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Abstract: In response to the increasing need for fast satellite image processing SPACE-SI developed
STORM—a fully automatic image processing chain that performs all processing steps from the
input optical images to web-delivered map-ready products for various sensors. This paper focuses
on the automatic geometric corrections module and its adaptation to very high resolution (VHR)
multispectral images. In the automatic ground control points (GCPs) extraction sub-module
a two-step algorithm that utilizes vector roads as a reference layer and delivers GCPs for high
resolution RapidEye images with near pixel accuracy was initially implemented. Super-fine
positioning of individual GCPs onto an aerial orthophoto was introduced for VHR images.
The enhanced algorithm is capable of achieving accuracy of approximately 1.5 pixels on WorldView-2
data. In the case of RapidEye images the accuracies of the physical sensor model reach sub-pixel
values at independent check points. When compared to the reference national aerial orthophoto the
accuracies of WorldView-2 orthoimages automatically produced with the rational function model
reach near-pixel values. On a heterogeneous set of 41 RapidEye images the rate of automatic
processing reached 97.6%. Image processing times remained under one hour for standard-size images
of both sensor types.

Keywords: automatic image processing; geometric corrections; extraction of ground control points;
physical sensor model; rational function model; earth observation

1. Introduction

The ever increasing quantity of satellite data from large and small Earth observation satellites
offers the potential for new and innovative applications and boosts the need for automatic and fast
data processing. However, complex and slow data processing remains the main obstacle that prevents
most end users from using satellite data. Although the image processing steps are usually known, they
are neither automatic nor performed in real-time. Fully automatic and generic (i.e., adapted to different
sensors) systems for processing high resolution (HR; from 10 m to 2 m) and very high resolution (VHR;
2 m and below) optical images are predominantly demanded by the Earth observation community.

All optical image processing—either automatic or manual—includes several pre-processing
and product generation steps. The obligatory pre-processing steps are composed of geometric and
radiometric corrections in which the pixels’ locations and values are corrected. The product generation
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stage is optional, application oriented and generates thematic products that are aimed at end-users.
Although this common two-stage roadmap is well-defined, the details of individual processing
workflows vary substantially, for they depend on the sensor type, processing level of the input image
and the user’s needs (e.g., if an orthoimage represents the final goal, only geometric corrections are
applied). In this paper we will focus on the automatic geometric corrections of the STORM processing
chain developed by the Slovenian Centre of Excellence for Space Sciences and Technologies (SPACE-SI).
(The STORM processing chain developed by SPACE-SI is not to be confused with Apache’s system for
generic real-time computation known as Apache Storm (http://storm.apache.org/). The two systems
are not connected in any way:.)

Automated processing steps are the best way of tackling large volumes of satellite images.
A variety of automatic or semi-automatic processing systems is used by various optical satellite
data vendors or providers, as well as by many application-oriented companies specializing in Earth
observation. However, these systems are proprietary, in most cases sensor-specific and confidential,
thus they are usually not described in scientific papers. As a result, merely a handful of papers
have been published on this topic. The rare examples include e.g., CATENA, developed at the
German Aerospace Center (DLR), Remote Sensing Software Package Graz, developed at Joanneum
Research, and the GeoCDX system developed at the University of Missouri, Columbia. CATENA,
developed in 2006 (e.g., [1]), is a highly advanced generic modular operational infrastructure for
automatically processing optical satellite and airborne image data. It uses an area-based image that is
matched to an orthorectified reference image [2] with which it extracts ground control points (GCPs).
Several thousand images have already been processed with this chain, e.g., Fast Track Land Services
Image2006, —2009 and —2012 for ESA GMES. A similar modular system can be found in the Remote
Sensing Software Package Graz developed by Joanneum Research—the beginnings of which reach
back into the 1980s [3]—which is also able to process synthetic aperture radar images. GeoCDX,
a resolution-independent system for fully automated change detection on HR and VHR satellite
imagery [4], is designed to process and exploit large volumes of images. The geometric corrections are
based on image co-registration. The ultimate aim of this system is to change the detection between
previously co-registered and radiometrically standardized image pairs.

Several studies on the automation of geometric corrections have been performed over the past
decades. Bignalet—Cazalet et al. [5] automated the mosaicking of Pleiades level 1A images (with
a nadir spatial resolution of 70 cm for the panchromatic band) by placing each included image into
a shared geometry, homogenizing their radiometry, and finally generating an orthomosaic with the
use of stitching lines. Eugenio and Marqués [6] automated the georeferencing of low and middle
resolution images by extracting the GCPs with the use of the contour-matching approach. Gianinetto
and Scaioni [7] developed the Automatic Ground control points Extraction technique (AGE). In order to
obtain the coordinates of the reference points an adaptive least squares matching is performed between
the raw and the georeferenced image. The algorithm was successfully tested on Quickbird, SPOT 5
and IKONOS images. Leprince et al. [8] developed an almost completely automatic orthorectification
of optical satellite images for the use in ground deformation measurements. The correlation between
the images is performed via the phase correlation method, which relies on the Fourier shift theorem.
This means that the relative displacement between a pair of similar images is obtained from the phase
difference of their Fourier transform. Prior to the orthorectification one needs to manually locate the
GCPs on all images. This process has been developed for SPOT 5 images. Liu and Chen [9] created an
effective process for automatic orthorectification of high resolution Formosat-2 images. Their method
correlates ground control regions from orthophotos and satellite images. Orthorectification uses
a physical model and achieves accuracy below 1.5 pixels. Devaraj and Shah [10] also developed
an automatic geometric correction process. The orthorectification of medium-resolution CBERS-2 and
CBERS-2B images is performed with reference to Landsat imagery. Prior to undertaking the correlation
step the previously orthorectified Landsat images are transformed into their raw form (geometric
distortions are introduced) after which the registration is performed by affine transformation.
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Several automatic geometric correction procedures have been successfully attempted with
the rational function model (RFM). For example, Oh and Lee [11] developed an algorithm for
automatic bias-compensation of rational polynomial coefficients (RPCs) based on topographic maps.
Their matching accuracy was approximately one pixel.

Studies addressing the automatic registration of satellite images onto the reference vector layer
date back to 1998 ([12]). Several types of imaging features such as lines and polygons, and different
types of vector data (road network, forest areas, houses efc.) were selected for registration, e.g., Hild
and Fritsch [12] presented a system which utilises forest area polygons matched to the vector data
of land use. Numerous studies used road or line segments (e.g., [13-16]), however these studies
were not realised in actual applications. Kruger [17] presented an efficient framework in which the
extraction of line segments and matching were not separated, for they were formulated as a projective
transformation parameter estimation problem which can be efficiently solved. However, this type
of image-to-map registration has not yet been proven as a working and reliable satellite image
processing system.

This paper presents a completely automated procedure for precise orthorectification of optical
satellite images that is used within the STORM processing chain. In order to extract the GCPs two-
and three-step algorithms (depending on the resolution of the input images, starting with image to
rasterized roads and finishing with super-fine image to aerial orthophoto matching) were implemented.
Our proprietary physical sensor model and RFM were implemented for the geometric modelling.
At the end the images were indirectly orthorectified with the use of a digital elevation model (DEM).
The proposed procedure is generic and can fit various HR and VHR satellite images.

If one wishes to produce a final output with a desired accuracy without the need for the operator’s
intervention, validation or correction, the algorithms need to be highly reliable and robust with respect
to the varying imaging conditions. However, the quality of input images varies due to seasonal
variations, daily atmospheric conditions and the imaging geometry. The most challenging image
quality factors include snow, clouds and haze, low contrast of ground features as a result of low
illumination or the presence of cloud shadows, image deformations occurring due to the off-nadir
viewpoint and terrain elevation, and temporal variations of the vegetation and man-made objects. Due
to their long-term stability and high visibility, roads were selected as a suitable reference feature to help
us cope with these problems. The automatic GCP extraction algorithm presented in Sections 3.1 and 3.2
was designed to address the image quality problems with the use of several criteria for detecting
the most suitable GCPs and by providing estimated measures for their quality. This enables the
sensor model and the orthorectification algorithm (Sections 3.3 and 3.4) to perform robust iterative
optimization and remove outlying GCPs and thus come up with accurate registration.

The following requirements were set before the STORM processing chain was developed:

- Robustness: automatically process at least 90% of all images

- Speed: processing time for a standard size image should be under one hour

- Accuracy of the extracted GCPs and the final orthoimages: root-mean-square-error (RMSE)
bellow one pixel (i.e., 6.5 m) for HR RapidEye images and bellow two pixels (i.e., 4 m) for VHR
WorldView-2 multispectral images. Based on the experience gained from the existing processing
practices, the thresholds for VHR images were set differently from those for HR images as
different resolutions result in different processing challenges.

A diverse and comprehensive data set of 41 HR RapidEye images and nine VHR WorldView-2
images (Sections 4 and 5) were used to show and evaluate to what extent the initial requirements
were met.

The STORM processing chain is composed of numerous steps that are combined into an extremely
robust automatic system with a unique implementation. Great efforts were made to push the
technology in the direction of full automation. The suggested process is especially innovative in
the GCPs extraction based on reference road layers and geometric modelling with incorporated gross
error removal steps. The manuscript presents the most relevant parts of the implemented geometric
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corrections which are extremely complex and contain numerous iterative steps that guarantee the
stability and validity of the results. Even though these iterations and controls are important for the
operation of the chain, they are not helpful to the reader and are thus not explicitly presented in
the manuscript.

The overall concept and workflow of the STORM processing chain is described in the following
section. Section 3 deals with the algorithms used in individual sub-modules of the geometric corrections
module. Section 4 describes the used data and the accuracy evaluation measures. Section 5 delivers
the results of the sub-modules of the geometric corrections on an extended set of HR RapidEye images
and VHR WorldView-2 images. The outcomes are discussed in Section 6, while the summary of the
results can be found in the Conclusions.

2. The STORM Automatic Processing Chain

In the search for a generic and fast processing system, SPACE-SI (the Research Centre of the
Slovenian Academy of Sciences and Arts has contributed to the development of individual algorithms.)
has developed and implemented STORM—a fully automatic image processing chain that performs all
processing steps from sensor-corrected (usually denoted as level 1; pixel values are at-sensor radiances)
or ortho-ready (level 2) optical satellite images to web-delivered map-ready products. The processing
chain is generic, modular, works without the operator’s intervention, and fully supports RapidEye
images of Slovenia and its surroundings. Various parts of the chain were implemented also for
WorldView-2, THEOS, Pleiades, SPOT 6, Landsat 5-8, and PROBA-V images.

The STORM processing chain (Figure 1) follows the commonly accepted two-stage processing
workflow for optical imagery, beginning with pre-processing and ending with the generation of the
final product. The first step of the pre-processing stage focuses on geometric corrections. These
are performed in two sub-modules: automatic extraction of GCPs based on matching them onto
either reference rasterized roads (two-step algorithm) or reference rasterized roads and orthophotos
(three-step algorithm), which is followed by automatic sensor modelling with orthorectification, during
which either the proprietary physical sensor model or RFM are utilised. The details on the geometric
corrections sub-modules are described in Section 3.

pre-prepared ancillary data § 1nput data

! - rasterized vector roads - sensor-corrected (lev. 1) ‘
i and crossroads or ortho-ready (level 2) !
! - DEM, slope, aspect ... || optical satellite image

- albedo, atmosphere and - metadata

i illumination models

automatic geometric corrections

1 two-/three-step extraction of ground control points
: physical sensor model / rational function model
| automatic orthorectification

automatic radiometric corrections

automatic atmospheric corrections (with ATCOR 2) !
1 automatic topographic corrections :

| PRE-PROCESSING
”, PRODUCT GENERATION

administrator triggered products

i change of NDVI
: change map

Figure 1. Processing workflow of the STORM processing chain.
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The second pre-processing step focuses on radiometric corrections performed through two
sub-modules: firstly the atmospheric corrections are applied, and this is followed by topographic
normalization. The state-of-the-art commercially available ATCOR 2 software package is used [18] to
eliminate the effects of the atmosphere such as scattering and haze, and to define the extent of clouds
and cloud shades. ATCOR 2 was fully integrated into the STORM workflow. In the process it is called
directly from within the STORM's code. On the other hand, our proprietary algorithm [19] is used for
topographic normalization. This combines the physical approach to topographic corrections with the
Minnaert method [20], and utilizes the anisotropic illumination model [21] for various illumination
situations and the Otsu algorithm [22] for the detection of shaded areas.

Once the pre-processing is completed, end-user products are generated. The STORM processing
chain implements the automatic generation of normalized differential vegetation index (NDVI).
Additionally, the administrator can manually trigger the computation of the change of the NDVI
product, which compares two sequentially overlapping NDVI products, and changes the map product
(e.g., [23]) with hot-spots depicting the changes between the two sequential images.

All output products (i.e., orthoimage, radiometrically corrected image, NDVI, change of NDVI,
change map) that emerge from a single input image are stored in the database, together with the
essential metadata on the processing strategy and parameters (Figure 1). At the end of the STORM
processing chain, several interrelated services deliver data to end-users via the Java-developed web
application, which enables basic web mapping operations, various attribute queries, spatial queries as
well as downloading products including all processing information and metadata. The web application
includes an administrative part for controlling the processes in the STORM processing chain.

Individual processing steps are prepared as independent IDL or C++ sub-modules which are
controlled from the Java-based main control module (MCM). MCM ingests the input satellite data and
prepares a new Java thread, in which the module execution commands of fixed order are prepared.
The Java/IDL bridge is used to pass XML-encoded commands and parameters from MCM via the
image processing server, which is basically a wrapper that runs the individual processing modules.
MCM controls the processing resources as well as the execution of individual processing modules via
log messages. On the processing side the XML-encoded files are interpreted, individual modules are
executed, and upon completion the processing metadata is returned. On the other hand, the input and
output images are stored in a file-based system on an image server, where they are accessed directly,
while the XML files merely include the paths to their locations. MCM post-processing consists of
writing output parameters to the PostGIS spatial object-relational database (Figure 2) and of image
tiling. MCM is also used to communicate with web applications.

Earth observation data sources
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o — i
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Figure 2. STORM processing chain architecture.
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The main data entity for the database is represented by the input satellite image. The entity can
have an arbitrary number of phases, which correspond to the processing modules. Each phase has
a completion status flag and several input and output parameters. The database records the metadata
from the input satellite image as well as the metadata from all processing phases and parameters.

3. Automatic Geometric Corrections

The STORM automatic geometric corrections module generates orthorectified satellite images
by correcting the geometric distortions that appear on the input image due to relief and imaging
geometry. Since the quality of all processing chain products depends on the quality and accuracy
of the orthorectified satellite image this module is of utmost importance. High quality demands are
made on the geometric corrections module as a whole as well as on all of its interdependent individual
sub-modules; e.g., the accuracy of the extracted GCPs has a strong influence on the accuracy of the
final orthoimage.

In the proposed workflow (Figure 3) the first GCPs are automatically extracted with the two-step
image matching onto the reference rasterized roads (Section 3.1), while the three-step algorithm also
uses aerial orthophotos as a reference layer for the additional super-fine positioning step (Section 3.2).
The two-step algorithm is used for HR images, while the three-step algorithm is used for VHR images.
The extracted GCPs are used as input data for the automatic orthorectification procedure which is
based either on the physical sensor model (Section 3.3) or on the RFM (Section 3.4).

HR 1ima ge VHR image
"~ o S atelio T ot e o atrhi . - 1
2-step image matching 3-step image matching sub-module for automatic
algorithm algorithm extraction of GCPs
GCPs GCPs =
\ 7
physical sensor model RFM
= T sub-module for sensor
mode correcte model and
parameters . RPCs e
orthorectification
orthorectification orthorectification

Figure 3. Workflow of the geometric corrections module within the STORM processing chain. High
resolution (HR) and very high resolution (VHR) images are processed differently. Each image
goes through three processing steps; due to organizational reasons the latter two are joined into
one sub-module.

The listed algorithms were developed in a different order. During the initial development the
goal was to automatically orthorectify the sensor-corrected level 1B RapidEye image—with a 6.5 m
resolution—with the use of the two-step GCP extraction algorithm and the physical sensor model.
In the following stages of development—when support for VHR sensors was added—we introduced
substantial improvements to the GCP extraction. Furthermore, RFM was also introduced, and this
served as an alternative for the physical sensor model and enabled the orthorectification of input
images equipped with RPCs at higher processing levels (e.g., level 2 ortho-ready images, in which
certain geometric corrections were already applied).

Some algorithms and results of the geometric corrections of the HR RapidEye system were partly
presented in [24], therefore this paper focuses on the adaptation for the VHR WorldView-2 system.
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3.1. Automatic Two-Step GCP Extraction Algorithm for HR Systems

Due to the temporal variability of the Earth’s surface, the varying atmospheric conditions
(e.g., [25]) and geometric distortions the automatic extraction of GCPs from multi-temporal and
multi-sensor images is a difficult task.

GCP extraction methods differ in terms of reference data to which the unregistered input
image is compared, in terms of the features extracted from the image, as well as in terms of
the underlying geometric transformation model. The area-based methods (e.g., [26]) that apply
image-to-image coregistration are computationally expensive and may be unreliable due to false
matches. The feature-based methods start by extracting distinct low-level image features such as
corners or other distinct points (e.g., [27]) from both, the unregistered and reference image, and then
they estimate the geometric transformation among the pairs of points. The image-to-map registration
methods use higher-level image primitives such as lines (e.g., [15]) or polygons (e.g., [12]) extracted
from the unregistered image and compare them to a vector objects database such as a road network.

We tested the feature-based and area-based algorithms with the use of national aerial orthophotos
as reference images, however we could not obtain satisfactory results. This was mainly due to the
difference in the quality and dates of acquisition, for the unregistered and reference images were
created several years apart and at different spatial resolution. In the end we adopted the image-to-map
approach, as the road layers proved to represent a stable reference source, thus providing the required
reliability of the extracted GCPs. Furthermore, the road network proved to be a structure that can
be reliably detected on rural and semi-urban HR satellite images with rather straightforward image
processing such as colour segmentation and line detection (e.g., [28-31]). Additional advantages
of using roads can be found in the fact that they are easily visually recognised, that they lie on the
Earth’s surface (ground), and that they are (especially crossroads) commonly used in the manual GCP
selection process. Using roads as a reference source makes the automatic procedure similar to the
manual procedure.

The proposed automatic GCP extraction algorithm [32] matches the roads detected on the satellite
image to the reference rasterized vector roads (Figure 4). This is different from the majority of other
methods, which optimise the transformation parameters within a vector space (e.g., [17]). Our method
enables the preparation of the reference rasterized roads in advance. Rather than using a single global
mapping function for the entire satellite image, the image is divided into tiles, which are later on
matched individually. In the end the positions of potential GCPs are locally refined.

blue band of the extracting roads by
satellite image morphological filters
T preparation:
_ - road detection
satellite image satellite image
metadata tiling and rotation
pre-prepared ancillary robust matching of
data: rasterized image tiles
vector roads ! Iststep:
coarse matching
correcting erroneously
matched tiles
selecting GCPs |
; § - 2nd step:
. ¥ ) ae .
fine tuning of GCl s e hahE
s F g
positions onto roads

set of extracted GCPs

Figure 4. Workflow of the automatic ground control point (GCP) extraction sub-module (the
two-step algorithm).
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However, in order for this method to work, one needs an accurate reference road layer throughout
the image. For the area of Slovenia we have used two different national vector road databases.
Our primary source was the topographic vector road data at a scale 1:5.000 with 1 m planar accuracy
and high road density (including e.g., also trails and cart tracks), however this only covers 60% of
Slovenia and was last updated in 2008. This was complemented with the vector road data of the
national public infrastructure cadastre (dated November 2012), with a planar accuracy under 1 m
and 1-5 m for highways and other roads. This source has a lower road density than the primary one,
however it is updated regularly. For the neighbouring countries we used the OpenStreetMap vector
road data (retrieved on 3 March 2013). This data is updated by volunteers, therefore it is incomplete
and lacks accuracy information. All vector data was rasterized based on the road width attribute
(topographic roads) or road category attribute (public infrastructure roads, OpenStreetMap roads).
As a rule, only roads wider than 3 m were used in our procedure.

Since they exhibit higher reflectance than the surrounding areas roads appear as bright lines on
all visible bands of the satellite image. The proposed road detection algorithm was applied to the blue
band of the image, as this band provided the best contrast between the roads and the background.
Road detection is based on the morphological image filtering that uses top-hat transformation of
a predefined size (e.g., [33]), which detects bright road candidate segments. The result is a binary
mask of road candidates. The used method applies an adaptive histogram stretch, which increases
the contrast of the road pixels against the background and is also able to tackle more challenging
conditions with complicated atmospheric situations (haze, clouds, cloud shades).

We were also able to process winter images with snow-covered areas, where the intensities are
inversed (dark roads on bright snowy surroundings). Since we did not perform any prior snow
detection this adaptation was automatically applied to all bright regions on the input band with values
above the upper value used in the histogram stretch. Firstly, the bright regions were dilated so that they
included roads and other adjacent features. Their histograms were stretched so that all bright pixel
values were flattened into a single value, and finally the resulting values were inverted. This enabled
the same top-hat operator to be applied to the entire image.

Firstly, the obtained binary mask of the road candidates is rotated by an angle calculated from the
satellite image metadata and tiled based on the image size. A standard-sized RapidEye image is tiled
into 8 x 8 tiles, at which the typical tile-size measures 1500 x 950 pixels. Tiling allows for an efficient
parallelization of the GCP extraction process. The first step of the matching process performs
robust estimation of nine perspective transformation parameters by minimizing the correlation-based
distance between satellite road tiles and the road distance image (i.e., distance from the centre of the
road) (Figure 5, left). The algorithm requirements for coarse matching accuracy are not high and
displacements of a few pixels are acceptable. The estimated tile transformation parameters are certified
for detecting false matches which might occur due to an insufficient number of detected or available
reference roads. Such tiles use the transformation parameters of the neighbouring tiles. The second
step of the GCP extraction localizes a suitable number of uniformly distributed GCP locations for
each tile. Only road points with sufficient local density of roads (mostly crossroads) are selected as
GCP candidates. These are matched against reference roads in the small local neighbourhood of the
estimated coarse location. The fine GCP positioning results in precise GCP locations in the reference
coordinate system (Figure 5, centre).

Detecting roads on a satellite image is affected by various factors which result in false classification
of individual image pixels (Figure 5, left). In the pixel classification false negatives appear wherever
road segments are not detected due to a low contrast, which might be a result of tree shading, or
neighbouring bright regions such as fields. On the other hand, bright objects such as houses, narrow
fields and driveways appear as false positives. Errors can also be found in the reference road data,
where newly built roads might be missing. In order to overcome these limitations the road matching
step utilizes a nonlinear matching function, which computes the average distance between the detected
road template and the reference roads [32]. The distance function is thresholded, so that distant
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non-matched road pixels provide a constant contribution to the error and do not bias the location.
An overall road structure similarity is found between the detected road mask and the reference road
map, and this enables reliable localization of control points over large search windows.

Figure 5. Examples of the three GCP extraction steps: Coarse matching of the roadmask tile onto

the road distance image (left). Fine positioning of the GCP onto the road distance image (centre).
Super-fine positioning onto the aerial orthophoto, described in Section 3.2 (right). The roadmask
(i.e., road candidates extracted from the satellite image) is superimposed onto the background road
distance image or orthophoto; the GCP position is displayed with a cross. The grayscale values of
the road distance image represent a non-linear function of distance to the closest actual road at which
white colour represents the minimum (zero) distance, and black represents the maximum distance.
The “attraction range” of each road is limited, thus falsely detected road pixels far from the road
do not compromise the positioning accuracy. On the other hand, this range must be big enough to
accommodate for the non-linear geometric differences in orientation and the scale of the unregistered
and reference image. Road detection is not perfect (therefore many false positives and false negatives
are noticeable), however this does not jeopardise the GCP extraction.

Not all image points are equally suitable for reliable matching. Based on the road detection result
we formulated several criteria for the automatic selection of control points. The crossroad pixels are
usually selected as GCP candidates, at which further constraints on the minimum and maximum road
density in the neighbourhood of the GCP pixel are taken into account. Due to the lower structure
discrimination low road density within the image patch is undesirable. However, high road density is
also problematic as it often appears within cities where many similar road patterns exist within the
search window. The estimate of an individual GCP location is thus prone to false matches and location
estimation errors, however only the highest quality GCPs are used in further geometrical processing
steps. The GCP quality parameter based on the average road distance is attributed to each GCP and is
utilized in future processing.

The output of this sub-module is a textual list of GCPs, in which each GCP is defined by a pair of
image pixel coordinates, a pair of reference system coordinates, and attributes describing the estimated
quality. The implementation produces up to 10 GCPs for each tile of the satellite image, which amounts
to several hundred per RapidEye image.

3.2. Automatic Three-Step GCP Extraction Algorithm for VHR Systems

The proposed two-step algorithm for automatic GCP extraction delivered accurate results for
RapidEye images with a resolution of 6.5 m. However, this was insufficient for WorldView-2
multispectral images, which have a substantially higher spatial resolution of approximately 2 m.
At least two reasons for this have been identified. The first reason can be found in the distortion of the
sensor-corrected satellite images, which is highly pronounced in VHR systems—probably due to their
complex imaging geometry (along/across-track viewing angles in combination with asynchronous
imaging mode, which causes the perspective to change for each line). Imaging geometry distortion
hindered the first step, i.e., coarse tile matching, which made it impossible to match entire tiles,
whenever the tile was the only subject of affine transformations. It was possible to match the tile locally
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in one part, but not as a whole. The second reason lies in the resolution of the VHR images. In the
proposed algorithm, roads—more precisely: central lines on the roads—are used as a reference source
for matching. The road widths usually range between 5 and 15 m; this amounts to approximately
one to three pixels in RapidEye resolution, but many more in WorldView-2 resolution. Together
with the previously described issues caused by imperfect road detection—e.g., false positives such
as buildings or urban elements along the roads—which is much more pronounced in VHR images
than in HR images, it is clear that the central line of the road is not an appropriate reference source for
fine positioning.

In order to overcome these issues the following three improvements were introduced to the GCP
extraction algorithm (Figure 6): preliminary coarse image transformation, super-fine positioning onto
the aerial orthophoto, and fixing GCPs candidates on the crossroads.

blue band of the extracting roads by

satellite image morphological filters .
= preparation:

! road detection

satellite image preliminary coarse
metadata image transformation
pre-prepared ancillary robust matching of
data: rasterized vector image tiles
roads, road distance T

1st step.
coarse

(=}

images, crossroads correcting erroneously

matched tiles
l __________

reducing the number of selecting GCPs from

crossroads crossroads
T 2nd step:
fine positioning

fine tuning of GCP
positions onto roads
ancillary data: digital super-fine tuning onto
aerial orthophotos aerial orthophotos 3rd step:

super-fine
positioning
set of extracted GCPs

Figure 6. Workflow of the automatic GCP extraction sub-module, improved for VHR images such as
WorldView-2 (the three-step algorithm).

The issue with complex imaging geometry distortion was solved by adding coarse image
transformation prior to the coarse matching. This preliminary transformation is based on the satellite
image corner coordinates obtained from the accompanying metadata file. It is applied prior to all other
image matching steps and ensures successful coarse matching. However, it does make the tracking
and management of image pixel coordinates more complicated.

In order to overcome the problem of road widths an additional step was added to the original
two-step algorithm: super-fine tuning of the positions by matching the GCP local vicinity on the input
image to the national aerial orthophoto (Figure 5, right) with 0.5 m resolution and 1 m planar accuracy.

In the proposed solution the fine positioning onto the roads serves merely as a preparatory step
for the super-fine positioning onto orthophotos. Although aerial orthophotos did not correlate to
the entire image or tile in the coarse matching process (Section 3.1), they proved to be adequate for
super-fine matching of small image-chips where merely a translation of a few pixels is anticipated.
The translation parameters for super-fine matching of the GCP chip are defined by the maximisation
of the correlation between pixel values I of the image-chip cropped from the perspectively corrected
image and image-chip O cropped from the corresponding aerial orthophoto. The area of the image
chip is denoted by S, and s = (sx,sy)T is a vector representing the current coordinate within the
image chip. The correlation equation reads as follows:

) )
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and the estimated GCP ground coordinate 7 is found from the initial coarse estimate 7 once
the maximum of the image correlation within a rectangular search window measuring 2A x 2A
is established:

T o= To+Oopr ; Oopt —arg  max C(Fo+9) @
Sy € [-A, A
dye[-A, A]

Empirical tests have shown that the red band is optimal for super-fine positioning. Obviously,
both chips have to be resampled to the same resolution, which should not differ too much from the
satellite band resolution. In most cases a resolution of half of the satellite pixels was applied.

Another important addition to the previous algorithm was the decision to recruit GCP candidates
as point features strictly on crossroads. On the other hand, roads as possible linear control features were
not included in the matching process even when the number of crossroads was scarce. The crossroads
were detected from the reference rasterized roads during the ancillary data preparation process and
stored into a database. Every crossroad was equipped with coordinates in the reference coordinate
system and an attribute numbering the road connections. As overpasses and ramps are scarce in
this region, their existence was not checked. In order to lower the total processing time the set of all
available crossroads was reduced depending on the satellite image resolution. Preferably crossroads
with four road connections were used. This reduced set of crossroads presented the potential GCP
locations. This ensured that each GCP candidate was firmly attached to a crossroad, which in turn,
led to more accurate matching in the future processing. As a consequence, visual control of the
entire process also became much easier. The final GCP candidate list included those crossroads that
allowed for a successful detection and accurate matching. It is to be noted that VHR systems have
smaller swath than HR systems, therefore the number of crossroads per WorldView-2 image is usually
considerably smaller than on a RapidEye image. This may cause problems if some crossroads are not
clearly detected, or if parts of an imaged area contain no crossroads at all.

3.3. Physical Sensor Model and Orthorectification

The automatic geometric corrections are implemented via two successive procedures: the first one
includes sensor modelling, while the second one produces a GIS-ready image via orthorectification
(Figure 3).

In order to accommodate various optical full-frame and pushbroom sensors a generic physical
sensor model describing the exact sensor geometry during the acquisition was defined (Figure 7).
The backbone of the developed model [24] is similar to the one described in [34], however numerous
important changes have been made. The relationship between the platform and the ground system is
represented by collinearity equations. In order to accommodate the complex pushbroom acquisition
geometry the model uses 24 exterior parameters for sensor orientation. Due to the longer acquisition
time the pushbroom sensor exterior orientation has to be modelled with time-dependent piecewise
polynomial functions. The satellite orbit is divided into two segments. In each segment the exterior
sensor orientation is modelled by six equations with 12 parameters in which three second-order
polynomial equations depend on time t (Equation (3)):

X(t) = Xo+ Xyt + Xp 12
Y=Yy +Yit+ Yo t?
Z(t)=Zo+ Z1t+ Zpt?

w = wp ®3)
¢ = ¢o
K = Ko

in which X, Y, and Z are position coordinates, while w, ¢, and « are the attitudes of the platform in
the reference (national) coordinate system. The smoothness of the orbit at the conjunction between



Remote Sens. 2016, 8, 343 12 of 26

adjacent segments is obtained by constraining the zero, first and second order continuity (derivatives)
on the orbit functions. Therefore, the model can theoretically provide results with as little as six GCPs
which should be spatially distributed as homogeneously as possible.

formation of collinearity

- equations
set of extracted GCPs T

from previous module

exterior orientation
modelling
formation of weight |

—— \ iterative least squares
adjustment with
satellite image erroneous GCP
metadata detection and removal
l
| accuracy check |

!

orthorectification |

Figure 7. Workflow of the physical sensor model and the orthorectification sub-module.

satellite image
(level 1)

pre-prepared ancillary
data: DEM (DSM)

The initial approximations of the 24 unknown exterior parameters were obtained and calculated
from the satellite image metadata. The final model was resolved using GCPs from the previous
sub-module which defines the exact platform position and attitude during the image acquisition
process. Prior to the iterative adjustment the GCP coordinates were corrected for systematic errors,
which include Earth curvature and atmospheric refraction.

Blunder detection is an extremely important step within the sensor modelling process. Because
the GCP extraction sub-module delivers some inaccurate GCPs or GCPs with gross errors, two
methods—RANSAC [35] and robust estimation [36]—were utilized in order to detect and eliminate
blunders in the sensor model. For this reason, the sensor model was divided into two parts that
combined least squares adjustment with gross error detection. Firstly, RANSAC was used to remove
GCPs with large errors, and then the model was optimized with robust estimation. In our algorithm
we implemented the Klein method [37].

The orthorectification of pushbroom images was performed with an indirect method based on the
research conducted by Kim et al. [38]. Relief displacement was corrected pixel by pixel by computing
the correct pixel’s position within the orthoimage with the aid of a nationwide DEM with a resolution
of 12.5 m and an estimate of the satellite sensor parameters.

3.4. Rational Function Model and Orthorectification

The physical sensor model was also tested on WorldView-2 imagery. The WorldView-2 metadata
file has a different format and types of parameters to the RapidEye metadata file, therefore the
algorithm for the extraction and computation of the first approximations of unknown parameters was
adapted while the model itself was left unchanged. The model yielded accurate results if there was
a sufficient number of homogeneously distributed GCPs (see Section 5.4). Since this was rare—some
possible reasons are outlined in Section 3.2—the RFM was also introduced to our processing chain
as a complement to the physical sensor model. The REM provides a good alternative to the physical
model and can achieve equivalent results [39]. In our case the RFM (performed with vendor-provided
RPCs) was less sensitive to the number and distribution of GCPs than the physical sensor model
which—because of its generality—does not model appropriately all sensor-specific distortions (e.g.,
lens, detector, asynchronous mode) that are important for VHR sensors. The bias correction of RPCs
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needs a substantially lower number of GCPs, which do not need to be evenly distributed. The
self-evident requirement for the use of this model is that the satellite image metadata includes RPCs,
which is not always the case.

The RFM uses a ratio of two polynomial functions to compute the row and column image
coordinates (7, c) from the object space ground coordinates (usually ¢, A, k). In order to minimize the
introduction of errors during the calculations, all of the coordinates and coefficients are normalized.
The ratios of the polynomials for the transformation of the coordinates from the ground to the image
can be calculated as follows (Equation (4)) [40]:

ml m2 m3 L.

> 2 Y P UK

i=0j=0k=0

R

> 2 X bipPIUKE

lml[J]mZOkmSO L. (4)
> X 3 cP LIKE

i=0j=0k=0

nl n2 n3 L

> 2 > digPILKK

i=0/=0k=0

rn:

in which r, and ¢, are the normalized row and column image coordinates, P, L, and H are the
normalized ground coordinates (¢, A, and h, respectively), while a;, b, cji, and d;j represent the
RPCs. The satellite image vendors usually supply 20 RPCs for polynomials in both numerators and
denominators, consequently the maximum and total power of all ground coordinates (m1, m2, m3, nl,
n2, n3) is limited to three.

The RFM is simple and straightforward to implement but one still needs at least a few GCPs to
obtain accurate results, since RPCs are usually precise but have to be bias-corrected first. The correction
is performed with all of the extracted GCPs. The GCPs are introduced into the model and the
obtained residuals of each individual GCP are used to compute the coefficients of two first order
polynomials (one for each image coordinate) which are later used to correct the pixel positions during
orthorectification. The algorithm also uses a simple gross error detection procedure. This eliminates
the GCPs the residuals of which differ by over 20 from the mean value. Using RPCs and the
correction coefficients the image is orthorectified in the reference coordinate system with the use
of the indirect method.

4. Test Data and Accuracy Evaluation Measures

4.1. Test Data

The robustness, speed, reliability and accuracy of the developed algorithms were tested with HR
RapidEye images and VHR multispectral World View-2 images.

The available RapidEye imagery (resolution 6.5 m) consisted of two different datasets of 41 level
1B images (Table 1).

The primary source was represented by 14 images, thirteen of which represented a time series
of the same lowland area acquired on different dates and in different seasons in 2010 and 2011, thus
exposing different illumination and vegetation characteristics, while the fourteenth image was acquired
in 2013 and covered a mountainous area. A more heterogeneous set of 27 images acquired in 2011
represented an additional data source. This dataset was obtained within the frame of the Copernicus
Space Component Data Access (dataset name “DWH_MG2_CORE_01—Optical HR Pan EU coverages
2011/2012/2013”) [41] and presents full coverage of Slovenia, thus encompassing the full variety of
landscapes (lowlands, hills, mountains, and coastal) during a five month period. The high variability
of input RapidEye images from both datasets is shown in Table 1.

The available multispectral WorldView-2 imagery (with a resolution of approximately 2 m) was
acquired in 2010 and 2012 (Table 2). Four images (Jesenice, Bled, Ljubljana L and smaller Ljubljana S)
are level 1B (sensor-corrected), while the other five are level 2A ortho-ready. The Jesenice and Bled
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images present a more dynamic landscape including hills and mountains, while the remaining seven
present lowland areas. No winter WorldView-2 image was available.

Table 1. Selected characteristics and metadata parameters for 41 RapidEye level 1B images. Images are

referenced by dates.

Image Season No. of No. of Image Clouds Sun Off-Nadir Snow Imaged
Samples  Lines Size (%) Elevation (°) Angle (°) Coverage Landscape

13.12.2010 autumn 11807 7623 standard 6 20.4 0.4 partially  lowlands
27122010 autumn 11788 7605 standard 20.3 6.6 partially  lowlands
03.02.2011  winter 11810 7447 standard 2 27.0 —16.2 partially  lowlands
11.03.2011  winter 11727 7523 standard 39.8 -95 sporadic  lowlands
03.05.2011  spring 11839 7631 standard 6 59.3 0.4 lowlands
12.05.2011  spring 11730 7568 standard 13 61.6 —6.4 lowlands
11.06.2011  spring 11802 7604 standard 66.6 3.6 lowlands
07.07.2011 summer 11797 7594 standard 1 66.1 -3.2 lowlands
11.08.2011  summer 11841 7612 standard 58.9 0.4 lowlands
14.08.2011 summer 11792 7590 standard 57.9 34 lowlands
15.08.2011 summer 11738 7582 standard 12 57.6 0.6 lowlands
02.09.2011 summer 11792 7622 standard 51.6 0.1 lowlands
13.09.2011 summer 11730 7554 standard 4 47.3 -9.7 lowlands
01.08.2013 summer 11802 11223 large 3 61.7 0.1 partially ~ mountains
06.03.2011  winter 11724 7616 standard 38.8 10.4 coastal
09.03.2011  winter 11790 7571 standard 1 38.9 19.5 lowlands
11.03.2011  winter 11727 7523 standard 39.7 -9.5 sporadic  lowlands
11.03.2011  winter 11729 7522 standard 40.2 -9.5 sporadic  lowlands
11.03.2011  winter 11730 7532 standard 2 41.0 -9.5 partially  lowlands
12.03.2011  winter 11796 7550 standard 1 40.1 20.3 sporadic  lowlands
20.03.2011  winter 11719 7578 standard 3 43.1 13.8 sporadic hills
20.03.2011  winter 11719 18078 ext. large 9 44.0 13.8 sporadic hills
02.04.2011  spring 11815 7515 standard 22 48.4 —129 lowlands
03.04.2011  spring 11806 7436 standard 4 49.0 —16.2 lowlands
03.04.2011  spring 11804 7433 standard 1 49.6 —16.2 lowlands
20.04.2011  spring 11855 25069 ext. large 3 55.7 3.8 partially mixed
22.04.2011  spring 11787 7558 standard 9 56.1 3.4 partially ~ mountains
06.05.2011  spring 11787 9246 large 6 60.3 13.3 partially ~ mountains
07.05.2011  spring 11723 13368 large 1 60.7 3.5 sporadic hills
07.05.2011  spring 11723 8322 standard 61.4 35 sporadic hills
07.05.2011  spring 11723 9322 large 61.5 3.5 sporadic hills
12.05.2011  spring 11727 8589 standard 10 62.3 —6.4 lowlands
26.05.2011  spring 11726 9979 large 4 64.9 10.3 partially ~ mountains
26.05.2011  spring 11724 8563 standard 1 65.7 10.3 coastal
11.06.2011  spring 11801 12826 large 66.5 3.6 lowlands
16.06.2011  spring 11800 10091 large 1 68.0 -3.1 lowlands
23.06.2011 summer 11795 7586 standard 6 68.2 —6.4 coastal
07.07.2011  summer 11797 7595 standard 1 66.3 -32 lowlands
07.07.2011  summer 11795 8578 standard 2 66.6 -32 lowlands
07.07.2011 summer 11795 8587 standard 6 66.8 -32 lowlands
07.07.2011  summer 11794 7603 standard 10 67.1 -3.2 lowlands

Table 2. Selected characteristics and metadata parameters for nine WorldView-2 level 1B and 2A

images. The variability of the available WorldView-2 images is smaller than that of RapidEye images.

Images are referenced by location names.

Image Proc. Season No. of No. of Image  Clouds Sun Off-Nadir  Imaged

Level Samples  Lines Size [%] Elevation [°’]  Angle[°] Landscape

Jesenice 1B summer 8472 7415 standard 3 47.6 12.8 mountains

Bled 1B summer 8464 7409 standard 5 47.7 12.5 hills

Ljubljana L 1B summer 8766 7603 standard 59.0 18.8 lowlands
Ljubljana S 1B summer 8762 3106 small 59.1 18.7 lowlands
Puconci 2A spring 4999 7112 standard n.a. 66.2 312 lowlands
Radenci 2A spring 4999 4999 standard n.a. 66.2 30.6 lowlands
Ljutomer 2A spring 7191 4999 standard na. 66.0 28.8 lowlands
Lendava 2A spring 9998 4999 standard n.a. 66.1 28.8 lowlands
Sentjernej 2A spring 4998 9997 small n.a. 66.4 16.6 lowlands
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4.2. Accuracy Evaluation Measures

The implemented geometric corrections were evaluated from the perspective of all target
requirements. At this point a short introduction is given for a better understanding of the accuracy
evaluations (used measures are summarized in Table 3). All main processing steps (see Figure 3) were
tested separately.

Table 3. Used accuracy evaluation measures. RMSE is root-mean-square error. RPCs are rational
polynomial coefficients. Ground control points (GCPs) were automatically extracted. Independent
check points (ICPs) and "orthoimage ICPs" (OICPs) were manually digitized from satellite image and
national aerial orthophotos.

Evaluated Property and Processing Phase = Evaluation Measure Number of Used Images
accuracy of sub-module for automatic RMSE at bias-corrected RPCs for 41 RapidEye
GCP extraction all extracted GCPs 9 WorldView-2
accuracy of sensor model model RMSE at non-eliminated 14 RapidEye
y GCPs and ICPs 3 WorldView-2
sensitivity of sensor model on number model RMSE at reduced subsets of 3 WorldView-2
of GCPs non-eliminated GCPs and ICPs origview
accuracy of the output orthoimage RMSE at OICP 3 WorldView-2

The accuracy of the GCP extraction algorithm—regardless of whether it is a two- or three-step
one—was evaluated through the comparison of the positions of all extracted GCPs with the positions
calculated from bias-corrected RPCs (Sections 5.2 and 5.3). Therefore, we could say that in this
evaluation step RPCs were used as a reference source, however we were fully aware that they do not
represent a perfect reference. Due to this the final RMSEs might contain certain small errors, however,
in our experience, these do not have a great effect on the evaluation results.

Secondly, the accuracy of the physical sensor model for processing HR and VHR images was
evaluated with respect to the manually measured ICPs and GCPs via the computed model parameters
(Section 5.4). In this case only the GCPs that were not eliminated by RANSAC were taken into account.
Total RMSEs were calculated for all non-eliminated GCPs as well as for the ICP sets.

In order to verify the influence of the number of GCPs on the sensor model algorithm the same
assessment was performed on the artificially produced subsets of non-eliminated GCPs (for VHR
images only).

Finally, the accuracy of the final output VHR orthoimages was assessed by a comparison with
an external reference source (Section 5.4). Approximately 30 manually selected “orthoimage ICPs”
(OICPs) placed on road intersections were manually digitized. The coordinates of the same locations
were taken from national aerial orthophoto images. The orthorectification accuracy (OICP RMSE) was
computed from the coordinate differences. It should be pointed out that the OICPs were measured
only on well-defined road intersections predominantly located on plain lowlands.

The accuracy of the RFM and the orthorectification sub-module for processing VHR images was
assessed with the same measures that were used for the physical sensor model and the orhorectification
sub-module; the results are presented in Section 5.5.

5. Results

5.1. Robustness and Processing Time of Geometric Corrections

The two-step GCPs extraction algorithm automatically processed 40 out of the total 41 RapidEye
images (i.e., 97.6%). All 40 images that successfully completed the automatic GCP extraction also
passed the physical sensor model and were automatically orthorectified.
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An average per-image processing time for the entire geometric correction phase lasted 41 minutes
on a personal workstation (quad-core, 3.40 GHz, 16 GB RAM). The largest image (“20.04.2011"),
which is the size of three standard images, was processed in 1 h 42 min, which is still acceptable for
such an extraordinary large image. Approximately 35% of the processing time is dedicated to GCP
extraction, 5% to the sensor model, and 60% to the orthorectification.

All nine WorldView-2 multispectral images were fully automatically geometrically corrected via
the three-step GCP extraction algorithm and the physical sensor model or REM, with processing times
under one hour. When the physical sensor model was used individual steps took around 28%, 7%, and
65%, respectively, while with RFM the second step was performed in mere seconds.

While the number of WorldView-2 images is rather low for a definite conclusion, the rate and
processing times of the automatically processed RapidEye images implies great robustness and speed
of the implemented algorithms.

5.2. Evaluation of the Automatic Two-Step GCP Extraction Algorithm

The algorithm typically extracts 200-300 GCPs per RapidEye image, however when dealing with
complex images (clouds, snow) in which the internal evaluation of the GCP quality prevents the
extraction of unreliable GCPs, or if the imaged area is poorly covered by a road network, this number
can be lower, even as low as 50. The distribution of GCPs (Figure 8) and their positions were visually
inspected, while the accuracy of the GCPs was evaluated via the bias-corrected RPCs. The per image
root-mean-square error (RMSE) calculated at extracted GCPs and the boxplots of GCP residuals are
presented in Figure 9. The average RMSE value of all 40 successfully processed images is 1.19 px.

46°30' N

15°30'E 16°0'E

Figure 8. Examples of GCP distribution on two RapidEye images: lowland (left) and mountainous
area (right). The area of Slovenia is presented in black. The GCPs that were used by the physical sensor
model are outlined in red, while the eliminated ones are not outlined. The lack of GCPs noticeable
in some neighbouring countries (lower right corner of the left image) is a result of the use of an
insufficiently reliable reference road data source for this area (i.e., OpenStreetMap). Another noticeable
lack of GCPs can be seen in the mountains (centre of the right image), which is an inherent drawback
of the proposed method, since it is based on the presence of roads.

When compared to Table 1 we may see that images with RMSEs larger than average were
acquired in challenging conditions, i.e., winter (presence of snow, lower contrasts and longer shades),
mountainous terrain and/or large across-track angle. For images extending across the Slovenian
borders we had a problem with the absence of a reliable reference road source.

When dealing with images acquired in non-challenging conditions 75% percent of residuals
remain within 1.3 pixels, while individual residuals may reach as high as two to ten pixels. Residuals
may be higher for images acquired in challenging conditions. GCPs with gross errors are removed in
the sensor model processing step (see Sections 3.3 and 3.4).
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Figure 9. Root-mean-square error (RMSE) in pixels/meters at extracted GCPs per image (above) and
boxplots of corresponding GCP residuals per image (below) for 41 RapidEye 1B images. Note: Images
with the same acquisition date were acquired on the same satellite pass, however they have a different
imaged area (RMSEs for such images are very similar).

5.3. Evaluation of the Automatic Three-Step GCP Extraction Algorithm

In most cases the algorithm extracted over 100 GCPs per image. The average RMSE for the
extracted GCPs in nine WorldView-2 images was 1.55 px (Figure 10, left). For comparison, the same
images were processed by the original two-step algorithm with an average RMSE of 2.14 px.

In the two-step algorithm 75% percent of GCP residuals stay within two pixels for all images
(Figure 10, right). Individual residuals do not exceed five pixels on a single image. Once the three-step
algorithm is used 75% residuals remain within 1.5 pixels, which is a substantial improvement. On the
other hand, individual residuals remain high. Individual GCPs with gross errors are removed in the
sensor model processing step (see Sections 3.3 and 3.4).
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Figure 10. RMSE in pixels/meters at extracted GCPs per image (left) and boxplots of corresponding
GCP residuals (right) for nine WorldView-2 images at levels 1B and 2A. The results from the original
two-step algorithm consisting of coarse matching and fine positioning (squares) and the improved
three-step algorithm with the added super-fine positioning (circles) were compared.
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5.4. Evaluation of the Physical Sensor Model and Orthorectification

The physical sensor model was tested with RapidEye and multispectral World View-2 images.
The tests with three RapidEye images were extensively presented in [24]. The results showed that the
model is capable of orthorectifying optical satellite images with an accuracy of under one pixel even
when less than 20 GCPs are used and several gross errors of different magnitudes are present. In order
to support these findings 14 RapidEye 1B images were analysed (primary image set, see Section 4.1).
The results presented in Table 4 and Figure 11 (left) show that the total RMSE of the non-eliminated
GCPs and the RMSE of independent check points (ICPs) are in most cases far below one pixel, which is
in line with the results in [24]. ICP residuals (Figure 11, right) reflect the RMSE values. 75% of residuals
are below 1.5 pixels for all images. Only four images, mostly winter and mountainous, have residuals
that exceed two pixels.
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Figure 11. Independent check point (ICP) RMSE in pixels/meters (left) and boxplots of corresponding
ICP residuals (right) for 14 RapidEye level 1B images processed with the physical sensor model.
Images are referenced by dates. Most values are under one pixel, except for one winter image and the
mountainous image where the values are slightly higher.

Table 4. Root-mean-square error (RMSE) values for 14 RapidEye level 1B images processed with the
physical sensor model. The number of GCPs was reduced by RANSAC and further refined by robust
estimation. Independent check points (ICPs) were manually digitized.

Image Number of Total GCPs ~ Number of Used GCPs  GCP RMSE (px/m) ICP RMSE (px/m)

13.12.2010 55 49 0.79/5.14 0.55/3.58
27.12.2010 89 81 0.92/5.98 1.19/7.74
03.02.2011 106 96 1.15/7.48 0.94/6.11
11.03.2011 329 328 0.74/4.81 0.74/4.81
03.05.2011 253 246 0.56/3.64 0.57/3.71
12.05.2011 270 257 0.77/5.01 0.64/4.16
11.06.2011 327 304 0.57/3.71 0.80/5.20
07.07.2011 410 401 0.59/3.84 0.83/5.40
11.08.2011 126 115 0.49/3.19 0.47/3.06
14.08.2011 369 336 0.67/4.36 0.94/6.11
15.08.2011 377 347 0.42/2.73 0.58/3.77
02.09.2011 237 223 0.50/3.25 0.56/3.64
13.09.2011 269 262 1.04/6.76 0.69/4.49
01.08.2013 184 166 0.63/4.10 1.02/6.63

We had only three full-size 1B multispectral WorldView-2 images available for testing. In order
to increase the number of tests that would determine the model efficiency, the original set of GCPs
extracted from previous sub-module was decimated according to the GCP accuracy and distribution



Remote Sens. 2016, 8, 343 19 of 26

and with this process we formed several subsets with different numbers of GCPs. Each subset was
used in the sensor model that worked with 300 RANSAC iterations. The RANSAC iterations continued
until at least 90% of the GCPs remained in the set. Since RANSAC has a random component and the
results tend to differ slightly in each test (same set of GCPs of the same image) the test was conducted
five times and the results were averaged.

The adjustment results are listed in Table 5. It can be noted that RANSAC always removed at least
5% of the points in every set. Following the adjustment, the RMSE was computed from the difference
between the measured and computed coordinates. The RMSEs at manually measured ICPs, which
are more significant than internal RMSEs at GCPs, exceed one pixel for every configuration and as
much as five pixels when fewer points are used in the Ljubljana L image. It is to be noted that although
the GCP RMSE values reflect the obtained GCP accuracies when compared to RPCs, the RMSEs at
ICPs are higher. The reason for this lies in the GCPs number and distribution (Figure 12). The physical
model showed to be quite sensitive to the number of available GCPs and their spatial distribution.
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Figure 12. Distribution (left) and residuals (right) of automatically extracted GCPs and manually
digitized ICPs on the Bled WorldView-2 image, which was processed with the three-step GCP extraction
algorithm and the physical sensor model. The right image clearly shows the dependency of the physical
sensor model on the distribution of the GCPs—parts of the image without any GCPs manifest in
increased ICP residuals.

Table 5. Accuracy of the adjustment results obtained with the physical sensor model on different
subsets of automatically extracted GCPs for three multispectral WorldView-2 1B images.

Image Number of Number of Number of GCP RMSE ICP RMSE
8 Total GCPs  Used GCPs ICPs (px/m) (px/m)
75 70 24 0.92/1.84 1.54/3.08
Jesenice 50 48 24 1.17/2.34 1.44/2.88
31 28 24 0.98/1.96 1.58/3.16
15 14 24 0.74/1.48 1.78/3.56
158 149 30 0.99/1.98 2.30/4.60
102 97 30 1.11/2.22 3.17/6.34
Bled 50 47 30 1.15/2.30 3.70/7.40
30 29 30 1.35/2.70 3.80/7.60
15 14 30 0.88/1.76 4.88/9.76
206 191 30 2.61/5.22 3.94/7.88
152 145 30 2.85/5.70 3.94/7.88
o 101 9 30 3.05/6.10 5.20/10.40
Ljubljana L 48 45 30 3.06/6.12 4.10/8.20
31 29 30 3.33/6.66 5.49/10.98
16 15 30 2.97/5.94 5.77/11.54
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The orthoimages were automatically generated with the computed parameters from the most
accurate results of all subsets (with the lowest ICP RMSE) and a nationwide DEM. The accuracy of the
orthoimages was assessed with manually selected OICPs as described in Section 4.2.

Table 6 shows the positional accuracy of the orthoimages. The resulting OICP RMSE is
approximately two pixels for the Bled and Ljubljana L image and just over one pixel for the Jesenice
image. The accuracies are better than that of ICPs after the adjustment (Table 5).

Table 6. Accuracy of the WorldView-2 orthoimages generated with the physical model compared to
the reference aerial orthophoto.

OICP RMSE (px/
Image Number of OICPs (px/m)
X Y Planar
Jesenice 30 0.80/1.60 0.84/1.68 1.16/2.32
Bled 32 0.69/1.38 1.78/3.56 1.91/3.82
Ljubljana L 32 1.03/2.06 1.75/3.50 2.03/4.06

5.5. Evaluation of the REM and Orthorectification

The same images and GCP sets were used for RFM and the physical sensor model. The results
of the tests for the three WorldView-2 1B images are presented in Table 7. The number of eliminated
GCPs is similar to that of the physical sensor model. The total RMSE of the used non-eliminated GCPs
and RMSE of ICPs are in most cases less than one pixel. Compared to other images the Bled image
shows rather larger errors in ICPs. In general, the results obtained with RFM are substantially better
than the results obtained with the physical model (Figure 13, left). ICP residuals (Figure 13, right)
also support these findings. In the case of the RFM model the maximum residuals remain within
3.5 pixels for all images while the median rarely exceeds one pixel. On the other hand, the physical
model presents larger residuals, with median values exceeding five pixels.
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Figure 13. Left: Comparison of ICP RMSE in pixels/meters obtained with the physical sensor model
(squares) and REM (circles) at different subsets of automatically extracted GCPs for three multispectral
WorldView-2 1B images (see Tables 5 and 7). Right: Boxplots of corresponding ICP residuals.

The orthoimages were generated using bias-corrected RPCs of the most accurate subset and
a nationwide DEM. The accuracy of the orthoimages was assessed as described in Section 4.2.

The positional accuracies of the orthoimages can be seen in Table 8. The resulting OICP RMSEs
reflect the results obtained with REM (Table 7). The precision of the orthoimages is even better, with
RMSEs below one pixel for Jesenice and Ljubljana L images and slightly over one pixel for the Bled
image. In the case of orthoimages the results obtained with RFM are also better than the results obtained
with the physical model (Figure 14, left). The orthophoto residuals (Figure 14, right) generated with
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the RFM model are smaller than the ones generated with the physical model. Their median remains
below one pixel and merely a few residuals exceed three pixels. The physical model residuals have
a similar median but are in general larger and reach higher maximums. On two images, certain areas
present residuals above six pixels. Apart from the model’s imperfections, the high residuals are also
a result of the low accuracy of the used aerial orthophoto and DEM in hilly and mountainous areas.

Table 7. Accuracy of the results obtained with RFM on different subsets of automatically extracted
GCPs for three multispectral WorldView-2 1B images.

Number of Number of Number of GCP RMSE ICP RMSE

Image Total GCPs Used GCPs ICPs (px/m) (px/m)
75 69 24 0.88/1.76 0.91/1.82
Jesenice 50 47 24 1.01/2.02 0.98/1.96
31 28 24 1.04/2.08 0.85/1.70
15 13 24 0.77/1.54 1.00/2.00
158 147 30 0.86/1.72 1.16/2.32
102 94 30 0.94/1.88 1.15/2.30
Bled 50 46 30 0.87/1.74 1.28/2.56
30 28 30 0.92/1.84 1.21/2.42
15 13 30 0.79/1.58 1.45/2.90
206 189 30 0.93/1.86 0.86/1.72
152 140 30 0.93/1.86 0.86/1.72
o 101 91 30 0.95/1.90 0.86/1.72
Ljubljana L 48 44 30 0.89/1.78 0.85/1.70
31 28 30 0.94/1.88 0.88/1.76
16 15 30 1.05/2.10 0.99/1.98

Table 8. Accuracy of the WorldView-2 orthoimages generated with RFM compared to the reference
aerial orthophoto.

OICP RMSE (px/
Image  Number of OICPs (px/m)
X Y Planar
Jesenice 30 0.58/1.16 0.61/1.22 0.84/1.68
Bled 32 0.43/0.86 0.98/1.96 1.07/2.14
Ljubljana L 32 0.42/0.84 0.62/1.24 0.75/1.50
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Figure 14. Left: Comparison of the OICP RMSE in pixels/meters for the orthoimages obtained with the
physical sensor model (squares) and RFM (circles) for three multispectral WorldView-2 1B images when
compared to the reference aerial orthophoto (see Tables 6 and 8). Right: Boxplots of corresponding
OICP residuals.
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6. Discussion

As regards the processing times and robustness the STORM processing chain meets the target
requirements for HR and VHR images.

With the two-step algorithm delivering a sufficient number of GCPs with an average accuracy
of 1.18 px on heterogeneous HR RapidEye images, we consider that we are getting close to the
limitations of a fully automatic GCP extraction method. The accuracies of the three images with
complex acquisition parameters (“03.02.2011”, “09.03.2011”, “12.03.2011”) are notably lower than
the average. All of these three images were taken during winter and were acquired with large
across-track viewing angles (more than 16°). Moreover, most of the second listed image (from which
an insufficient number of GCPs was extracted) lies outside of Slovenia, while the first one is so complex
that even manually selecting accurate ICPs proved to be a demanding task. It may be concluded that
a combination of several acquisition parameters that are too far from the common or expected values
may hinder the fully automatic execution of the proposed algorithm.

It was established that the algorithm was able to withstand imperfect road detection on satellite
images as well as roads missing in source reference layers. Coarse image matching was almost entirely
successful wherever digital road data was available and where a sufficient part of the road network
was visible on the satellite image. The road density derived from the available road layers in Slovenia
was larger than that in the neighbouring countries where OpenStreetMap was used; there the method
yielded a smaller—in some cases insufficient—local number of GCPs. An insufficient number of local
GCPs was also recorded in mountainous areas. The GCP extraction algorithm was also challenged if
the satellite image was acquired with a large across-track viewing angle.

The three-step algorithm delivers large sets of accurate GCPs on VHR WorldView-2 images.
For the nine images the average bias-corrected RPC RMSE of extracted GCPs was 1.55 px. Such accuracy
was achieved by adding correlation-based super-fine positioning in the final step, however, we believe
there is still room for further refinements. Two types of improvements are possible. In the first one, the
implemented super-fine matching method could be replaced or supplemented by a different algorithm,
e.g., least square matching or speeded up robust features. Its performances should be compared to the
algorithms found in literature. In the second type, certain criteria function(s) could be developed that
would eliminate the worst extracted GCPs, thus reducing their redundancy and resulting in improved
overall accuracy. Nevertheless, it is not expected that the pixel accuracy of GCPs extracted from VHR
images will ever reach those from HR images. The reason for this lies in the detail complexity and local
distortions (deformations of high objects, objects” shadows) that are a result of the imaging geometry
which is extremely pronounced in VHR images.

The number of GCPs and their distribution on VHR images is not always acceptable. Due to the
smaller swath some parts of the VHR image may contain no roads at all (e.g., mountainous areas,
extensive forest areas), thus not a single GCP can be extracted. In this case it would be beneficial to use
a complementary GCP extraction method, which would use a different reference source and not roads.
Both two- and three-step GCP extraction algorithms produce some GCPs with gross errors. They were
removed during the following processing step, i.e., the sensor model.

The sensor model and the orthorectification sub-module of the STORM processing chain was able
to produce HR and VHR orthoimages either with the proprietary physical sensor model or with REM
based on previously extracted GCPs which were used to compute the orientation parameters or correct
the RPCs.

The physical sensor model was first tested on 14 HR RapidEye images. The obtained ICP RMSEs
were almost always below one pixel, even in the case of the three winter images. Nevertheless,
the winter images and the image of the mountainous area from 2013 have proven to be the most
problematic. The number of GCPs does not drastically affect the results as the same accuracies are
achieved with over 400 or as few as 50 points. As it was demonstrated in [24] the physical model is
stable and immune to the presence of gross errors.
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The physical sensor model applied on VHR WorldView-2 images represented a greater challenge.
From the three test images only one (Jesenice) performed well on all evaluated levels, with GCP RMSE,
ICP RMSE, and OICP RMSE close to one pixel. With a small GCP RMSE the Bled image provided
a good fit for the sensor model, however its ICP RMSE and OICP RMSE values were significantly
greater than one pixel due to the uneven GCP distribution—a single GCP was found in the hilly
southwest region of the image (Figure 12). Consequently, the model provided a good fit only in the
other parts of the image. Surprisingly, the worst results were obtained for the Ljubljana L image.
Despite the fact that the distribution and accuracy of GCPs were good, the model achieved very
poor internal accuracy (GCP RMSE), which resulted in poor ICP accuracy. The real cause for the
model’s poor performance on this image is still unknown, but it is suspected that it is a result of
the acquisition mode (asynchronous) and relatively large across-track angle (18.8°). Additional tests
should be performed with a higher number of VHR images, as this would make it possible to precisely
determine the cause of the low accuracy of the results.

Although the best results were achieved with the highest number of GCPs per image, the accuracy
did not always decrease with the decline in the number of GCPs. The reason behind this is twofold: on
the one hand the decimation of the GCP sets is not always optimal (due to the uneven distribution
and uncertain accuracy of GCP extraction) while on the other, the RANSAC algorithm has a random
component that can produce slightly inaccurate results.

The robustness of the sensor model estimate is secured by the iterative optimization steps and
parameter quality controls. For example, the physical sensor model iteratively computes the exterior
parameters several times within each adjustment step and in order to assure relevant results it compares
them to the orbital parameters obtained from the metadata. Additionally, the resulting parameters are
computed five times and the outcome with the smallest RMSE is accepted as the final result. However,
the optimization and quality control still remains a great challenge. Therefore, some existing iterative
steps could be optimized (e.g., reduction of the number of RANSAC iterations) and further iterative
steps could be added (e.g., multi-stage gross error removal for the RFM). An additional challenge
can be found in the establishment of an internal model-independent measure for the quality of the
produced orthoimage, which is extremely hard to achieve in completely automatic systems and was
thus not implemented in our chain. Although solutions such as k-fold cross-validation exist they are
not applicable to our model as the automatic extraction of GCPs can produce some points with gross
errors that can consequently adversely affect the accuracy of results.

The RFM applied on VHR WorldView-2 images provided excellent results with most accuracies
below one pixel, thus the resulting orthoimages can be used in various applications. The RFM proved
to be stable almost regardless of the number of used GCPs, and it was also considerably less sensitive
to the GCP distribution than the physical sensor model. Slightly higher ICP RMSE and OICP RMSE
were obtained with the Bled image, which was most likely due to a higher number of gross errors in
the GCPs or inaccurate RPCs.

It should be noted that more extensive VHR image datasets are necessary if one wishes to
improve and refine the geometric corrections of VHR images. This could provide greater variability in
seasons, vegetation state, imaged landscapes, atmospheric conditions, acquisition parameters, etc., all
of which distinctly influence the performance of various algorithms within the proposed geometric
corrections module.

7. Conclusions

Fully automated satellite image processing is a challenging task that is crucial for numerous
applications. In order to realize this important need SPACE-SI has developed STORM—a novel
processing chain that includes all steps necessary to produce web-ready imaging products from input
level 1 or level 2 satellite data. The implementation focused on the pre-processing steps (geometric
and radiometric corrections), which represent a precondition for high quality final products.



Remote Sens. 2016, 8, 343 24 of 26

For the geometric corrections of HR data we combined two-step GCP extraction (coarse matching,
fine positioning) onto reference rasterized roads with the proprietary physical sensor model and
orthorectification. The average processing time per RapidEye image was under one hour and the
percentage of automatically processed images was 97.6%, thus the initial requirements were met
successfully. The processing time could be substantially reduced if a graphics processing unit was
used as proposed by certain authors (e.g., [42]).

While adding support for the VHR World View-2 data several new challenges, such as pronounced
image distortion due to complex imaging geometry, issues connected to increased image resolution
(road widths expressed in satellite pixels; increased number of false positives and negatives during the
road detection step) and decreased swath (less roads and crossroads available per image) were solved.
A third step was introduced to the GCP extraction sub-module. Nevertheless, the processing time
remains similar, i.e., approximately one hour per satellite image. In addition to the physical sensor
model based orthorectification the REM-based orthorectification was also implemented.

Initial requirements were also met regarding the accuracy of the final orthoimages. The ICP
accuracy for HR RapidEye images obtained with the use of the two-step GCP extraction algorithm and
physical sensor model is in most cases well under one pixel (i.e., less than 6.5 m). The accuracy of the
VHR WorldView-2 orthoimages, produced with the use of the three-step GCP extraction algorithm
and RFM, is approximately one pixel (i.e., 2.0 m). The latter could be further improved by enhancing
the super-fine positioning step with new algorithms (e.g., least square matching, speeded up robust
features). The results presented on a large set of images demonstrate that by selecting a proper
combination of developed algorithms the STORM processing chain can successfully orthorectify both
HR RapidEye and VHR WorldView-2 images.

Acknowledgments: In the period between 2010 and 2013 the Slovenian Centre of Excellence for Space Sciences
and Technologies (SPACE-SI) was partly financed by the European Union, European Regional Development
Fund, and the Ministry of Education, Science and Sport of the Republic of Slovenia. The research was partly
financed by the Slovenian Research Agency project J2-6777. The authors would like to thank Matej Batic,
Matej Perse, Klemen Zaksek and Tomaz Rodi¢ for their contribution in the development and/or testing of the
various algorithms found in the STORM processing chain.

Author Contributions: Peter Pehani integrated the development of the STORM processing chain. With the use of
IDL programming language he implemented the upgrade from the automatic two-step GCP extraction algorithm
to the three-step one. Klemen Cotar was involved in the implementation and testing of the automatic two-step
GCP extraction algorithm. He implemented the backbone of the STORM processing chain using IDL programming
language. Ale§ Marseti¢ designed the algorithms for the automatic geometric sensor models and orthorectification,
and implemented them using IDL programming language. Janez Zaletelj designed the automatic two-step GCP
extraction algorithm, and implemented it using C++ programming language. Kristof Ostir led the research. All of
the authors contributed to the ideas of the described algorithms, as well as to the writing, editing, and reviewing
of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Krauf3, T.; d’Angelo, P; Schneider, M.; Gstaiger, V. The fully automatic optical processing system CATENA
at DLR. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-1/W1, 177-183. [CrossRef]

2. Miiller, R.; KrauB, T.; Schneider, M.; Reinartz, P. Automated georeferencing of optical satellite data with
integrated sensor model improvement. Photogramm. Eng. Remote Sens. 2012, 71, 61-74. [CrossRef]

3.  RSG Field Guide, Joanneum Research. Available online: http://dib.joanneum.ac.at/rsg/ (accessed on 21
January 2015).

4. Klaric, M.N.; Claywell, B.C.; Member, S.; Scott, G.J.; Hudson, N.J.; Sjahputera, O.; Li, Y.; Barratt, S.T.;
Keller, ].M.; Davis, CH. GeoCDX: An automated change detection and exploitation system for
high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2067-2086. [CrossRef]

5. Bignalet—Cazalet, F.; Baillarin, S.; Panem, C. Automatic and generic mosaicking of multisensor images:
An application to Pleiades HR. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B1, 509-512.
[CrossRef]


http://dx.doi.org/10.5194/isprsarchives-XL-1-W1-177-2013
http://dx.doi.org/10.14358/PERS.78.1.61
http://dx.doi.org/10.1109/TGRS.2013.2243840
http://dx.doi.org/10.5194/isprsarchives-XXXIX-B1-509-2012

Remote Sens. 2016, 8, 343 25 of 26

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

Eugenio, F; Marqués, F. Automatic satellite image georeferencing using a contour-matching approach.
IEEE Trans. Geosci. Remote Sens. 2003, 41, 2869-2880. [CrossRef]

Gianinetto, M.; Scaioni, M. Automated geometric correction of high-resolution pushbroom satellite data.
Photogramm. Eng. Remote Sens. 2008, 74, 107-116. [CrossRef]

Leprince, S.; Barbot, S.; Ayoub, E,; Avouac, ].P. Automatic and precise orthorectification, coregistration, and
subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci.
Remote Sens. 2007, 45, 1529-1558. [CrossRef]

Liu, C.C.; Chen, PL. Automatic extraction of ground control regions and orthorectification of remote sensing
imagery. Optics Express 2009, 17, 7970-7984. [CrossRef] [PubMed]

Devaraj, C.; Shah, C.A. Automated geometric correction of multispectral images from high resolution CCD
Camera (HRCC) on-board CBERS-2 and CBERS-2B. ISPRS ]. Photogramm. Remote Sens. 2014, 89, 13-24.
[CrossRef]

Oh, J.; Lee, C. Automated bias-compensation of rational polynomial coefficients of high resolution satellite
imagery based on topographic maps. ISPRS ]. Photogramm. Remote Sens. 2015, 100, 14-22. [CrossRef]

Hild, H.; Fritsch, D. Integration of vector data and satellite imagery for geocoding. Int. Arch. Photogramm.
Remote Sens. 1998, 32, 246-251.

Zou, S.; Zhang, J.; Zhang, Y. The automatic registration between high resolution satellite images and a vector
map based on RFM. In Proceedings of the International Conference on Image Analysis and Signal Processing,
Linhai, China, 11-12 April 2009; pp. 397-401.

Guo, X,; Zhang, W.; Ma, G. Automatic urban remote sensing images registration based on road networks.
In Proceedings of the 2009 IEEE Joint Urban Remote Sensing Event, Shanghai, China, 20-22 May 2009;
pp- 1-6.

Lu, L.; Zhang, Y. Auto-registration of satellite image with the existing vector map. In Proceedings of the 2011
IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24-29 July 2011;
pp. 574-577.

Liu, Z.; Zhang, B.; Li, P; Guo, H.; Han, J]. Automatic registration between remote sensing image and vector
data based on line features. In Proceedings of the 19th International Conference on Geoinformatics, Shanghai,
China, 24-26 June 2011; pp. 1-5.

Kruger, W. Robust and efficient map-to-image registration with line segments. Mach. Vis. Appl. 2001, 13,
38-50. [CrossRef]

Richter, R.; Schldpfer, D. Atmospheric/Topographic Correction for Satellite Imagery. ATCOR-2/3 User Guide;
Version 8.4.0; German Aerospace Centre: Wessling, Germany, 2007.

Zaksek, K.; Cotar, K.; Veljanovski, T.; Pehani, P.; Ostir, K. Topographic correction module at STORM
(TC@STORM). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 721-728. [CrossRef]
Minnaert, M. The reciprocity principle in lunar photometry. Astrophys. J. 1941, 93, 403—410. [CrossRef]
Zaksek, K.; Pehani, P,; Ostir, K.; Kokalj, 7.; Polert, E. Hill-shading based on anisotropic diffuse illumination.
In Proceedings of the Symposium GIS Ostrava 2012: Surface Models for Geosciences, Ostrava, Czech
Republic, 23-25 January 2012; Riizicka, J., Riizickovd, K., Eds.; Technical University of Ostrava: Ostrava,
Czech Republic; pp. 283-297.

Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9,
62-66.

Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images:
From pixel-based to object-based approaches. ISPRS . Photogramm. Remote Sens. 2013, 80, 91-106. [CrossRef]
Marseti¢, A.; Ostir, K.; Kosmatin Fras, M. Automatic orthorectification of high-resolution optical satellite
images using vector roads. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6035-6047. [CrossRef]

Le Moigne, J.; Netnyahu, N.S.; Eastman, R.D. Image Registration for Remote Sensing; Cambridge University
Press: Cambridge, UK, 2011.

Eastman, R.D.; le Moigne, J.; Netanyahu, N.S. Research issues in image registration for remote sensing.
In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN,
USA, 17-22 June 2007; pp. 1-8.

Fan, B.; Huo, C.; Pan, C.; Kong, Q. Registration of optical and SAR satellite images by exploring the spatial
relationship of the improved SIFT. IEEE Geosci. Remote Sens. Lett. 2013, 10, 657-661. [CrossRef]


http://dx.doi.org/10.1109/TGRS.2003.817226
http://dx.doi.org/10.14358/PERS.74.1.107
http://dx.doi.org/10.1109/TGRS.2006.888937
http://dx.doi.org/10.1364/OE.17.007970
http://www.ncbi.nlm.nih.gov/pubmed/19434129
http://dx.doi.org/10.1016/j.isprsjprs.2013.12.012
http://dx.doi.org/10.1016/j.isprsjprs.2014.02.009
http://dx.doi.org/10.1007/PL00013267
http://dx.doi.org/10.5194/isprsarchives-XL-7-W3-721-2015
http://dx.doi.org/10.1086/144279
http://dx.doi.org/10.1016/j.isprsjprs.2013.03.006
http://dx.doi.org/10.1109/TGRS.2015.2431434
http://dx.doi.org/10.1109/LGRS.2012.2216500

Remote Sens. 2016, 8, 343 26 of 26

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Gecen, R;; Sarp, G. Road detection from high and low resolution satellite images. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2008, XXXVII-B4, 355-358.

Li, X.; Qiao, Y.; Yi, W.; Guo, Z. The research of road extraction for high resolution satellite image.
In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse,
France, 21-25 July 2003; pp. 3949-3951.

Resende, M.; Jorge, S.; Longhitano, G.; Quintanilha, J.A. Use of hyperspectral and high spatial resolution
image data in an asphalted urban road extraction. In Proceedings of the 2008 IEEE International Geoscience
and Remote Sensing Symposium, Boston, MA, USA, 6-11 July 2008; pp. 1323-1325.

Ziems, M.; Gerke, M.; Heipke, C. Automatic road extraction from remote sensing imagery incorporating
prior information and colour segmentation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
2007, XXXVI-3/W49A, 141-147.

Zaletelj, ].; Burnik, U,; Tasi¢, J.E. Registration of satellite images based on road network map. In Proceedings of
the 8th International Symposium on Image and Signal Processing and Analysis, Trieste, Italy, 4-6 September
2013; pp. 49-53.

Dougherty, E.R.; Lotufo, R.A. Hands-On Morphological Image Processing; SPIE Press: Bellingham, MA,
USA, 2003.

Poli, D. Modelling of Spaceborne Linear Array Sensors. Ph.D. Thesis, Institute of Geodesy and
Photogrammetry, ETH Ziirich, Ziirich, Switzerland, 2005.

Fischler, M.A_; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Comm. ACM 1981, 24, 381-395. [CrossRef]

Kubik, K.; Merchant, D.; Schenk, T. Robust estimation in photogrammetry. Photogramm. Eng. Remote Sens.
1987, 53, 167-169.

Klein, H.; Forstner, W. Realization of automatic error detection in the block adjustment program PAT-M43
using robust estimators. Int. Arch. Photogramm. Remote Sens. 1984, XXV-A3, 234-245.

Kim, T,; Shin, D.; Lee, Y.-R. Development of a robust algorithm for transformation of a 3D object point onto
a 2D image point for linear pushbroom imagery. Photogramm. Eng. Remote Sens. 2001, 67, 449-452.

Fraser, C.S.; Hanley, H.B. Bias compensated RPCs for sensor orientation of high-resolution satellite imagery.
Photogramm. Eng. Remote Sens. 2005, 71, 909-915. [CrossRef]

Tao, C.V,; Hu, Y. A comprehensive study of the rational function model for photogrammetric processing.
Photogramm. Eng. Remote Sens. 2001, 67, 1347-1357.

ESA Copernicus Space Component Data Access. Available online: https://copernicusdata.esa.int/
web/cscda/dataset/-/asset_publisher/uDd0At6AeU7H/content/dwh_mg2_core_01 (accessed on 16
October 2014).

Lemoine, G.; Giovalli, M. Geo-correction of high-resolution imagery using fast template matching on a GPU
in emergency mapping contexts. Remote Sens. 2013, 5, 4488-4502. [CrossRef]

® © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.14358/PERS.71.8.909
http://dx.doi.org/10.3390/rs5094488
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	
	
	
	
	
	
	

	
	
	

	
	
	
	
	
	

	
	

