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Abstract: Laser scanning technology plays an important role in forest inventory, as it enables accurate
3D information capturing in a fast and environmentally-friendly manner. The goal of this study is to
develop methods for detecting and discriminating individual trees from TLS point clouds of five plots
in a boreal coniferous forest. The proposed hierarchical minimum cut method adopts the detected
trunk points that are recognized according to pole like shape segmentation as foreground seed points
and other points as background seed points, respectively. It constructs the undirected weighted
graph of the foreground and background seed points to deduce a cost function for tree crown point
segmentation with the decreasing ranking of tree trunk heights. The intermediate results lead to
global optimization segmentation of individual trees in a hierarchical order. Finally, the structure
metrics of the detected individual trees are calculated and checked with field observations. Plots with
different attributes were selected to verify the proposed method, and the experimental studies show
that the proposed method is efficient and robust for extracting individual trees from TLS point clouds
in terms of the recall of 90.42%.

Keywords: terrestrial laser scanning; forest mapping; minimum cut; individual tree detection;
structure metrics

1. Introduction

Forests are the dominant terrestrial ecosystem on Earth and provide all kinds of services to
humans. In recent years, light detection and ranging (LiDAR) has become an increasingly popular
tool for forest monitoring and vegetation mapping tasks for its capacity of obtaining the spatial
distribution of surface characteristics with dense point clouds [1–3]. Extensive studies have been
investigated to estimate forest attributes from point clouds, including tree locations [4], heights [5–7],
DBH [8], stem curves [9], crown widths [5,10–12], crown base heights [13,14], wood volumes [15,16]
and biomass [17–20]. Moreover, the improvement in LiDAR technology of higher pulse rates and the
increasing LiDAR posting densities have provided better opportunities for obtaining forest data at
a fine scale, and the forest inventory has transferred from an average forest stand scale to the individual
tree level [21]. This is also encouraged by the fact that the detailed structures of trees are needed in
many forest application, such as ecology, wildlife or biodiversity [10]. However, the fine-scale forest
inventory poses great challenges for data processing. In fact, for the delineation and discrimination
of single trees in the forest, the difficulties are predominantly the variability of tree crown structures
and connected and clumped crowns in dense and complex forest environments. Compared to the
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individual trunk recognition, the connected crowns and crowns in the multi-layer canopy are more
challenging to delineate.

Much of the research into the structure metrics of forests focus on airborne LiDAR point clouds.
These studies provide stand or tree characteristics at large scale, but with the cost of missing details
at the branch level [22]. In general, the delineation of individual trees in airborne LiDAR point
clouds is performed by segmenting canopy height models (CHM) with region growing or watershed
solutions [23,24]. The local maxima is used to position treetops. The above solutions perform
well in structurally-homogeneous plantations, single-species-dominated stands and forests with
widely-spaced trees [11]. However, positioning treetops with the local maxima may lead to commission
errors because of complicated tree crown shapes and noisy LiDAR point clouds. For example, the
non-treetop local maxima may incorrectly be classified as treetops [5,25].

As a complement to airborne LiDAR, terrestrial laser scanning (TLS) and mobile laser scanning
(MLS) enable one to capture the underneath canopy structure and make forest mapping at the detailed
individual tree structure level available [26]. Many researchers have worked on stem mapping and
stem characteristic (DBH, stem curves) estimation; however, a few studies have focused on individual
tree or tree crown delineation from TLS or MLS point clouds. For example, Liang et al. [27] present
a fully-automatic stem mapping algorithm by calculating the spatial distribution properties of laser
points. Then, the stem model is built up of a series of cylinders, and the location of the stem is estimated
by the model. Arachchige [28] utilizes geometric features (such as the principal direction and the
shape of point subsets) to extract stems from high density MLS point clouds in urban environments.
Xia et al. [29] identify stem points with a two-scale classification method and then use a simple stem
curve model to merge stem points. Some attempts have also been made to segment single trees and
to delineate crowns in ground-based LiDAR point clouds. Srinivasan et al. [7] establish a regression
relationship between field measured crown widths and DBH and apply it in the forest in order to obtain
crown information. Lalonde et al. [30] used a Gaussian mixture model and the expectation maximization
(EM) algorithm to train the system to recognize and group points belonging to stems, ground and foliage.
Rutzinger et al. [31] used the vertical density profile model to separate trees from the ground vegetation.
Olofsson et al. [32] classify and measure tree stems and canopies using the Hough transformation and
the random sample consensus (RANSAC) algorithm in forest stands with single dominating tree species.
These algorithms fit the pre-defined geometrical models to the point clouds with pre-defined parameters
and have a risk of missing trees that have shapes different from the pre-defined models [33].

The reported methods of single tree segmentation or crown delineation from TLS or MLS point
clouds show relatively satisfactory performance. However, they are performed under a certain type
of simplified model and assumptions regarding the structure of tree crowns and their layout in
the forest and have a tendency to overlook the young and little trees in the lower canopy layer.
Accurate individual tree crown segmentation using TLS data in a forest setting is still a challenging
issue, particularly for the connected and clumped crowns, as well as crowns in a multi-layer canopy.

This paper proposes a novel approach for extracting individual trees from TLS point clouds.
The individual trunks and tree locations are identified and acquired firstly, then a hierarchical minimum
cut operator is proposed to delineate the crown corresponding to each trunk from the point clouds.
The contributions of the proposed method are listed as follows:

‚ precisely segment the crown points to the corresponding tree trunks in boreal coniferous forest
plots with heterogeneous structures;

‚ implement a hierarchical strategy to isolate single trees from point clouds reliably; and
‚ estimate structure metrics at the individual tree level.

This paper is structured as follows: In Section 2, we present a step-wise description of the
proposed method, and in Section 3, the proposed method was tested with the TLS point clouds in
different forest settings. Following the experiments, we validate and discuss the tree extraction results.
Finally, conclusions are drawn in Section 4.
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2. Methodology

The proposed method encompasses three key steps: locating candidate trees, isolating
an individual tree and estimating structure metrics at the individual tree level (e.g., tree locations, DBH,
heights and stem curves). Firstly, trunks are detected by analyzing the geometric shape characteristics;
the intersections between trunks and ground are marked as the tree locations. Secondly, individual
trees are isolated by a hierarchical minimum cut approach. For each tree discrimination, the candidate
tree trunk points and other tree trunk points are marked as foreground and background seed points,
respectively. The hierarchical operator results in tree detection in order from the highest tree to the
lowest one. Finally, the structure metrics of the extracted individual trees are calculated according to
the single tree point clouds and evaluated with field measurements. The workflow is implemented
on several different boreal coniferous forest environment datasets, and the results are evaluated and
analyzed. Five forest datasets with different tree densities are utilized to test the method, and it proves
successful as a promising solution to extract individual tree from TLS point clouds. The framework
of the proposed method is summarized in Figure 1. The detailed description will be given in the
following subsections.
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Figure 1. Workflow outline of individual tree extraction.

2.1. Localization of Candidate Trees

To discriminate the point clouds of candidate trees from TLS point clouds, the ground points are
firstly removed using the method of [34]. The remaining points are regarded as tree points, including
trunk points, crown points and other points. Once the trunk points are recognized, the tree locations
can thus be calculated according to the intersections between the ground and the corresponding trunk
points, and the corresponding tree crown points of each tree trunk are further isolated.

To differentiate tree trunk points from point clouds, first the point clouds are cut with a series
of horizontal planes with equal intervals along the vertical direction, resulting in many slices
perpendicular to the vertical direction. The thickness of the slice Hslice can be defined according
to the point density. Then, the points in each slice are clustered according to a Euclidean clustering
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algorithm [29]. Hence, the point clouds in all slices are segmented as a set of segments, as illustrated in
Figure 2.
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Figure 2. Point cloud slicing and clustering results. (a) The horizontal slices (marked blue);
(b) clustering results of each slice. The clustering results are randomly colored, and the same color
represents a segment.

Compared to the shapes of other objects, tree trunks show distinguishable shape characteristics
of pole-like objects. Hence, the segments in each slice are fitted by a cylinder with a limited radius
ranging to find the pole-like segments in the vertical direction. As far as a standard cylinder in the
vertical direction is concerned, it can be written as:

|| pP´Qq ˆ a||´rc “ 0 (1)

rc_min ď rc ď rc_max (2)

where P “

!

xp, yp, zp

)

is a point on the cylinder surface, Q “

!

xq, yq, zq

)

is a point on the
axis, a = {ax, ay, az} is the direction of the cylinder axis with a unit length and parallel to the Z axis
(0.0, 0.0, 1.0) and rc is the radius of the cylinder, ranging from rc_min to rc_max.

If a segment unit satisfies the above conditions, it is marked as a segment of trunks. The marked
segments are then clustered if the segments distribute along one vertical direction, resulting in many
large segments that are regarded as tree trunks. Finally, the intersection points between trunks and
ground points are calculated as the location of each tree trunk, as illustrated in Figure 3.
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2.2. Isolating Tree Crown Points with the Hierarchical Minimum Cut Operator

Once the tree trunks points are marked, most of the remaining points are regarded as tree crown
points. As the tree crowns are often clumped and connected together, it is necessary to correctly
isolate the tree crown points corresponding to each trunk, which is the foundation to calculate typical
structure metrics (e.g., heights) of an individual tree. To extract each tree crown points, we implemented
a hierarchical minimum cut operator by extending the minimum cut algorithm [35–37]. The hierarchical
minimum cut operator aims to iteratively extract the tree crown points corresponding to each tree
trunk in the rank of decreasing trunk height, according to the principles of the minimum cut method.
The minimum cut method can achieve the global optimal solution under the minimum cost function.
As far as one detected tree trunk is concerned, the hierarchical minimum cut operator aims to segment
the points as either foreground (belonging to the candidate tree) or background (not belonging to the
candidate tree) by constructing a cost function to achieve the globally optimal segmentation results.

To reduce the time costs of the hierarchical minimum cut operator, only those points that are
neighboring the candidate tree trunk are used to calculate the cost function and to join the segmentation
of the candidate tree crown points. The cost function is constructed according to the undirected
weighted graph of the neighboring points of each tree trunk. The neighboring points of each tree
trunk are determined using a cylindrical buffering zone. The cylindrical buffering zone is calculated
according to the center of the candidate tree location and a horizontal distance Rb. The points locating in
the cylindrical buffering zone are regarded as the input point cloud of the candidate tree segmentation,
as illustrated in Figure 5a. The radius of the cylindrical buffering zone Rb is calculated by:

Rb “ k ¨ dt (3)

where k is a constant value and dt is the planar distance between the candidate tree location and its
nearest tree location. The constant value k is greater than 1.

Once the input points of one candidate tree are searched, these points will join in the cost function
construction to delineate the candidate tree points. Additionally, the optimal segmentation solution is
obtained by minimizing the cost function. We use a graph-cut solver to minimize the cost function [38].
Thus, an undirected weighted graph G (V, E, W) of the input points is constructed. In the undirected
weighted graph G (V, E, W), V and E are the nodes and edges in the graph, and W is the weight of
each edge. The graph G (V, E, W) contains two kind of nodes: ordinary nodes and specially designated
nodes. In Figure 4, the nine small dots are ordinary nodes corresponding to the cloud point, and
the two bigger ones are specially designated terminal nodes S (source) and T (sink) that represent
“foreground” and “background” labels, respectively. The “bs” node (small blue dot in Figure 4)
and “fs” node (small red dot Figure 4) are seed points (cloud points whose labels are known before
segmentation). The edges can be divided into two groups, n-links and t-links. The black solid lines
that connect neighboring cloud points are n-links. The blue and red solid lines that associate ordinary
nodes with source and sink nodes are called t-links. Each cloud point is connected to both the source
and the sink with t-link edges.

Each edge in the graph was assigned with a non-negative weight, which was also called the cost
of the edge. The cost of each edge is reflected by the edge’s thickness. We can see that the t-links
that connect a seed point with its corresponding label have a thicker edge. Here, the detected trunk
points serve as seed points in the candidate tree segmentation. More specifically, the trunk points of
the candidate tree are marked as foreground seed points, and other trunk points in the input cloud are
marked as background seed points.
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The green dashed line is a cut that divides the graph into two independent parts, foreground
and background. A cut is a subset of edges C P E, such that the terminals S and T become completely
separated on G (V, E, W). Therefore, any cut corresponds to some binary label vector that partitions an
input cloud into “foreground” and “background” segments. The cost of a cut is defined as the sum of
the costs of severed edges. The cut that has the minimum cost is minimum cut Cmin:

Cmin “ argmin
ÿ

ePc
We (4)

It is proven that the minimum cut corresponds to the minimum cost function. Therefore, the
segmentation result is controlled by the weights of edges. More specifically, the minimum cost function
is written by:

argmin CpAq “
ÿ

pPP

RppApq `
ÿ

tp,qu PN

Bp,q ¨ δAp‰Aq (5)

δAp‰Aq “

#

1 if Ap ‰ Aq

0 if Ap “ Aq
(6)

where A is a binary vector whose component Ap specifies the label of each cloud point p. RppApq

denotes the regional term, representing the cost of the t-link for assigning cloud point p to label
Ap. Bp,q refers to the boundary term, representing the pairwise cost of the n-link for connecting
neighbor cloud points. The boundary term Bp,q is located at the segmentation boundary and ensures
the smoothness of the segmentation, while the regional term RppApq represents the regional properties
of segments. As mentioned above, the segmentation result is controlled by the weights of edges.
The detailed description of the weights will be given below.

The boundary term is interpreted as a penalty for a discontinuity between neighbor cloud points
p and q. Each cloud point is connected with its k-nearest neighbors, and the corresponding cost is
calculated by:

Bp,q “ expp´pdi{σq
2
q (7)

where di is the distance between the neighboring input points p and q and σ is the average span of the
points. The larger distance between p and q indicates weaker linking between them.
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The regional term indicates the foreground penalty and the background penalty for assigning
points to S and T, respectively. The foreground penalty Weightpp,Sq is specified as a constant value, and
the background penalty Weightpp,Tq is calculated by:

Weightpp,Tq “
dis2D

radius
(8)

where radius roughly considered as the foreground horizontal range. The planar distance between the
candidate tree location and its nearest tree location dt serves as the radius. dis2D is the planar distance
between point clouds and the candidate tree location. Therefore,

RppApq “

#

constant value if Ap “
2 foreground2

dis2D
radius if AP “

2 background2
(9)

According to Equation (8), the farther a point is from the candidate tree location, the bigger
the background penalty of the cloud point will be and the thicker the corresponding edge will be.
Thus, cloud points far from a candidate tree location are encouraged to be labeled as “background”.
Moreover, the horizontal distance to the candidate tree location is relative to the radius. Specifically, the
minimum radius is specified empirically as 1 m, indicating that the minimum foreground horizontal
range is 1 m.

When the hierarchical minimum cut operator segments the input points of one candidate tree, the
tree trunk points of the candidate tree serve as the foreground seed points, and the other neighboring
trunk points serve as the background seed points. As shown in Figure 5c, the foreground and
background seed points are marked in brown and orange, respectively. Finally, the candidate tree
points are delineated by the minimum cost function strategy to achieve the global optimal segmentation
(Figure 5d).
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Figure 5. Single tree segmentation by the hierarchical minimum cut method. (a) Side view of the 
cylindrical buffer zone (marked green) selected from the original point clouds to join the candidate 
tree segmentation, where points beyond the cylinder buffer zone are marked blue and candidate tree 
trunk points are marked brown; (b) the points within the buffer zone (the red cylinder area in (a));  
(c) foreground and background seed point setting for segmentation, where the candidate tree trunk 
points serve as foreground seeds (marked brown) and the other trunk points serve as background 
seeds (marked orange); (d) the segmentation result of the candidate tree. 

Figure 5. Single tree segmentation by the hierarchical minimum cut method. (a) Side view of the
cylindrical buffer zone (marked green) selected from the original point clouds to join the candidate
tree segmentation, where points beyond the cylinder buffer zone are marked blue and candidate tree
trunk points are marked brown; (b) the points within the buffer zone (the red cylinder area in (a);
(c) foreground and background seed point setting for segmentation, where the candidate tree trunk
points serve as foreground seeds (marked brown) and the other trunk points serve as background
seeds (marked orange); (d) the segmentation result of the candidate tree.

In order to reduce the uncertainties of tree crown point segmentation in the area with dense trees,
the trunks are ranked in decreasing order of lengths. The hierarchical minimum cut operator segments
the tree crown points according to the ranked tree trunks one by one. Once the tree crown points of
one candidate tree are segmented, the tree crown points and the corresponding tree trunk points are
removed from the point clouds. Hence, the hierarchical minimum cut operator segments the buffer
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zone points of one candidate tree each time instead of the whole point cloud. Moreover, the detected
tree crown points are removed from the point cloud before the next segmentation, thus reducing the
uncertainties of adjacent tree crown point segmentation.

2.3. Estimating Structure Metrics at the Tree Level

Once the tree crown points of each tree trunk are isolated, the points of individual trees are
determined. Hence, the structure metrics are calculated according to the points of individual trees.
The intersection between each tree trunk and ground level is calculated as the location of each tree.
The height of each tree is calculated by:

tree_height “ Z pPtop ´Z pPground q q (10)

where Z
`

Ptop
˘

is the maximum elevation of all individual tree points and Z
´

Pground

¯

is the elevation
of the individual tree location at the ground level.

The DBH of each tree is measured according to the diameter of the fitted cylinder of the
corresponding tree trunk above ground 1.2 to 1.4 m. The stem curves of tree trunks are calculated at
different heights, ranking from 0.65 m to the tree trunk height with a certain height interval.

3. Results and Analysis

3.1. Data Description

The proposed method was tested with five boreal coniferous forest plots with heterogeneous
structures, and the point clouds were captured by the Leica HDS6100 terrestrial laser scanner in
summer 2014. The five datasets are provided by Finnish Geospatial Research Institute (FGI) for project
“Benchmarking on Terrestrial Laser Scanning for Forestry Applications”. This project was launched in
order to understand the optimum data processing technique for future automated plot inventories.
Test plots are located in a boreal coniferous forest in Evo, Finland (61.19˝N, 25.11˝E). Each plot has
a fixed size, 32-by-32 m. These forest plots vary in species, growth stages and management activities.
The main tree species are Scots pine, Norway spruce and silver and downy birches. The details of
the datasets are listed in Table 1. Reference data are measured by FGI in the field. All trunks with
DBH greater than 5 cm are included in the reference measurements. All of the five test datasets have
a reference location. Only Plot 1 has references for tree height and DBH.

Table 1. Details of the TLS scanning data.

Plot Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

Acquisition time Summer, 2014
Instrument Leica HDS6100

Field of view 360˝ ˆ 310˝

Beam divergence 0.22 mrad
Increment 0.036˝ (horizontal)/0.036˝ (vertical)
Plot size 32 m ˆ 32 m

Number of points (million) 47.18 68.11 32.87 50.42 69.12
Point density (points/cm2) 4.9 7.3 3.5 5.2 7.7

Number of trees 52 80 95 67 59

3.2. Extracting Results of Individual Trees

The values of six parameters required for the proposed method are listed in Table 2. The key
procedures of trunk reorganization and crown point delineation for the five datasets are illustrated in
Figure 6. The individual trees’ extraction results of five different TLS forest datasets are exhibited both
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in top and side view, respectively, where the top view results are attached with numbers denoting the
number of detected trees.

Table 2. Parameters’ setting for experimental datasets.

Parameter Descriptor Value

Hslice Thickness of horizontal slice 0.2 m
rc_min Min radius of cylinder in trunk point extraction 0.05 m
rc_max Max radius of cylinder in trunk point extraction 0.5 m

σ The average point span in Bp,q calculation 1.0

k Constant value to determine the buffer zone as the input point
cloud of the hierarchical minimum cut 1.25

Weight(p,S) Weight of edges’ t-links connecting input points to terminal S 0.8
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Figure 6. Key procedures in individual tree detection of Plot 1. (a) The original TLS point clouds;
(b) trunk detection result, where the detected trunks are marked brown, the ground points are marked
gray and the other points are marked green; (c) side view of individual trees’ detection result, where
detected trees are randomly colored and the same color represents one tree; (d) top view of individual
trees’ detection result, where the number represents the number of detected trees.

Figure 6 illustrates the individual tree detection result at Plot 1. Tree detection results of Plots
2 to 5 are given in the Appendix. It can be seen that the tree trunks are well detected if the trunks
are not seriously overlaid by branches, showing that the method works well in detecting trunks with
recognizable shapes.

Figure 7 shows the connected tree detection results according to the hierarchical minimum cut
operator. It can be seen that although the trees are distributed in a local dense forest area and tree
crowns are connected and clumped, the individual trees are well detected. This is owed to two aspects.



Remote Sens. 2016, 8, 372 10 of 18

On the one hand, the well-detected tree trunks lay a key foundation for the hierarchical minimum cut
operator for further extracting of the tree crowns. On the other hand, the hierarchical minimum cut
operator successfully isolates the tree crown points corresponding to each tree trunk from the highest
one to the lowest one. It can be seen that the minimum cut algorithm separates individual trees correctly
in forest TLS point clouds. Figure 7 illustrates that the hierarchical minimum cut operator is effective
and successful at isolating individual trees from a forest stand or plot area even with densely-connected
or clumped trees. Particularly, as illustrated in Figure 7c,d, the closely-attached trees in a multi-layer
canopy are also correctly segmented and detected. However, the little tree is not detected (as illustrated
in Figure 7e) by the proposed methods of Lindenbergh et al. [39]. This demonstrates that the hierarchical
minimum cut operator achieves an optimized segmentation result with the detected tree trunks as
seed points, mitigating the possible under-segmentation in connected crowns and crowns in the in
multi-layer canopy.
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Figure 7. The detection results of trees with connected and clumped crowns by the hierarchical
minimum cut algorithm. (a) The original point cloud of Test Data 1, where trees are distributed in
a local dense area and tree crowns are connected and clumped; (b) the individual tree detection result
of Test Data 1 by the hierarchical minimum cut; (c) the original point cloud of Test Data 2, where
tree crowns are connected and in a multi-layer canopy; (d) the individual tree detection result of Test
Data 2 by the hierarchical minimum cut; (e) the individual tree detection result of Test Data 2 by
Lindenbergh et al. [39].

In light of the proposed methodological steps, the precondition of isolating tree crown points
is highly required in order to correctly detect tree trunk points first. Hence, the trees may fail to be
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detected if the tree trunks do not show pole-like object shapes or the tree trunks are seriously occluded,
as illustrated in Figure 8a,b. Accordingly, the crown points of the missed trunks may be segmented as
the neighboring tree crowns if two tree trunks are closely distributed and one tree trunk fails to be
detected. Another kind of error results from the segmentation of trees with a bifurcation at the bottom
of the trunk. In this case, the tree will be spilt into two independent trees, as illustrated in Figure 8c.
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3.3. Accuracy Assessment and Evaluation of the Proposed Method

The parameters of the individual trees were calculated according to the detected results of the
proposed method. We compared the calculated structure metrics at the individual tree levels of Plot 1
(tree location, height and DBH) with the ground truth and calculated the following factors to evaluate
the proposed method.

‚ TP (true positive): the number of trees detected with correct ground positions.
‚ FP (false positive): when the trunk is not detected and missed and the corresponding tree crown

is allocated to the neighboring trees.
‚ FN (false negative): the number of ground truth trees undetected.

Moreover, the recall, precision and F-measure were also calculated for the evaluation of the
proposed method.

recall “
TP

TP` FN
ˆ 100% (11)

precision “
TP

TP` FP
ˆ 100% (12)

F´Measure “
2TP

2TP` FP` FN
ˆ 100% (13)

Table 3 demonstrates the efficiency of the proposed method on the five processed datasets.
It shows that the proposed method enables the detection of individual trees with higher TP numbers
in most cases. On the other hand, the FPs are mainly contributed by the failed detection of tree trunks.
For example, many tree trunks are missed because of non-pole-like shapes (as illustrated in Figure 8a)
in Plot 5, resulting in a relatively low recall. The structure metrics (e.g., height, DBH) of trees were
also calculated according to the individual tree detection results. Figures 9 and 10 show comparisons
between TLS-derived locations, tree heights and DBHs and field measurements in Plot 1.



Remote Sens. 2016, 8, 372 12 of 18

Table 3. Detection rates of individual trees in five forest datasets.

Plot TP Reference Trees FP FN Recall Precision F-Measure

1 47 52 5 5 90.38% 90.38% 90.38%
2 75 80 7 5 93.75% 91.46% 92.59%
3 91 95 9 4 95.79% 91.00% 93.33%
4 62 67 6 5 92.54% 91.18% 91.85%
5 47 59 7 12 79.66% 87.04% 83.19%

Remote Sens. 2016, 8, 372 12 of 18 

 

Table 3 demonstrates the efficiency of the proposed method on the five processed datasets. It 
shows that the proposed method enables the detection of individual trees with higher TP numbers 
in most cases. On the other hand, the FPs are mainly contributed by the failed detection of tree trunks. 
For example, many tree trunks are missed because of non-pole-like shapes (as illustrated in  
Figure 8a) in Plot 5, resulting in a relatively low recall. The structure metrics (e.g., height, DBH) of trees 
were also calculated according to the individual tree detection results. Figures 9 and 10 show 
comparisons between TLS-derived locations, tree heights and DBHs and field measurements in Plot 1. 

Table 3. Detection rates of individual trees in five forest datasets. 

Plot TP Reference Trees FP FN Recall Precision F-Measure
1 47 52 5 5 90.38% 90.38% 90.38% 
2 75 80 7 5 93.75% 91.46% 92.59% 
3 91 95 9 4 95.79% 91.00% 93.33% 
4 62 67 6 5 92.54% 91.18% 91.85% 
5 47 59 7 12 79.66% 87.04% 83.19% 

 

Figure 9. Deviations of detected tree locations and field observation. 

The comparison in Figures 9 and 10 shows that the locations of the trees in Plot 1 were correctly 
calculated by the proposed method. The comparison between the tree locations indicates that the 
maximum deviation is less than 0.11 m, showing the validity of the proposed method. Besides, the 
comparison between the tree heights indicates good consistency with field measurements. The 
comparison between DBHs also shows good consistency with field measurements. It also shows that 
three trees have big height differences with the field measurements. The visual inspection found that 
these trees are located near the border of Plot 1 and have sparse points on the tree crowns. The sparse 
points on the tree crowns are weakly connected according to the hierarchical minimum cut operator, 
resulting in the missing of tree crowns and the large deviation of height calculation. The regression 
analysis of tree heights shows that the R-squared values are 0.79 and 0.91 and the RMSEs are 1.25 m 
and 0.83 m with/without the three trees, respectively, as illustrated in Figure 11a,b. It shows that the 
proposed method estimates tree heights with good accuracy. 

0

0.05

0.1

0.15

0 5 10 15 20 25 30 35 40 45 50D
ev

ia
tio

ns
 o

f d
et

ec
te

d 
tr

ee
 

lo
ca

tio
ns

/m

The index of detected trees

Figure 9. Deviations of detected tree locations and field observation.Remote Sens. 2016, 8, 372 13 of 18 

 

(a)

 
(b)

Figure 10. Comparison of tree metrics acquired from TLS analysis and field observation. (a) Tree 
height comparison; (b) DBH comparison. 

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50

Tr
ee

 h
ei

gh
t/m

Index of detected trees

TLS analysis height

Field measurement height

0
5

10
15
20
25
30
35
40
45
50

0 5 10 15 20 25 30 35 40 45 50

D
BH

\c
m

Index of detected trees

TLS analysis DBH
Field measurement DBH

Figure 10. Comparison of tree metrics acquired from TLS analysis and field observation. (a) Tree height
comparison; (b) DBH comparison.



Remote Sens. 2016, 8, 372 13 of 18

The comparison in Figures 9 and 10 shows that the locations of the trees in Plot 1 were
correctly calculated by the proposed method. The comparison between the tree locations indicates
that the maximum deviation is less than 0.11 m, showing the validity of the proposed method.
Besides, the comparison between the tree heights indicates good consistency with field measurements.
The comparison between DBHs also shows good consistency with field measurements. It also shows
that three trees have big height differences with the field measurements. The visual inspection found
that these trees are located near the border of Plot 1 and have sparse points on the tree crowns.
The sparse points on the tree crowns are weakly connected according to the hierarchical minimum
cut operator, resulting in the missing of tree crowns and the large deviation of height calculation.
The regression analysis of tree heights shows that the R-squared values are 0.79 and 0.91 and the
RMSEs are 1.25 m and 0.83 m with/without the three trees, respectively, as illustrated in Figure 11a,b.
It shows that the proposed method estimates tree heights with good accuracy.
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4. Conclusions

The paper proposes a novel method for isolating individual trees and calculates structure metrics
at the individual tree level from large-scale forest scene point clouds. The trunks are recognized first
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by detecting the repetitive appearance of cylindrical segment units in the vertical direction. Then,
they are used as markers to delineate individual trees by the proposed hierarchical minimum cut
method. The hierarchical minimum cut method achieves good balance between over-segmentation
and under-segmentation of tree point clouds, resulting in a successful detection of tree crown points
from connected and clumped trees. The experimental studies show that the proposed method provides
a powerful solution to isolate individual trees from TLS point in terms of accuracy and correctness.
The individual tree detection from TLS point clouds also lay a good foundation for the accurate
calculation of the structure metrics of trees, providing good datasets for biomass estimation and
forest inventory.
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Appendix

The following Figures A1–A4 illustrate the individual tree detection results of Plots 2 to 5. For each
plot, (a) displays the original point cloud colored by height level, (b) displays the trunk detection
results, where the detected trunks are marked brown, the ground points are marked gray and the
other points are marked green, (c) displays the side view of the individual tree detection results, where
detected trees are randomly colored and the same color represents one tree, and (d) displays the top
view of the individual tree detection results, where the number represents the number of detected trees.
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