TMNF “ VT
L WT

N (A7)

and the transformed data are expressed as

XMNF, i “ TMNFLi (A8)
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