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Abstract: The aim of this study is to evaluate the Greenhouse gases Observation SATellite (GOSAT)
column-averaged CH4 dry air mole fraction (XCH4) data by using geostatistical analysis and
conducting comparisons with model simulations and surface emissions. Firstly, we propose the use
of a data-driven mapping approach based on spatio-temporal geostatistics to generate a regular and
gridded mapping dataset of XCH4 over Monsoon Asia using five years of XCH4 retrievals by GOSAT
from June 2009 to May 2014. The prediction accuracy of the mapping approach is assessed by using
cross-validation, which results in a significantly high correlation of 0.91 and a small mean absolute
prediction error of 8.77 ppb between the observed dataset and the prediction dataset. Secondly, with
the mapping data, we investigate the spatial and temporal variations of XCH4 over Monsoon Asia
and compare the results with previous studies on ground and other satellite observations. Thirdly,
we compare the mapping XCH4 with model simulations from CarbonTracker-CH4 and find their
spatial patterns very consistent, but GOSAT observations are more able to capture the local variability
of XCH4. Finally, by correlating the mapping data with surface emission inventory, we find the
geographical distribution of high CH4 values correspond well with strong emissions as indicated in
the inventory map. Over the five-year period, the two datasets show a significant high correlation
coefficient (0.80), indicating the dominant role of surface emissions in determining the distribution of
XCH4 concentration in this region and suggesting a promising statistical way of constraining surface
CH4 sources and sinks, which is simple and easy to implement using satellite observations over
a long term period.
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1. Introduction

Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas after
carbon dioxide (CO2). Under the driving influence of human activities, such as fossil fuel combustion,
global averaged CH4 concentration has increased from pre-industrial levels of 722 ppb to 1833 ppb in
2014 [1] and has kept an average growth rate of about 6 ppb per year since 2007 [2]. CH4 has a stronger
global warming potential than carbon dioxide; therefore, monitoring CH4 might be a more effective
way to mitigate the short-term greenhouse effects [3].

Current ground-based observation station networks have provided long-term greenhouse gas
observations with high precision; however, the stations are still sparse and inhomogeneous [4]. Satellite
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observations of CH4 columns, because of their global coverage and high measurement density, can
complement the surface network and be used to improve our understanding of carbon cycle and its
changes. Current satellite instruments for measuring the atmospheric CH4 total column include the
SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) onboard
the European Space Agency’s Environmental Satellite (ENVISAT) [5] and the Thermal And Near
infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-FTS) operated on
the Greenhouse gases Observation SATelite (GOSAT) [6]. CH4 retrievals from SCIAMACHY, which
began operation in 2003, showed the promising role of satellite observations in understanding the
global CH4 distribution and variation [7], but communication with ENVISAT was unfortunately lost
in 2012. The Japanese GOSAT, which was successfully launched in 2009, is the world’s first spacecraft
dedicated to quantifying the atmospheric CO2 and CH4 concentrations [6]. The column-averaged
dry-air mole fractions of atmospheric CH4 (XCH4) are retrieved from Short-Wavelength InfraRed
(SWIR) solar spectra observed by TANSO-FTS [8]. The GOSAT aims at providing XCH4 measurements
with accuracy of 2% at a spatial scale of 1000 km square and in three-month averages [9]. The major
sources of CH4 retrieval errors are aerosols and clouds, especially in high altitude, because of their
strongly modification of the equivalent optical path length [8].

However, due to the TANSO-FTS footprint observation mode, sky conditions and retrieval
constraints, valid XCH4 retrievals from GOSAT are greatly reduced and irregularly distributed in
space and time, and have a lot of gaps between them. These limitations make it difficult to directly
infer the spatio-temporal variations of XCH4 and meet the requirements of practical application and
further scientific research using the data. Therefore, it is essential to develop a gap-filling method
for generating regular XCH4 mapping products from the satellite patchy observations. A series
of studies have been carried out in mapping GOSAT retrievals based on the effective geostatistics
framework [10,11], due to its great advantages in utilizing correlation structure within the greenhouse
gas observations and its best linear unbiased prediction capability. The ordinary kriging (OK) approach
was first applied by Tomosada et al. [12] to predict global XCO2 concentration, by considering the
spatial variability of GOSAT Level 2 XCO2 data in different land types and directions. The method was
further adopted by National Institute for Environmental Studies (NIES) GOSAT to generate the GOSAT
Level 3 data products of global monthly mean XCO2 and XCH4 [13]. Hammerling et al. [14] improved
the OK method by applying a moving window technique to generate global XCO2 distribution
map and found that the prediction precisions are the best for temporal resolution in two to four
days. Tadić et al. [15,16] further explored the combination of the moving window block kriging
technique and ensemble neural networks. To optimize calculation of large satellite datasets, fixed
rank kriging (FRK) approach was introduced by Katzfuss et al. [17] to interpolate simulated Orbiting
Carbon Observatory (OCO) XCO2 data, combined with expectation maximization (EM) algorithm,
which resulted in a more rapid and accurate prediction. Furthermore, to improve the spatial-only
geostatistics in mapping by previous studies, Zeng et al. [18–20] proposed the use of the spatio-temporal
geostatistical prediction by incorporating the inherent temporal correlation structure between XCO2

observations. The spatio-temporal geostatistical method was carried out to fill the gaps in GOSAT
XCO2 data and demonstrated a better predicted precision compared with spatial-only method. More
descriptions about spatio-temporal geostatistics and analysis on the mapping data can be found in
Guo et al. [21] and Liu et al. [22]. However, these studies mostly focused on XCO2 data, while the
effectiveness of these mapping methods on XCH4 data, especially the spatio-temporal geostatistical
approach, has not been comprehensively studied yet. Given the important role of atmospheric CH4

dataset in understanding global carbon cycle, our study is dedicated to developing a mapping method
for satellite-observed XCH4 data based on spatio-temporal geostatistics and applying the method
to five years of GOSAT XCH4 data over most of Monsoon Asia, which covers all or part of east and
central Asia, southeast Asia and the Indian sub-continent. As shown in Figure 1a, the study region
extends from 18˝N to 57˝N in latitude and from 70˝E to 138˝E in longitude.
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Figure 1. (a) spatial distribution of available GOSAT XCH4 data number in each 1° by 1° grid and (b) 
temporal variation of available GOSAT XCH4 data number every three days. 

Previous studies based on satellite and ground-based observations [7,23–25] have showed that 
Monsoon Asia is one of the highest CH4 emission regions in the world, due to its strong 
anthropogenic emissions, such as those from rice paddies, and natural emissions, such as those from 
natural wetlands. The spatial and temporal variations of CH4 over this region have been investigated 
in several previous studies. Xiong et al. [26] investigated the CH4 enhancement in the middle to upper 
troposphere in South Asia from July to September by comparing satellite CH4 retrievals from the 
Atmospheric Infrared Sounder (AIRS) on the Earth Observing System (EOS)/Aqua platform with the 
model simulations from global tracer transport model version 3 (TM3), and concluded that the 
enhancement is contributed by both local surface emissions and convective transport processes. This 
study is complemented with the work by Qin et al. [27], which analyzed the spatio-temporal 
variations of XCH4 over the Sichuan Basin using GOSAT data, and attributed the consistent high 
XCH4 values in the basin to the strong regional paddy field emissions and typical closed topography 
of the basin. Moreover, Ishizawa et al. [28] analyzed the large XCH4 anomaly in summer 2013 over 
Northeast Asia, as observed by GOSAT and ground-based instruments, and attributed the anomaly 
to the transport of CH4-rich air to Japan from strong CH4 source areas in East China. A more 
comprehensive study by Hayashida et al. [25] conducted detailed analysis on the characteristics of 
XCH4 data in Monsoon Asia using SCIAMACHY retrievals, and concluded that the distribution of 
high XCH4 values agreed well with regional emissions over this region. Though insights on CH4 
distribution and variation were gained from these studies, they were only focusing on some specific 
regions and using simple data binning and averaging methods to generate monthly or seasonal data 
for their analysis. The binning and averaging method ignores the XCH4 variation within the binning 
blocks and lacks quantitative uncertainty assessment [15]. In addition, the GOSAT XCH4 data, which 
have higher precision than SCIAMACHY data, over the whole Monsoon Asia region, has not been 
studied and assessed, mainly due to the limitation of the data coverage. In this study, we aim to 
evaluate five years of GOSAT XCH4 retrievals over Monsoon Asia by first proposing the use of spatio-
temporal geostatistics for mapping the XCH4 data over the Monsoon Asia region using five years of 
GOSAT data. This spatio-temporal geostatistical approach has the advantage of utilizing the joint 
spatial and temporal dependences between observations and including a larger dataset both in space 
and time to support stable parameter estimation and prediction [11,29]. With the mapping XCH4 data, 
we further analyze the spatio-temporal variations of XCH4, and compare the results with model 
simulations and surface CH4 emissions from bottom-up estimation. 

In Section 2, we describe all the used data, and in Section 3, we introduce the spatio-temporal 
geostatistics and evaluation method of mapping precision. Sections 4 and 5 demonstrate results and 
discussions from analysis of the spatio-temporal XCH4 variations, comparison with model 
simulations and correlation with surface emissions. The summary is presented in Section 6. 
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Figure 1. (a) spatial distribution of available GOSAT XCH4 data number in each 1˝ by 1˝ grid and
(b) temporal variation of available GOSAT XCH4 data number every three days.

Previous studies based on satellite and ground-based observations [7,23–25] have showed that
Monsoon Asia is one of the highest CH4 emission regions in the world, due to its strong anthropogenic
emissions, such as those from rice paddies, and natural emissions, such as those from natural wetlands.
The spatial and temporal variations of CH4 over this region have been investigated in several previous
studies. Xiong et al. [26] investigated the CH4 enhancement in the middle to upper troposphere in
South Asia from July to September by comparing satellite CH4 retrievals from the Atmospheric Infrared
Sounder (AIRS) on the Earth Observing System (EOS)/Aqua platform with the model simulations from
global tracer transport model version 3 (TM3), and concluded that the enhancement is contributed by
both local surface emissions and convective transport processes. This study is complemented with the
work by Qin et al. [27], which analyzed the spatio-temporal variations of XCH4 over the Sichuan Basin
using GOSAT data, and attributed the consistent high XCH4 values in the basin to the strong regional
paddy field emissions and typical closed topography of the basin. Moreover, Ishizawa et al. [28]
analyzed the large XCH4 anomaly in summer 2013 over Northeast Asia, as observed by GOSAT and
ground-based instruments, and attributed the anomaly to the transport of CH4-rich air to Japan from
strong CH4 source areas in East China. A more comprehensive study by Hayashida et al. [25] conducted
detailed analysis on the characteristics of XCH4 data in Monsoon Asia using SCIAMACHY retrievals,
and concluded that the distribution of high XCH4 values agreed well with regional emissions over
this region. Though insights on CH4 distribution and variation were gained from these studies, they
were only focusing on some specific regions and using simple data binning and averaging methods
to generate monthly or seasonal data for their analysis. The binning and averaging method ignores
the XCH4 variation within the binning blocks and lacks quantitative uncertainty assessment [15].
In addition, the GOSAT XCH4 data, which have higher precision than SCIAMACHY data, over the
whole Monsoon Asia region, has not been studied and assessed, mainly due to the limitation of the data
coverage. In this study, we aim to evaluate five years of GOSAT XCH4 retrievals over Monsoon Asia by
first proposing the use of spatio-temporal geostatistics for mapping the XCH4 data over the Monsoon
Asia region using five years of GOSAT data. This spatio-temporal geostatistical approach has the
advantage of utilizing the joint spatial and temporal dependences between observations and including
a larger dataset both in space and time to support stable parameter estimation and prediction [11,29].
With the mapping XCH4 data, we further analyze the spatio-temporal variations of XCH4, and compare
the results with model simulations and surface CH4 emissions from bottom-up estimation.

In Section 2, we describe all the used data, and in Section 3, we introduce the spatio-temporal
geostatistics and evaluation method of mapping precision. Sections 4 and 5 demonstrate results and
discussions from analysis of the spatio-temporal XCH4 variations, comparison with model simulations
and correlation with surface emissions. The summary is presented in Section 6.
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2. Data

2.1. GOSAT XCH4 Retrievals

We collected five years of GOSAT Level 2 XCH4 data products (version 02.xx) for General Users [8],
ranging from June 2009 to May 2014 over the land area of the Monsoon Asia region, as shown in
Figure 1a. Validated by the Total Carbon Column Observing Network (TCCON), the GOSAT XCH4

data show a mean global bias of ´5.9 ppb and standard deviation of 12.6 ppb [30]. GOSAT has
a recurrent cycle of three days, and, therefore, in this study we set the basic time unit of the mapping
data to be three days. The instantaneous field of view of TANSO-FTS is 15.8 mrad, corresponding
to a nadir footprint diameter of 10.5 km approximately. Figure 1 shows the spatial distribution and
temporal variation of the available data number from satellite observations. The total number of
retrievals is irregularly distributed both in space and time. From Figure 1a, it can be seen that the
number of retrievals is larger over northern China and India than the western China and high latitude
areas, mainly due to the limitations of clear sky conditions or large solar zenith angle. From Figure 1b,
we can see the number of retrievals is larger in winter than in summer when Monsoon brings much
more cloudiness in this region.

2.2. CH4 Simulations from CarbonTracker

CarbonTracker-CH4 is an assimilating system for atmospheric CH4 developed by the National
Oceanic and Atmospheric Administration (NOAA). Coupled with the atmospheric tracer transport
model version 5 (TM5), CarbonTracker-CH4 assimilates global atmosphere CH4 observations from
surface air samples and tall towers to track global CH4 sources and sinks [31,32]. The current release
of CarbonTracker-CH4, CT2010, produces estimates of global atmospheric CH4 mole fractions and
surface-atmosphere fluxes from January 2000 to December 2010. The model produces regularly
gridded CH4 at a spatial resolution of 4˝ in latitude by 6˝ in longitude with 34 vertical levels, and with
a temporal resolution of one day. In comparison with surface observations, the model outputs show
a mean bias of ´10.4 ppb [32]. The CH4 mole fractions profile data from the model are transformed to
XCH4 by using the pressure-averaged method described by Connor et al. [33]. When comparing XCH4

data from GOSAT and CT2010, the difference due to averaging kernel effect [34] is not considered here,
since the difference between applying and not applying the averaging kernel smoothing on model
simulations is very small, which is less than 0.1% in XCO2 as shown in Cogan et al. [35].

2.3. Emission Inventory from EDGAR

CH4 Emission inventory data are derived by bottom-up estimates using CH4 emissions statistics
from human activities and natural processes, which corresponds to anthropogenic sources and
natural sources, respectively. In this study, we collected annual CH4 emissions data in 2010 from
Emission Database for Global Atmospheric Research (EDGAR) in version 4.2 FT2010, released by
the European Commission’s Joint Research Centre and Netherlands Environmental Assessment
Agency [36]. The inventory data have a spatial resolution of 0.1˝. The EDGAR CH4 emission data
have been used as a fundamental reference for many surface emission related studies [37].

3. Mapping Based on Spatio-Temporal Geostatistics

3.1. Methodology

We applied the spatio-temporal geostatistics to the five years of GOSAT XCH4 retrievals to produce
the XCH4 mapping data product in spatial resolution of 1˝ by 1˝ and temporal resolution of three days.
A theoretical framework of the spatio-temporal geostatistical mapping approach for XCO2 can be
found in Zeng et al. [19]. Here, we introduce the essential procedures of implementing spatio-temporal
geostatistics and describe some adjustments necessary for XCH4. Spatio-temporal geostatistical
methods are concerned with analyzing the spatial-temporal correlation structure of regional variables
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using the variogram, and optimal prediction (kriging) of the variable at an unsampled location and
time [11]. The implementation of spatio-temporal geostatistics in this study can be divided into the
following three main steps, analysis of XCH4 trend in space and time, modeling of correlation structure,
and space-time kriging prediction.

3.1.1. Analysis of XCH4 Trend in Space and Time

The spatio-temporal variations of XCH4 data can be represented by a variable Z “

tZ ps, tq|s P S, t P Tu that varies within a spatial domain S and time interval T. We decompose the
spatio-temporal variations into an inherent and deterministic trend component m ps, tq and a stochastic
residual component R ps, tq, as shown in Equation (1),

Z ps, tq “ m ps, tq ` R ps, tq . (1)

The deterministic spatial trend is determined by the spatial distribution of CH4 sources and
sinks, while the deterministic temporal trend, which consists of the inherent seasonal CH4 cycle and
an annual CH4 increase, is determined by temporal variation of CH4 sources and sinks [2]. As in
Zeng et al. [19], we used a linear surface function for modeling the spatial trend, and a set of annual
harmonic functions with a simple linear function for the temporal trend, as shown in Equation (2),

m ps, tq “ ra0 ` a1 ˚ s p1q ` a2 ˚ s p2q s ` ra3 ˚ t`
ÿ

4
i“1 pβi sin piωtq ` γi cos piωtqqs, (2)

where ω “ 2˚π
12 since the period is 12 months, s p1q and s p2q are latitude and longitude of the spatial

location, t is time in months, and a0´3, β1´4 and γ1´4 are parameters to be estimated using the
least-squares technique. The modeled trend components in space and time are shown in Figure 2.
An increasing spatial trend from north to south can be clearly seen, which is determined by the
distribution of surface emissions [25]. On the other hand, the temporal trend shows a clear annual
increase and a seasonal cycle. The trend component is then subtracted from the full dataset to produce
the residual component for the following analysis.
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Figure 2. (a) spatial trend surface of XCH4 in the study area derived from five years of GOSAT data
from June 2009 to May 2014; and (b) the temporal trend (red line) obtained by fitting the annual
harmonic function and a linear function to the time series of XCH4 residuals (black dots), which is
calculated from averaging the spatially detrended XCH4 data in the whole study area.

3.1.2. Modeling Correlation Structure of XCH4

The spatio-temporal correlation structure of the XCH4 data describes the correlation between
any two points separated in space and time. The correlation structure can be characterized by the
spatio-temporal variogram model [11]. The experimental variogram at spatial lag hs and temporal lag
ht, 2γ̂ phs, htq, is computed by Equation (3),
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2γ̂ phs, htq “
1

N phs, htq

ÿ

Nphs,htq
rR ps, tq ´ R ps` hs, t` htqs

2 , (3)

where N phs, htq is the number of pairs in the space and time lags. Following Zeng et al. [19], we
set the intervals for spatial lag and temporal lag to be 100 km and 3-day, respectively. That is, the
tolerances for spatial and temporal lags, as defined in De Iaco et al. [29], in calculating the variogram,
are set to be 50 km and 1.5 days, respectively. In this study, the distance between observations is
defined by the great-circle distance based on the latitude and longitude of the observations. Half of
a variogram quantity, γ̂ phs, htq, has been called a semi-variance. A spatio-temporal variogram model,
γ phs, htq, is then fitted to experimental variogram. The spatio-temporal variogram model adopted
here is a combination of the product-sum model [29,38] and an extra global nugget NST to capture the
nugget effect [10], and is given by Equation (4),

γ ph, uq “ γS phq ` γT puq ´ κ ¨ γS phqγT puq ` NST , (4)

where γS phq and γT puq are the exponential marginal variograms in space and time, and κ is a constant
to be estimated. For modeling the spatio-temporal variogram in this study, all parameters are
estimated simultaneously as in Zeng et al. [19] instead of sequentially as in De Iaco et al. [29].
As shown in Zeng et al. [19], this simultaneous estimation method is more precise for GOSAT
data than the conventional sequential estimation method. The iterative nonlinear weighted least
squared technique [10] has been used to estimate the model parameters. The calculated experimental
spatio-temporal variogram and the corresponding modeled spatio-temporal variogram are shown
in Figure 3. In the variogram, the semi-variance values when spatial and temporal lag are closest
to 0 and infinity are called nugget and sill, respectively. The ratio of nugget to sill, expressed as
a percentage, can be used as an indicator to classify data dependence [39]. In general, a ratio less than
0.25 indicates a strong spatial or temporal dependence, between 0.25 and 0.75, a moderate spatial
or temporal dependence, and larger than 0.75 a weak spatial or temporal dependence. In this study,
the ratio of nugget to spatial sill, temporal sill and global sill are 0.20, 0.48 and 0.16, respectively,
indicating a strong dependence between XCH4 retrievals in space, a moderate dependence between
XCH4 retrievals in time, and a strong overall spatio-temporal dependence.

Remote Sens. 2016, 82016, 8, 361 

6 

tolerances for spatial and temporal lags, as defined in De Iaco et al. [29], in calculating the variogram, 
are set to be 50 km and 1.5 days, respectively. In this study, the distance between observations is 
defined by the great-circle distance based on the latitude and longitude of the observations. Half of a 
variogram quantity, ߛො(ℎ௦, ℎ௧), has been called a semi-variance. A spatio-temporal variogram model, ߛ(ℎ௦, ℎ௧), is then fitted to experimental variogram. The spatio-temporal variogram model adopted 
here is a combination of the product-sum model [29,38] and an extra global nugget ௌ்ܰ to capture 
the nugget effect [10], and is given by Equation (4), ߛ(ℎ, (ݑ = ௌ(ℎ)ߛ + (ݑ)்ߛ − κ ⋅ (ݑ)்ߛௌ(ℎ)ߛ + ௌ்ܰ, (4)

where ߛௌ(ℎ) and (ݑ)்ߛ are the exponential marginal variograms in space and time, and κ is a 
constant to be estimated. For modeling the spatio-temporal variogram in this study, all parameters 
are estimated simultaneously as in Zeng et al. [19] instead of sequentially as in De Iaco et al. [29]. As 
shown in Zeng et al. [19], this simultaneous estimation method is more precise for GOSAT data than 
the conventional sequential estimation method. The iterative nonlinear weighted least squared 
technique [10] has been used to estimate the model parameters. The calculated experimental spatio-
temporal variogram and the corresponding modeled spatio-temporal variogram are shown in Figure 
3. In the variogram, the semi-variance values when spatial and temporal lag are closest to 0 and 
infinity are called nugget and sill, respectively. The ratio of nugget to sill, expressed as a percentage, 
can be used as an indicator to classify data dependence [39]. In general, a ratio less than 0.25 indicates 
a strong spatial or temporal dependence, between 0.25 and 0.75, a moderate spatial or temporal 
dependence, and larger than 0.75 a weak spatial or temporal dependence. In this study, the ratio of 
nugget to spatial sill, temporal sill and global sill are 0.20, 0.48 and 0.16, respectively, indicating a 
strong dependence between XCH4 retrievals in space, a moderate dependence between XCH4 
retrievals in time, and a strong overall spatio-temporal dependence. 

(a) (b) 

Figure 3. The experimental spatial-temporal variogram surface of the XCH4 residuals in (a) and its 
fitted variogram model in (b). 

3.1.3. Space-Time Kriging Prediction of XCH4 

Based on the modeled spatio-temporal variogram, space-time kriging can be implemented to 
predict the XCH4 value at unobserved locations using surrounding observations and produce the 
mapping XCH4 over Monsoon Asia. The kriging makes an optimal prediction ܴ(ݏ଴,  ଴) as the linearݐ
weighted sum of the surrounding GOSAT XCH4 observations that minimizes the mean squared 
prediction error, as shown in Equation (5), ෠ܴ(ݏ଴, (଴ݐ = ∑ [λ୧ܴ(ݏ௜, ௜)]௡௜ୀଵݐ ,  (5)

where λ୧ is the weight assigned to a known sample ܴ(ݏ௜,  ௜). The weights for the observations areݐ
determined by the geometry of the observations and the modeled spatio-temporal variogram. The 
kriging prediction variance, a measurement of prediction uncertainty, is given by Equation (6), 

0
200

400
600

0
15

30
45

150

200

250

300

350

Spatial Lag (km)

Temporal Lag (day)

Se
m

iv
ar

ian
ce

 (p
pb

2 )

0
200

400
600

0
15

30
45

150

200

250

300

350

Spatial Lag (km)

Temporal Lag (day)

Se
m

iv
ar

ian
ce

 (p
pb

2 )

Figure 3. The experimental spatial-temporal variogram surface of the XCH4 residuals in (a) and its
fitted variogram model in (b).

3.1.3. Space-Time Kriging Prediction of XCH4

Based on the modeled spatio-temporal variogram, space-time kriging can be implemented to
predict the XCH4 value at unobserved locations using surrounding observations and produce the
mapping XCH4 over Monsoon Asia. The kriging makes an optimal prediction R ps0, t0q as the linear
weighted sum of the surrounding GOSAT XCH4 observations that minimizes the mean squared
prediction error, as shown in Equation (5),
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R̂ ps0, t0q “
ÿ

n
i“1 rλiR psi, tiqs , (5)

where λi is the weight assigned to a known sample R psi, tiq. The weights for the observations are
determined by the geometry of the observations and the modeled spatio-temporal variogram. The
kriging prediction variance, a measurement of prediction uncertainty, is given by Equation (6),

σ2 “ γ0
TΓ´1γ0 ´

`

1TΓ´1γ0 ´ 1
˘2

1TΓ´11
, (6)

where Γ pi, jq “ γ
`
ˇ

ˇsi ´ sj |, | ti ´ tj
ˇ

ˇ

˘

, γ0 pi, 1q “ γ p|si ´ s0| , |ti ´ t0|q, and 1 is n ˆ 1 unit vector.
In each kriging prediction, theoretically, the optimal prediction is achieved when using all available
observations. However, the total number of N = 51742 in this study makes it not practically feasible
for the kriging calculation because, to solve the inversion of such N by N matrix for each prediction,
is almost computationally impossible. Following Zeng et al. [19], we used the kriging neighborhood,
which is a cylinder in space and time, to define the surrounding data. The radii of the neighborhood
vary from 200 to 300 km in space and 15 to 45 days in time to make sure the number of observations
in the cylinder neighborhood is no less than 20. In order to verify the validity of the used kriging
neighborhood in representing local data variability, two key parameters [40], weight of the mean
(WM) and slope of the regression (SR) are used in this study. WM indicates the dependency of kriging
prediction on the data in the neighborhood, while SR shows whether the neighborhood size is suitable
for a valid kriging. The more WM is closer to zero, and the more SR is closer to one will indicate a better
kriging neighborhood. Our kriging prediction results in an averaged WM = 0.040 and SR = 0.964 for
the used cylinder neighborhood. The results show a low WM closer to zero and high SR closer to one,
which indicate that the chosen kriging neighborhood is suitable in representing local variability, and
the prediction would not be much improved by searching further. The mapping XCH4 are described
in detail in Section 4, and a discussion on prediction uncertainties of the mapping XCH4 is in Section 5.

3.2. Precision Evaluation Using Cross-Validation

Cross-validation is a widely used method for assessing prediction accuracy of statistical
models [40]. In this study, we used the leave-one-out cross-validation to assess the prediction accuracy
of the spatio-temporal geostatistical approach for mapping the GOSAT XCH4 observations. A detailed
description of the method can be referred to in Cressie [10]. The cross-validation is carried out by
first removing one observation datum Z

`

sj, tj
˘

and then making its prediction Ẑ
`

sj, tj
˘

using the
remaining dataset. This process is repeated for each observation in Z ps, tq. As a result, two datasets,
the predicted dataset {Ẑ

`

sj, tj
˘

j = 1 . . . N} and the corresponding original dataset {Z
`

sj, tj
˘

j = 1 . . . N}
can be obtained. The following three summary statistics from the two datasets were derived to
assess prediction precision. The correlation coefficient (R) between Z ps, tq and Ẑ ps, tq is 0.91, the
mean absolute prediction error (MAE;

řN
j“1

ˇ

ˇZ
`

sj, tj
˘

´ Ẑ
`

sj, tj
˘
ˇ

ˇ {N) is 8.77 ppb, and the percentage
of prediction error less than 15 ppb is 82%. These cross-validation results show a significant high
correlation coefficient and small prediction errors between the original XCH4 data and the predicted
XCH4 data. The histogram of the prediction errors are shown in Figure 4. It indicates that the
spatio-temporal geostatistical prediction method developed for GOSAT XCH4 data is effective, and we
can therefore generate precise maps of XCH4 over Monsoon Asia using the method from the five years
of GOSAT XCH4 observations.

Moreover, we compare the prediction accuracy between spatio-temporal and spatial-only method
based on the cross-validation statistics. The spatial-only method implemented here is similar to that for
generating monthly GOSAT Level 3 data [13]. The whole XCH4 dataset is firstly grouped into monthly
datasets (five years = 60 months), and then the variogram for each month is calculated and modeled
by the exponential variogram model. Finally, based on the monthly modeled variograms, spatial-only
kriging is applied for predictions of XCH4 in each month. As a result, R and MAE for the spatial-only
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method are 0.90 and 8.97 ppb, respectively. Compared with this spatial-only method, we can see that
the spatio-temporal method shows a slightly higher correlation coefficient and lower prediction error.Remote Sens. 2016, 82016, 8, 361 
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Figure 4. Histogram of the prediction errors between the predicted values toward the corresponding
observed values in cross-validation. The mean absolute prediction error (MAE) and the standard
deviation (STD) of the errors are also given.

4. Assessment of Five Years of the XCH4 Mapping Dataset

4.1. Spatio-Temporal Variations of XCH4

Figure 5 shows the overall variations of mapping XCH4 in space and time. Spatial variation of
XCH4 from south to north and strong seasonal variation can be observed from Figure 5a,b. Spatially,
the XCH4 shows an obvious change with latitude, as shown in Figure 5a, in which higher averaged
values can be seen in area between 18˝N to 32˝N. This latitude contrast shows stronger emissions of
CH4 in southern Asia than northern Asia, which is further shown in Figure 6. Temporally, the averaged
XCH4 is increasing from year to year, and the annual mean increase is 5.97 ppb over the five-year
period. This annual mean increase is consistent with the annual mean increase of 5.60 ppb from surface
observations from 2007 to 2013 [41]. Seasonally, the averaged seasonal cycle amplitude is 22.47 ppb,
with maximum in August and minimum around February and March, as shown in Figure 5b. However,
the seasonal cycle peak generally varies with latitude, as shown in Figure 5a. In areas south of 25˝N,
the peak appears around September, while in areas north of 30˝N, it appears around July and August.
The pattern of seasonal cycle peak is consistent with the result from SCIAMACHY as described in
Figure 6a of Hayashida et al. [25]. They found that the Monsoon Asia region includes different phases
of seasonal variation of XCH4, which also corresponds to a wide range of climate zones in this region.
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Figure 5. (a) overview of the regional spatio-temporal distribution of XCH4 over Monsoon Asia as
a function of latitude and time from five years of mapping XCH4 dataset with a grid resolution of 1˝

in latitude and one time-unit (three days) in time, and (b) temporal variation of monthly averaged
mapping XCH4 (red dots) over Monsoon Asia and the corresponding standard deviation (grey lines).
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Figure 6 shows the seasonal means of XCH4 over the five-year period. The spatial patterns
of XCH4 distribution in the four seasons are similar. Wetlands and rice paddy fields are among
the primary sources of atmospheric CH4, which are responsible for the higher XCH4, which can be
observed in all seasons in southern Asia and south-eastern China. This spatial pattern is also well
consistent with that from a six-year average (2003 through 2008) of SCIAMACHY XCH4 retrievals as
shown in Figure 14 of Frankenberg et al. [7]. Moreover, obvious seasonal variation can be observed.
XCH4 between summer and autumn is close, as well as between winter and spring, and XCH4 of
the first two seasons are generally higher than that of the latter two seasons. This is because, in this
region, summer and autumn are warmer and wetter seasons, as well as the growing seasons of rice,
which result in stronger emissions from rice paddies and wetlands compared to the dry season in
winter and spring [25,42]. Several high value areas stand out, including the Pearl River Delta region in
south China probably due to strong human activity related emissions, the Ganges Delta in south Asia
probably due to strong wetland emissions, and the Sichuan Basin in west China. Sichuan Basin shows
a consistent high anomalous value in all seasons, which is related to its strong local source as well as
the stagnant effect due to its special basin terrain topography [27].
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4.2. Comparison with Model Simulations of XCH4

Atmospheric modeling of greenhouse gases, such as CarbonTracker, can reproduce large scale
features of the atmospheric CH4 distribution well. Figure 7 shows the annual mean of mapping
XCH4 data in 2010 and the corresponding model output of XCH4 in 2010 from CarbonTracker-CH4.
We can see that the spatial patterns of mapping data and the modeling well agree with each other,
with high XCH4 in southern and south-eastern Asia and low values in northern and north-western
Asia, especially the high altitude Tibet area. However, the model data shows a lower XCH4 in the
low latitude area than the mapping data, especially in two key regions, including the Sichuan Basin
and the Ganges Basin, where CH4 emissions from rice paddy fields and wetlands dominate. In high
latitude areas, the model simulations are higher than mapping satellite observations, especially in
Tibet, Mongolia and north-eastern China, where XCH4 values are low. The satellite data, on the other
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hand, show direct observations of XCH4 and can therefore capture the local variability and present
a more detailed characteristic of XCH4 variation compared to model simulations. More discussions are
presented in Section 5.
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4.3. Correlation with Surface Emission Inventory

Surface emission of CH4 is the main driver of the atmospheric XCH4 distributions. Figure 8a
shows the annual surface CH4 emission in 2010 derived from EDGAR emission inventory. The spatial
distribution pattern of high CH4 emissions is determined by both anthropogenic emissions (such as
fossil fuel combustion, biomass burning and rice paddies) and natural emissions (such as natural
wetlands). By comparing Figures 8a and 7a, we can see their spatial patterns agree with each other
well. It indicates the variation of multi-year averaged XCH4 can well represent the variation of annual
averaged CH4 surface emissions. Figure 8b shows the relationship between CH4 surface emissions,
which has been rearranged into 1˝ by 1˝ grids, and the annual averaged XCH4 value from the mapping
dataset as shown in Figure 7a. A significant linear relationship can be observed, with significantly high
correlation coefficient of 0.80 and the coefficient of determination (R2) of 0.64 and p-value less than 0.01.
This significant linear relationship indicates the dominant role of surface emissions in determining the
distribution of XCH4 concentration over such regions.
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Figure 8. (a) annual CH4 emission in 2010 derived from EDGAR emission inventory in a spatial
resolution of 0.1˝ by 0.1˝; and (b) The relationship between CH4 surface emissions and the averaged
XCH4 value in 1˝ by 1˝ grids drived from the five years of mapping XCH4 data. The color grids
represent the density of data distribution. The black line is derived from linear regression of averaged
XCH4 data (Y) and the base 10 logarithm of surface CH4 emissions (X), which shows a significant linear
relationship with R2 equals 0.64 (p-value < 0.01).
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5. Discussion

5.1. Prediction Uncertainty of Mapping XCH4 Data

In geostatistics, for each prediction, we can get a corresponding kriging variance at the same time,
as shown in Equation (6). The variance is determined by both the density of GOSAT XCH4 observations
and the data homogeneity in the neighborhood of the prediction position. Theoretically, in conditions
of denser observations and more homogeneous XCH4 variation surrounding the prediction location
there will be lower prediction uncertainty [14]. Therefore, the kriging variance indicates how uncertain
each XCH4 prediction is given the available satellite observations. Figure 9 shows the spatial variation
of the kriging standard deviation (root of kriging variance) from the mapping XCH4 data in Monsoon
Asia averaged over a five-year period. The values change from about 11 ppb to 16 ppb with mean of
13.70 ppb. As expected, in areas with denser observations as shown in Figure 1a, including northern
China and India, the prediction uncertainty is lower. In some parts of south China and west China,
the uncertainty is relatively high due to the relatively sparseness of the satellite observations, and,
therefore, more verifications are required for the mapping dataset in these areas. The spatio-temporal
geostatistical approach developed in this study has the advantage of utilizing a larger dataset both in
space and time to support stable parameter estimation and prediction. Therefore, as more observation
data will become available in the coming future, we can anticipate that a more robust mapping dataset
with lower uncertainty using spatio-temporal geostatistics can be produced.
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Figure 9. Spatial distribution of kriging standard deviations, a measurement of prediction uncertainty,
is obtained by averaging the kriging standard deviations over five years of mapping XCH4 dataset in
Monsoon Asia. Blank pixels are grids where less than three of the five annual means are available, in
which the annual mean is obtained by averaging at least 11 monthly mean data.

5.2. Discrepancies in Sichuan Basin between Observation and Modeling

As suggested by Hammerling et al. [43], mapping greenhouse gas concentration data with
uncertainty estimation can be used for comparison with simulation data from the atmospheric transport
model coupled with carbon flux estimates. As shown in Figure 7, the largest difference between satellite
observations and model simulations of XCH4 is located in the Sichuan Basin of west China, where
a large anomaly is shown in GOSAT data while not in model data. As suggested by Qin et al. [27],
CH4 emission from rice paddy fields and wetlands and the stagnant effect of the basin terrain have
the biggest contribution to this anomaly. This same feature can also be seen in satellite observations
of CO columns and NO2 columns [44]. However, the model simulations with ground observations
assimilated fail to reproduce this local variability over this basin. This may be due to the ineffectiveness
of CarbonTracker [23], which assimilates only the sparse ground based observations in representing the
local features of XCH4 in this area, where, unfortunately, ground-based observations are not available
to constrain the CH4 fluxes.
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5.3. Long Term XCH4 Observations in Constraining Surface Emissions

The distribution and variation of column-averaged greenhouse gas can be attributed to spatial
distribution of surface emissions, sinks of the gas, and large-scale eddy-driven transport [45]. For XCH4

over the Monsoon region, emissions from human-related activities including paddy fields, and natural
wetlands are the dominant emissions, while the reaction of CH4 with hydroxyl radicals (OH), which
removes almost 90% of CH4 [46], is the main sink of atmospheric CH4. For a specific CH4 column, the
number of CH4 molecules going out (loss) and coming in (gain) the column due to transport varies
from time to time. However, on a yearly basis, the averaged transport component of CH4 leads to net
gain or loss and can be approximately quantified as an invariable constant. For the CH4 sinks due
to chemical reaction over multi-year periods, the amount of sinks is determined by the total amount
and can therefore be quantified as an averaged ratio to the total amount of CH4 molecules in the
atmosphere. Therefore, the multi-year averaged XCH4 data observed by GOSAT is approximately
a remaining ratio of CH4 emissions from surface after excluding the averaged transport component and
chemical sink component. As a result, the distribution of observed XCH4 averaged over a long term
period will be indicating the surface sources of CH4, as we see in Figure 8b. This significant correlation
between XCH4 observations and surface emissions provides a promising statistical way, which is
simple and easy to implement, of constraining surface CH4 sources using satellite observations over
a long term period.

6. Conclusions

In this study, we propose the use of a data-driven mapping approach based on spatio-temporal
geostatistics to generate a mapping dataset of XCH4 and evaluate the five years of GOSAT XCH4

retrievals over Monsoon Asia from June 2009 to May 2014. The prediction precision using
cross-validation results in a significantly high correlation of 0.91 and a small mean absolute prediction
error of 8.77 ppb between the original dataset and prediction dataset. Spatio-temporal distribution and
variation of XCH4 mapping data agree with results from SCIAMACHY and ground-based observations
well. This XCH4 mapping data also provide a new way to assess the model simulations of CH4

coupled with atmospheric transport model. Comparison between XCH4 and model simulations
from CarbonTracker-CH4 shows consistent spatial patterns, but the satellite observations are more
able to resolve the local variability of XCH4, such as the constant anomaly shown in the Sichuan
Basin. Finally, by comparing the mapping data with surface emission inventory, we found that the
geographical distribution of high CH4 values well corresponds to strong emissions as indicated in
the inventory map. Over the five-year period, the two datasets show a significantly high correlation
coefficient (0.80), indicating the dominant role of surface emissions in determining the distribution
of averaged XCH4 concentrations over such regions and a promising statistical way of constraining
surface CH4 sources using satellite observations over a long term period. In conclusion, this study
provides new mapping datasets of XCH4 over Monsoon Asia derived from satellite observations,
and suggests a simple statistical way to constrain the surface CH4 emissions using long term satellite
XCH4 retrievals. Moreover, this study provides a complementary work to previous studies using
SCIAMACHY, and AIRS over this Monsoon Asia region.

However, some assumptions in this study need further verifications. Firstly, spatio-temporal
correlation structure is assumed to be similar over the entire Monsoon Asia area, but this is not always
true since the spatio-temporal variations in difference locations are different. However, the irregular
distribution of the data do not enable us to resolve this problem in this study. Secondly, in geostatistical
mapping, we adopted the kriging neighborhood to reduce computational complexity and preserve
local variability. Theoretically, the minimum mean square error in kriging is achieved by using a global
neighborhood which includes all points. However, a global neighborhood is not practically feasible for
kriging calculations because it may lead to a kriging matrix that is too large to be numerically inverted.
As a result, the use of a kriging neighborhood might introduce some errors to our results.



Remote Sens. 2016, 8, 361 13 of 15

Gaps in observations are common in XCH4 retrievals from greenhouse gas observation satellites,
such as GOSAT and SCIAMACHY. Therefore, application of the mapping method to SCIAMACHY
and comparison between the two data sources will provide us a new way to investigate their
differences in this developed geostatistical way. In comparison of prediction accuracy between
spatio-temporal and spatial-only approaches using cross-validation, leaving out larger areas of data
would conceivably better highlight the advantage of a spatio-temporal approach because the temporal
correlation considered in spatio-temporal approach can provide large benefits given the lack of nearby
data. This will be our future work. In addition, although cross-validation gives us a comprehensive
statistical assessment of prediction accuracy, it is essential to carry out comparison with independent
observations. As some TCCON stations are being set up over this Monsoon Asia region, a comparison
with TCCON will also be our work in the coming future.
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