Next Article in Journal
Continent-Wide 2-D Co-Seismic Deformation of the 2015 Mw 8.3 Illapel, Chile Earthquake Derived from Sentinel-1A Data: Correction of Azimuth Co-Registration Error
Previous Article in Journal
An Object-Based Image Analysis Approach for Detecting Penguin Guano in very High Spatial Resolution Satellite Images
Article Menu

Export Article

Open AccessArticle
Remote Sens. 2016, 8(5), 372; doi:10.3390/rs8050372

Automatic Forest Mapping at Individual Tree Levels from Terrestrial Laser Scanning Point Clouds with a Hierarchical Minimum Cut Method

1
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
2
Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China
*
Authors to whom correspondence should be addressed.
Academic Editors: Nicolas Baghdadi, Lars T. Waser, Josef Kellndorfer and Prasad S. Thenkabail
Received: 4 January 2016 / Revised: 12 April 2016 / Accepted: 25 April 2016 / Published: 3 May 2016
View Full-Text   |   Download PDF [7662 KB, uploaded 3 May 2016]   |  

Abstract

Laser scanning technology plays an important role in forest inventory, as it enables accurate 3D information capturing in a fast and environmentally-friendly manner. The goal of this study is to develop methods for detecting and discriminating individual trees from TLS point clouds of five plots in a boreal coniferous forest. The proposed hierarchical minimum cut method adopts the detected trunk points that are recognized according to pole like shape segmentation as foreground seed points and other points as background seed points, respectively. It constructs the undirected weighted graph of the foreground and background seed points to deduce a cost function for tree crown point segmentation with the decreasing ranking of tree trunk heights. The intermediate results lead to global optimization segmentation of individual trees in a hierarchical order. Finally, the structure metrics of the detected individual trees are calculated and checked with field observations. Plots with different attributes were selected to verify the proposed method, and the experimental studies show that the proposed method is efficient and robust for extracting individual trees from TLS point clouds in terms of the recall of 90.42%. View Full-Text
Keywords: terrestrial laser scanning; forest mapping; minimum cut; individual tree detection; structure metrics terrestrial laser scanning; forest mapping; minimum cut; individual tree detection; structure metrics
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Yang, B.; Dai, W.; Dong, Z.; Liu, Y. Automatic Forest Mapping at Individual Tree Levels from Terrestrial Laser Scanning Point Clouds with a Hierarchical Minimum Cut Method. Remote Sens. 2016, 8, 372.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top