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Asa Gholizadeh 1,*, Luboš Borůvka 1, Mohammadmehdi Saberioon 2 and Radim Vašát 1

1 Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources,
Czech University of Life Sciences Prague, Prague 16521, Czech Republic; boruvka@af.czu.cz (L.B.);
vasat@af.czu.cz (R.V.)

2 Laboratory of Signal and Image Processing, Institute of Complex Systems, South Bohemia Research Centre
of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters,
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Abstract: Successful determination of soil texture using reflectance spectroscopy across Visible and
Near-Infrared (VNIR, 400–1200 nm) and Short-Wave-Infrared (SWIR, 1200–2500 nm) ranges depends
largely on the selection of a suitable data mining algorithm. The objective of this research was to
explore whether the new Memory-Based Learning (MBL) method performs better than the other
methods, namely: Partial Least Squares Regression (PLSR), Support Vector Machine Regression
(SVMR) and Boosted Regression Trees (BRT). For this purpose, we chose soil texture (contents of
clay, silt and sand) as testing attributes. A selected set of soil samples, classified as Technosols, were
collected from brown coal mining dumpsites in the Czech Republic (a total of 264 samples). Spectral
readings were taken in the laboratory with a fiber optic ASD FieldSpec III Pro FR spectroradiometer.
Leave-one-out cross-validation was used to optimize and validate the models. Comparisons were
made in terms of the coefficient of determination (R2

cv) and the Root Mean Square Error of Prediction
of Cross-Validation (RMSEPcv). Predictions of the three soil properties by MBL outperformed the
accuracy of the remaining algorithms. We found that the MBL performs better than the other three
methods by about 10% (largest R2

cv and smallest RMSEPcv), followed by the SVMR. It should
be pointed out that the other methods (PLSR and BRT) still provided reliable results. The study
concluded that in this examined dataset, reflectance spectroscopy combined with the MBL algorithm
is rapid and accurate, offers major efficiency and cost-saving possibilities in other datasets and can
lead to better targeting of management interventions.
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1. Introduction

The accomplishment of sustainable agricultural and environmental management requires a better
understanding of the soil at increasingly finer scales. Conventional soil sampling and laboratory
analyses cannot effectively provide this information because they are slow and costly [1]. Visible and
Near-Infrared (VNIR, 400–1200 nm) spectroscopy and Short-Wave-Infrared (SWIR, 1200–2500 nm)
spectroscopy are non-destructive, rapid and low-cost methods that differentiate materials based on
their reflectance in the wavelength range from 400–2500 nm. VNIR/SWIR spectroscopy was confirmed
to be a superior substitute for conventional laboratory analysis of soil chemical properties, such as
various forms of carbon [2], N, P, K contents, Cation Exchange Capacity (CEC), pH [3] and, to some
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extent, physical parameters, including soil structure, bulk density and texture [4–6]. Actually, because
the analysis of the clay fraction depends on features of the mineral content, VNIR/SWIR spectra can
be of value for predicting clay content [7,8].

VNIR/SWIR spectroscopy allows for fast, cost-effective and intensive data collection, although
problems related to instrumentation instability (and the differences in calibration between different
devices used for the same purpose), environmental conditions and difficulties related to the scale
of the experiment (global, regional, local, field) lead to variation in accuracy [9,10]. Under in situ
measurement conditions with non-mobile or mobile instrumentation, additional challenges linked to
diverse soil moisture content, color, dust, stones and excessive residues and surface roughness all affect
the accuracy of the measurement [11,12]. To overcome one or more of these difficulties, some solutions
were suggested and employed by researchers. These included the selection of proper instrumentation,
improved spectra filtering and preprocessing [13], better control of ambient conditions [11] and the
appropriate selection of multivariate statistical analysis [14,15].

Soil VNIR/SWIR spectra are non-specific; they include weak, wide and overlapping absorption
bands. For this reason, information needs to be mathematically extracted from the spectra for
correlating with soil parameters. Multivariate statistics are frequently used to calibrate soil prediction
models. Quantitative spectral analysis of soil may therefore necessitate complicated techniques
to detect the response of soil attributes from spectral characteristics [8]. Araújo et al. [8] stated
that attention toward nonlinear data mining calibration techniques is escalating, as relationships
between soil properties are not often linear in nature, mainly in libraries containing a broad variety
of soils. When dealing with a heterogeneous sample set in which soil composition may vary
considerably, the accuracy of linear regression methods decreases, because of the nonlinear nature of
the relationship between spectral data and the dependent variable. Partial Least Squares Regression
(PLSR) is the most common algorithm used to calibrate VNIR/SWIR spectra to soil properties [16–19].
Other approaches have also been used, for example Multiple Linear Regression (MLR) [20],
Principle Component Regression (PCR) [21], Artificial Neural Networks (ANN) [22], Multivariate
Adaptive Regression Splines (MARS) [23], PLSR with bootstrap aggregation (bagging-PLSR) [24]
and Penalized Signal Regression (PSR) [25]. Brown [26] suggested the use of Boosted Regression Trees
(BRT), and Kovačević et al. [27] and Gholizadeh et al. [28] recommended the use of Support Vector
Machine Regression (SVMR) as the best solution for handling the calibration of sample populations.
Memory-Based Learning (MBL) is a data-driven approach and can be defined as a lazy learning
method. Despite other learning methods, the key aim in MBL is not to achieve a general or global
target function. Instead, when an explanation for a new problem is required, experience in the form of
a set of similar related samples is regained from memory, and then, those samples are merged to build
the solution and explanation to the new problem [29]. Therefore, for each new problem, a new target
function is obtained. A global target function may be very complex, while MBL can explain the target
function as a set of less complex local (or locally stable) approximations [30]. In this case, nonlinear
relationships can be simply determined. In contrast to complex learning techniques, such as ANN
or SVMR, most of the MBL systems do not need a complex function fitting process [31], so it can be
introduced as a supportive calibration algorithm that has been employed to analyze soil texture, in the
spectral domain.

Evaluation and estimation of soil texture is essential for the mapping of regions at risk of soil
erosion, driven by water and wind. Coarser-textured soils are more resistant to detachment and
movement via raindrops and, so, are less influenced by water-assisted erosion [32]. Soils with silt
content above 40% are believed to be extremely erodible, while clay particles can potentially bind
with Soil Organic Matter (SOM) to shape aggregates, which help in their resistance to erosion [32].
Another incentive to determine a soil’s texture is calculating a soil’s capability to retain water or allow
drainage; for example, clays can display swelling properties, absorbing and accumulating water within
their layered lattice structure [33]. Such finer-textured clay-rich soils can retain more water for plant
growth than sandy soils. However, under flood conditions, they have poor infiltration and drainage of
overload water and, so, are prone to becoming saturated [34].
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Successful predictions of Soil Organic Carbon (SOC) using spectroscopy have been reported [35,36].
Soil water content has also been predicted under both laboratory and in situ conditions [37]. Clay
content can be well estimated with VNIR [38–40], but much less attention has been given to the
prediction of other soil textural classes, including silt and sand. The use of VNIR/SWIR reflectance
spectroscopy offers a lower precision than for clay, especially with particular chemometric algorithms.

The question arises: why another study on different calibration approaches? As shown by
Gholizadeh et al. [10,41], choosing the most robust calibration technique can help to achieve a more
reliable and accurate prediction model. Moreover, different studies reveal different results, because
the nature of the target function has a significant effect on the performance of the different prediction
approaches. Therefore, in this context, the aim of this paper was to compare the performance of
different state-of-the-art calibration methods, with special attention given to the MBL algorithm.
The purpose was to provide the interpretation of the results for the prediction of soil texture using
VNIR/SWIR diffuse reflectance spectra data by the best performing algorithm. This study was
performed over bare soil sites within the Bílina and Tušimice area in the Czech Republic.

2. Materials and Methods

2.1. Study Area

Six dumpsites in the mines Bílina and Tušimice in the Czech Republic were selected (Figure 1):
Pokrok (50˝60’N; 13˝71’E), Radovesice (50˝54’N; 13˝83’E), Březno (50˝39’N; 13˝36’E), Merkur (50˝41’N;
13˝30’E), Prunéřov (50˝42’N; 13˝28’E) and Tumerity (50˝37’N; 13˝31’E).

An amount of approximately 2500–3000 t per ha natural topsoil was extended as a cover one year
before sampling on a part of each dumpsite. The topsoil material originated from humic horizons
of natural soils of the region, mainly Vertisols and partially Chernozems (clayic and haplic). The
topsoil was not mixed with the dumpsite material. Soil attributes differed somewhat between the six
dumpsites. Some properties of the topsoils, including pH, SOM and texture, were determined using
bulk control subsamples. The soil pH range for the entire area was 5.3–8.5. The SOM content range
was 0.6%–3.8%.
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2.2. Soil Sampling and Analysis

A total of 264 soil samples was collected: 103 samples on Pokrok, 40 samples on Radovesice,
25 samples on Březno, 38 samples on Merkur, 48 samples on Prunéřov and 10 samples on the Tumerity
dumpsite. All soils were classified as Technosols, according to World Reference Base (WRB) for soil
resources [42]. Roughly half of the sampling points were placed on the region with natural topsoil
cover and half on the region without the cover. Sampling was made at a depth of 0–30 cm [18,43]. This
depth corresponds to the common depth of a ploughed soil layer, as these soils will be mostly used as
arable land in the future. The depth of the topsoil cover was also at least 30 cm.

The original samples were air-dried, crushed and sieved (ď2 mm) and thoroughly mixed before
analyzing. The particle size distribution (textural fractions of clay, silt and sand) was determined by
the sedimentation hydrometer method [44]. Samples and standards were matrix matched, and all
analyses were carried out in triplicate.
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2.3. Spectral Data Measurements

Spectral reflectance was deliberated in the 350–2500-nm wavelength range using a fiber optic
ASD FieldSpec III Pro FR spectroradiometer (ASD Inc., Denver, CO, USA) under laboratory conditions.
The spectral resolution of the spectroradiometer was 3 nm for the region 350–1000 nm and 10 nm for
the region 1000–2500 nm. Moreover, the radiometer bandwidth from 350–1000 nm was 1.4 nm, while it
was 2 nm from 1000–2500 nm. Samples were illuminated using a stable direct current-powered 50-W
tungsten-quartz-halogen lamp, which was installed on a tripod. The angle of incident illumination
was 15˝, and the distance between the illumination source and the sample was 30 cm. A fiber optic
probe with an 8˝ field of view was used to collect reflected light from the sample. The probe was
installed on a tripod and located approximately 10 cm vertically above the sample. Soil samples were
placed in 9-cm diameter petri dishes, forming a 2-cm layer of soil to avoid beam reflectance from the
bottom of the dish, due to downwelling solar and sky radiation penetrating into the soil approximately
1/2 wavelength [45], which could have the unwanted effect of modifying the soil spectra. Samples
were levelled off using a blade to guarantee a flat surface flush with the top of the petri dishes, as a
smooth soil surface ensures maximum light reflection and a large Signal-to-Noise Ratio (SNR) [46].
We measured all spectral readings in the center of the samples in a dark room to avoid interference
from stray light. The final spectrum was an average based on 20 iterations from 4 directions, with
5 iterations per direction to improve the SNR. Each sample spectrum was corrected for background
absorption before each single measurement to account for changes in temperature and air humidity;
the spectral transmission of the fingertip was also corrected using a reference spectrum through a
1-mm layer of a white BaSO4 panel standard [43,47].

2.4. Spectra Preprocessing

Murray [48] mentioned that removing outliers improves prediction accuracy; hence, the outliers
were left out. Outliers were detected by using the principle of Mahalanobis distance (H) [49,50],
applied on PCA-reduced data. The H statistic identified outliers whose spectra were different from
other samples that made up the calibration set [51]. In the present study, an H value of 3 (based on the
Mahalanobis distance) was chosen for the identification of outliers [52]. The detected spectral outliers
were deleted from the calibration set. These samples should not belong to the population.

In order to calibrate a model that provides accurate predictive performance about the soil texture
content in each soil sample, the captured soil spectra, jointly with laboratory data of the aforementioned
parameters, were imported into R software (R Development Core Team, Vienna, Austria) to be
processed. Spectra preprocessing algorithms entailed a range of mathematical techniques for refining
light scattering in spectral reflectance measurements and data improvement before the data were
used in calibration models. The first derivative transformation, which was utilized in this study, is
very efficient for eliminating baseline offset and, according to some researchers, gives the best results
and uppermost accuracy among other algorithms [28,41,53]. In this study, before all further spectra
treatments, the noisy parts of the spectra, ranges 350–399 nm and 2450–2500 nm, were removed, and
the spectra were subjected to Savitzky–Golay smoothing with a second-order polynomial fit and
11 smoothing points [18,54] for eliminating the artificial noise caused by the spectroradiometer device.

2.5. Comparison of Algorithms

Four different calibration techniques, PLSR, SVMR, BRT and MBL, were applied to calibrate
spectral data with texture reference data and to describe the relationship between reflectance spectra
and estimated soil texture. We present a brief summary of each algorithm in the following sections.

2.5.1. Partial Least Square Regression

The PLSR has turned into a popular method used in chemometrics that is applied for quantitative
analysis of diffuse reflectance spectra. It decreases the data, noise and calculation time, with minor
loss of the information contained in the original variables [55], and its arithmetic can be referred to
Wold et al. [16]. It is strongly related to PCR in that both use statistical rotations to defeat the problem
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of high dimensionality and multicollinearity [39,56]. They both compress the data before completing
the regression. The difference is that the PLSR algorithm combines the compression and regression
steps, and it selects successive orthogonal factors that maximize the covariance between predictor and
response variables [3,15,56,57]. By fitting a PLSR model, one expects to discover a few PLSR factors that
clarify most of the variation in both predictors and responses [58]. As stated by Gholizadeh et al. [10],
Viscarra Rossel and Behrens [15] and Bilgili et al. [59], PLSR decomposes X and Y variables and finds
new factors, called latent variables, which are both orthogonal and weighted linear combinations of X
variables. These new X variables are then used for prediction of Y variables, according to:

X “ Tp1 ` E (1)

Y “ Tq` F (2)

where:
X, soil reflectance
Y, measured soil property
T, factor scores
p’ and q, factor loadings
E and F, residuals

Variables X and Y are mean-centered by subtracting column averages from each observation in
the column prior to decomposition. The decomposition is performed simultaneously and in such a
way that the first few factors describe most of the variation in X and Y. The residual factors resemble
noise and can be ignored, hence the addition of residuals E and F. Generally, the resulting matrices and
vectors have a much lower dimension than X and Y. Given a new reflectance X, thus, the soil attribute
Y can be assessed as a (bi)linear combination of the factor scores and factor loadings of X [15]. It can
be said that in PLSR, an essential step is the selection of the optimal number of latent variables in the
calibration model to avoid under-fitting and over-fitting of data that would generate models with poor
prediction potential [43,59].

2.5.2. Support Vector Machine Regression

The SVMR approach is a supervised, nonparametric and statistical learning method [60]. It has
been identified to strike the correct balance between the accuracy gained from a given limited amount
of training patterns and the generalization capability to handle unseen data. The algorithm is nonlinear
and is employed in classification and multivariate calibration issues [27]. In this method, model
complication is finite by the learning algorithm itself, which avoids over-fitting. Based on Vapnik [60],
SVMR is a kernel-based learning method from statistical learning theory. The kernel-based learning
method uses an implicit mapping of the input data into a high dimensional feature space described by
a kernel function [61]. Using this so-called kernel-trick [62], it is possible to obtain a linear hyperplane
as a decision function for nonlinear problems and then apply a back-transformation in the nonlinear
space [15]. The ε-SVMR employs training data to obtain a model represented as a so-called ε-insensitive
loss function (tube, band), which maps independent data with maximum ε deviation from dependent
training data [56]. Error within the predetermined distance ε from the true value is ignored, and error
greater than ε is penalized by the soil property. Finally, the model diminishes the complexity of the
training data to a significant subset of so-called support vectors. Therefore, consider a given training
set of N data points, txk, yku

N
k“1, with input data, which is an n-dimensional data vector (x P RN), and

output, which is the one-dimensional vector space (y P r). The subsequent equation for prediction has
been described by Vapnik [63]:

y pxq “
N
ÿ

k“1

αkK px, xkq ` b (3)

where:
b, scalar threshold
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K (x, xk), kernel function
α, Lagrange multiplier
N, number of data
xk, input data
y, output

The Radial Basis Function (RBF) has been used in this study because RBF tends to give good
efficiency under general smoothness assumption and can be estimated as below:

K px, xkq “ exp

#

´
px´ xkq

T
px´ xkq

2σ2

+

, k “ 1, . . . , N (4)

where:
σ, width of the radial basis function
T, transpose

2.5.3. Boosted Regression Trees

Based on Brown [26], BRT have been suggested as an ideal data-mining or pattern-recognition
tool for VNIR/SWIR spectroscopy of soil properties. Boosted Regression Tree (BRT) analysis basically
performs a binary recursive partitioning of the dataset [64,65]. At each terminal node, a predicted value
is gained as the average of all of the measurements that were grouped in that node. The method makes
multiple predictions that are based on resampling and weighting and belongs to the group of ensemble
techniques [66]. It has the ability to take in a large number of weak relationships in a predictive model,
and it is not sensitive to outliers in the calibration dataset [8]. Following Friedman [66], boosted models
can be stated in the general form:

F px; tβm, amu
M
0 q “

M
ÿ

m“0

βmh px; amq (5)

where:
h (x; a), simple classification function or base learner with parameters a and input variables x
m, model step
βm, weighting coefficient

The base learner is applied in order to reweigh calibration datasets, such that observations
with larger residuals receive proportionally higher weights in subsequent iterations [67]. The final
classification is calculated with a weighted vote, as shown in Equation (5) [26]. The primary advantages
of BRT include: (i) the ability to include a large number of weak relationships in a predictive model;
(ii) insensitivity to outliers in the calibration dataset; (iii) no necessity for uniform data transformations;
and (iv) relative immunity to over-fitting [68,69].

2.5.4. Memory-Based Learning

Memory-Based Learning (MBL) is a data-driven approach, which is closely related to Case-Based
Reasoning (CBR). Like CBR, MBL resembles the human reasoning process [29,70]: remember earlier
situations; reconcile them for solving the existing problem; study the possibility to solve the problem
with the new solution; and memorize the skill for knowledge development. Actually, MBL is based
on the idea that intelligent behavior can be achieved by analogical analysis, rather than by the use of
abstract mental and rule-based processing [30]. Based on Daelemans [71], MBL is a family of learning
algorithms that, in preference to performing clear and precise generalization, compares new problem
cases to cases seen in training, which have been stored in memory, and it is a sort of lazy learning.
It builds hypotheses directly from the training cases themselves [72]. This means that the hypothesis
complexity can grow with the data. In contrast to other learning methods, the main goal in MBL is not
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to obtain a general or global target function. In MBL, when a solution for a new problem is essential,
the experience in the form of a set of analogous related samples is recovered from memory, and then,
those samples are merged to create the solution to the new problem. Consequently, for each new
problem, a new target function is developed. Actually, MBL carries out interpolation locally, which
is based on a local reference set or spectral library. This means that nonlinear relationships can be
simply resolved. There are two sets of data needed in the MBL calibration method. A set of n reference
samples (e.g., spectral library), pXr, Yrq “ tXri, Yriu

n
i“1, and a set of m samples as the prediction set,

pXu, Yuq “
 

Xu j, Yu j
(m

j“1, where Yu is unknown. Prior to modeling, it is necessary to seek and find out
k-nearest neighbors of each data in the prediction set, and then, a local model is calibrated with these
referenced neighbors for predicting the corresponding value in Yu from Xu. Correlation dissimilarity
was used in this study for Nearest Neighbor (NN) selection. The NN of each sample specifies its most
similar sample in terms of its VNIR/SWIR principal components. The local models are then fitted by
applying weighted average PLS, which is the weighted mean of all of the predicted values created by
the multiple PLS models between a maximum and minimum number of PLS components. The weight
for each component can be evaluated as below:

wj “
1

s1:j ˆ gj
(6)

where:
s1:j, root mean square of the spectral residuals of the unknown sample when a total of j-th PLS
components is used
gj, root mean square of the regression coefficient corresponding to the j-th PLS components

Further details on MBL regression can be found in Ramirez-Lopez et al. [29].

2.6. Assessment of VNIR/SWIR Predictions Performances

Proper fitting was achieved using leave-one-out cross-validation in which the models were
constructed each time by leaving one sample out of the calibration dataset in order to use in the
validation process until all samples were left out once.

The ability of the techniques to predict soil texture classes was evaluated by calculating the
corresponding coefficient of determination of cross-validation (R2

cv) and Root Mean Square Error
of Prediction of Cross-Validation (RMSEPcv). The R2

cv and RMSEPcv were calculated based on the
following equations:

R2
cv “

˜

1´
řN

i“1
`

y1i ´ yi
˘2

řN
i“1

`

y1i ´ yi
˘2

¸

(7)

RMSEPcv “

g

f

f

e

1
N

N
ÿ

i“1

`

y1i ´ yi
˘2 (8)

where:
y´i, predicted value
yi, observed value
yi, mean of y value
N, number of samples

Actually, R2 shows the percentage of the variance in the y variable that is calculated by the x
variables. An R2 value between 0.50 and 0.65 demonstrates that more than 50% of the variance in y is
calculated by variable x, so that differentiation between high and low condensation is possible. An R2

value between 0.66 and 0.81 displays estimated quantitative predictions, while an R2 between 0.82 and
0.90 manifests good prediction. Calibration models having an R2 value higher than 0.91 are assumed
excellent [73].



Remote Sens. 2016, 8, 341 8 of 17

3. Results and Discussion

3.1. Soil Textural Properties

Summary statistics for the soil samples from the six dumpsites, including minimum,
maximum, mean, Standard Deviation (SD) and Coefficient of Variation (CV), are shown below
(Table 1). The samples under study represented a narrow range of silt, especially in Tumerity
(ranging from 22.9%–30.6%); however, they varied widely in the case of clay and sand content.
Ramirez-Lopez et al. [29] also observed a wide range of clay in their study, which was reportedly
due to the high variability of the region in terms of parent material. The data also showed that the
Tumerity area was more clayey than other dumpsites, followed by Merkur and Radovesice. Pokrok
and Prunéřov were considerably coarser-textured than the other dumpsites, as the sand content was
generally higher there.

The comparison of properties’ CV revealed that among all properties, sand had the highest CV,
particularly in the Radovesice and Tumerity areas (51.9% and 51.7%, respectively); therefore, sand
varied the most as compared to other considered attributes. Silt showed the lowest CV, especially in
Tumerity (11.3%), which means that it is more homogeneous than the other attributes.

Table 1. Descriptive statistics of soil texture in the studied sample set according to location.

Item Clay Silt Sand

(%)

Pokrok (n = 103)
Min 7.5 23.8 11.3
Max 53.3 44.9 63.6

Mean 36.7 33.9 29.3
SD 8.7 4.4 9.2

CV (%) 23.6 13.0 31.3

Radovesice (n = 40)
Min 18.1 28.2 11.1
Max 52.9 48.0 53.5

Mean 41.9 38.2 19.8
SD 7.8 5.7 10.3

CV (%) 18.5 14.9 51.9

Březno (n = 25)
Min 28.9 26.0 9.1
Max 61.4 44.6 34.8

Mean 39.9 32.9 22.1
SD 5.9 4.7 6.1

CV (%) 14.9 14.3 27.6

Merkur (n = 38)
Min 17.7 24.3 14.7
Max 59.9 37.6 54.9

Mean 47.5 30.2 22.4
SD 6.5 3.8 5.3

CV (%) 13.8 12.7 23.6

Prunéřov (n = 48)
Min 6.1 12.6 14.3
Max 60. 7 48.9 74.3

Mean 40.5 31.2 28.3
SD 12.6 7.6 12.7

CV (%) 31.1 24.4 45.0

Tumerity (n = 10)
Min 31.6 22.9 2.7
Max 68.4 30.6 37.8

Mean 50.7 22.9 21.3
SD 11.5 2.6 11.0

CV (%) 22.7 11.3 51.7
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3.2. Soil Spectral Properties

A visual assessment of the spectra permitted to remove parts of spectra that are known as the
noisiest parts at the edges of the spectrum, and the final spectral library considered the spectral range
from 400–2450 nm. Sets of spectra were defined qualitatively by identifying the positive and negative
peaks (Figure 2), which appear at particular wavelengths [3].
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Figure 2. Representative VNIR/SWIR spectra of soil samples.

The spectra have absorption peaks overlapping near 430 nm and 530 nm in the Visible (VIS) region,
which state the presence of iron oxides, and are caused by paired and single Fe3+ electron transitions
to a higher energy state [74–77]. Based on Sherman and Waite [74], the 530-nm band is also credited to
absorption limits of extreme charge transfer that occur in the Ultraviolet (UV). The 650-nm shoulder
in the spectrum of the soil samples may exhibit the entity of small amounts of hematite (Fe2O3) [15].
In the NIR region, O-H bonds in clay minerals would have a general influence on the reflectance
spectra [18,54,78]. It can be said that the group of positive peaks near 900 nm may represent absorption
caused by electronic transitions in goethite due to Laporte forbidden transitions [74]. The small
absorption bands occurring near 1200 nm, 1400 nm and 1900 nm may be due to the vibrational
combinations and overtones of molecular water contained in various locations in minerals [8,79]. To be
more accurate, the group of peaks near 1400 nm may be attributed to the first overtone of the O-H
stretch; the peaks near 1700 nm, due to the first overtone of the C-H stretch; the prominent group of
peaks near 1900 nm may be related to H-O-H bend with the O-H stretches [77]. The traits around
2000–2500 nm are linked to the characteristics of SOM and clay minerals [54,78]. Based on Viscarra
Rossel et al. [77], the prominent peaks near 2200 nm, 2300 nm and 2400 nm may be attributed to the
metal-OH bend plus O-H stretch combinations. For example, the absorption near 2204 nm occurs due
to the absorption of Al-OH, and the small absorption near 2280 nm may be related to Fe-OH, as Fe is
replaced in the octahedral sheet [15]. In the spectrum of soil samples, the absorption near 2380 nm,
the minor shoulder near 2350 nm, plus that near 2345 nm may correspond to the presence of illite or
mixtures of smectite and illite due to additional Al-OH features [80,81]. It should be noted that band
positions and wavelength peaks may vary with composition [82].

3.3. Spectra Preprocessing and Model Calibration

In order to create a robust prediction model and to discover the impression of the spectral sampling
interval on the prediction accuracy, Savitzky–Golay smoothing with second-order polynomial fit and
11 smoothing points with subsequent first derivative preprocessing technique were applied prior to



Remote Sens. 2016, 8, 341 10 of 17

model calibration [41,83,84]. Smoothed spectra only, by Savitzky–Golay filter, as well as smoothed and
preprocessed spectra, using Savitzky–Golay plus the first derivative, of all selected soil samples are
illustrated below (Figure 3). The comparison between Figures 2 and 3 reveals that the main difference
between the spectra is a baseline shift. It also shows that the Savitzky–Golay and first derivative
preprocessing techniques can remove additive baseline effects and minimize variation among samples
caused by variation in grinding and optical setup. Moreover, they increase the resolution of superposed
peaks, decrease noise and enhance possible spectral features connected to the property studied and,
thus, are more useful for the prediction of soil texture than the original spectra [58]. The first derivative
spectra generally amplify the absorption features indicative of the contents of the soil materials and
also reduce variation among samples [58].
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Figure 3. Smoothed only (a) and smoothed and first derivative preprocessed (b) soil spectra.

The capability of spectral reflectance spectra to predict soil attributes using PLSR, SVMR, BRT and
MBL techniques was studied. The comparison of prediction accuracy and model performance from
the different algorithms is presented in this part (Table 2). Figure 4 also shows the validation results of
predicted and measured values of parameters using the PLSR, SVMR, BRT and MBL algorithms.
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Table 2. Statistics of the leave-one-out cross-validation for four different calibration techniques: PLSR,
SVMR, BRT and Memory-Based Learning (MBL).

Data Mining
Algorithms

Clay Silt Sand

(%)

R2
cv RMSEPcv R2

cv RMSEPcv R2
cv RMSEPcv

PLSR 79 4.48 71 5.79 68 6.63
SVMR 82 4.23 76 5.19 69 6.57

BRT 80 4.38 74 5.31 69 6.59
MBL 89 4.08 81 4.90 76 6.04
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In the multivariate calibration, based on R2
cv and RMSEPcv, which have been reported as standard

methods for the validation of the prediction models, the most consistent estimates were commonly
gained for the clay fraction. This may be related to a different rate of uncertainty in the determination
of each particular textural class by the hydrometer method [85]. Compared to PLSR, SVMR, BRT and
MBL gave smaller RMSEPcv and larger R2

cv for the prediction of clay, silt and sand (Table 2).
The MBL technique gives generally better prediction of soil texture compared to the other methods,

giving the smallest error. Boosted Regression Trees (BRT) showed lower RMSEPcv for all parameters
than PLSR, but PLSR still showed relatively good prediction of soil texture. Actually, for the PLSR
model, R2

cv values ranged between 0.68 and 0.79, for clay (0.79), silt (0.71) and sand (0.68). These results
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are comparable to R2 values introduced in the literature by other authors [59,81,86,87] who utilized
wavelength UV, VIS, NIR and Mid-Infrared (MIR) wavebands. Regarding BRT, Brown et al. [39] also
found that this method can outperform PLSR and recognized its capacity to contain interactions and
nonlinear relationships. They mentioned that the notably improved results of BRT are not surprising
as BRT can incorporate complex nonlinear relationships and interactions, whereas PLSR is built on the
linear relationship between predictors and the target variable of interest. More accurate outputs of BRT
in comparison to PLSR are also a result of some superiorities of this method, such as insensitivity to
outliers in the calibration dataset, as well as the capability to utilize a large number of weak classifiers
and, thereby, make maximum use of the entire spectrum [26,67,69]. The authors also compared the
prediction to the SVMR, which was found to give better prediction than PLSR and even BRT. However,
SVMR was less accurate when compared to MBL. The premier performance of SVMR can also be
explained by the inclusion of nonlinear and interaction effects, as well as linear combinations of
variables. It is able to approximate nonlinear functions between multidimensional spaces [59]. This
algorithm can derive a linear hyperplane as a decision function for nonlinear problems, which can
be considered as another reason for the method’s excellence [62]. Interestingly, for the prediction of
sand, SVMR and BRT had the same R2

cv value (0.69). Support Vector Machine Regression (SVMR)
had a small RMSEPcv for predicting soil texture, while MBL had even lower RMSEPcv and higher
R2

cv. This is most likely because nonlinear relationships can be merely determined by MBL [31]. The
superior consequences of MBL generally can be related to the selection of a more appropriate neighbor
to calibrate local models, as well as the inclusion in each local model as a source of additional predictor
variables [29].

For PLSR, SVMR and BRT, these findings coincided with the results of some other studies. Viscarra
Rossel and Behrens [15] applied these methods, amongst others, for the prediction of clay, based on
VNIR/SWIR spectra using a large spectral library with 1104 soil samples. Without feature selection,
SVMR showed the most successful prediction model (R2

cv = 0.84, RMSEPcv = 7.63) due to its ability to
solve the multivariate calibration problems. Araújo et al. [8] compared PLSR, SVMR and BRT for their
ability to determine clay from 7172 samples of seven different soil types collected from several areas
of Brazil. Their goal was to explore the chance of increasing the performance of VNIR/SWIR data in
the assessment of clay content in this library. They found that SVMR outperformed BRT and PLSR
for clay prediction. Araújo et al. [8] mentioned that SVMR superiority relates to the capability of this
technique to reduce problems with heterogeneity and nonlinearity. Their study agreed with Brown [26],
who compared BRT and PLSR techniques for analyzing soil characteristics with VNIR/SWIR and
found BRT to be the superior approach. These authors used 4184 diverse, well-characterized and
mostly independent soil samples. Actually, the BRT method tends to be insensitive to the impacts of
outliers and can handle omitted values and correlated variables. It also permits the embodiment of
a potentially large number of irrelevant predictors [88]. On the other hand, Vasques et al. [55], using
554 samples collected in profiles to a depth of 180 cm in north-central Florida, discovered that the
BRT model provided the worst results among many multivariate techniques, including PLSR, when
tested for total carbon, SOC and clay. Based on their results, one explanation of why BRT was not
as good as the other multivariate techniques is the fact that it produces discrete outputs predicting
a single value at each terminal node [55]. Ramirez-Lopez et al. [29] introduced the Spectrum-Based
Learner (SBL) technique, which is a kind of MBL and combines local distance matrices and the spectral
features as predictor variables. They used this method for model calibration of clay content, SOC and
exchangeable Ca (Ca++) and found that SBL produced more accurate results than the other calibration
methods (PLSR and SVMR) for all measured parameters. They found that the SBL approach derives
additional predictive information (a characteristic that is not explored by any of the other algorithms)
from the spectra. In addition, it carries a more suitable neighbor selection by using the distance
matrix [29].

In this study, clay was predicted reliably, whereas the prediction of silt and sand was fair and
moderately successful. It could be concluded that the prediction accuracy of data mining techniques,
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MBL particularly, will be higher in fine-textured fields than coarse-textured ones, which reflects the
influence of the direct spectral responses of clay, especially in the NIR range. Therefore, the Merkur
dumpsite soil, which contains more clay than other brown coal mining dumpsites, can be predicted
more accurately with higher R2

cv and lower RMSEPcv. These results support those studies that found
SVMR as a very promising method for the determination of clay content [8,15]. Some researchers claim
that spectral predictive mechanisms may differ from one population of soil samples to another. This
difference may be caused by the decomposition stage of SOM, the nature of existing compounds and
the influence of other relevant factors, such as texture, soil moisture or iron oxides [11,15,38,56]. To the
best of our knowledge, the MBL algorithm has not yet been commonly used to analyze and predict
soil properties, including soil texture.

Differences between the multivariate methods were more remarkable for clay, but results from
the different multivariate approaches were very similar for all properties. For all parameters, MBL
provided the best calibration results; followed by SVMR, BRT and PLSR. We believe that the successful
performance of MBL results from the combination of two important characteristics of this technique:
(i) the storage of earlier situations in memory to reconcile them for solving the existing problem; and
(ii) seeking and finding out k-nearest neighbors of each data to calibrate local models with these
referenced neighbors. Actually, those statistical methods with the highest efficiency are the ones that
have the best adaptability to the structure of the data to be analyzed.

4. Summary and Conclusions

This study focused on the performance of the new MBL method for soil spectroscopy analysis
across the VNIR/SWIR spectral region for the prediction of soil texture, using soil samples taken from
six brown coal mining dumpsites of the Czech Republic. To validate the results, a comparison with
three other commonly-used methods (PLSR, SVMR and BRT) was made. To the best of our knowledge,
this is the first time that MBL has been used for soil texture.

The results revealed that in the full spectral domain, MBL provided better predictions (lower
RMSEPcv) for all tested soil properties than the SVMR. The other two methods, PLSR and BRT, although
significant, still have poorer performance than the MBL.

Our results (using PLSR, SVMR and BRT) were usually in line with those of other studies using the
same methods, even though they were conducted at different scales and in other geographic regions.

Considering the high spatial variability and the expensive and time-consuming measurements of
soil properties, VNIR/SWIR reflectance spectroscopy coupled with MBL can offer a rapid monitoring
test for screening conditions, providing key increments in effectiveness and cost savings compared to
traditional soil analytical techniques. It increases the model accuracy, reduces the number of samples
to be analyzed for precision management applications in the field and can be applied as supplementary
information in combination with spatial statistical methods to monitor soil conditions. Based on the
very promising results of the MBL method’s performance, implementation of further studies with
other soil datasets over different geographic scales is highly recommended in order to check the MBL
robustness and stability.
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