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Abstract: Traditional classification accuracy assessments based on summary statistics from a
confusion matrix furnish a global (location invariant) view of classification accuracy. To estimate
the spatial distribution of classification accuracy, a geostatistical integration approach is presented
in this paper. Indicator kriging with local means is combined with logistic regression to integrate
an image-derived ambiguity index with classification accuracy values at reference data locations.
As for the ambiguity measure, a novel discrimination capability index (DCI) is defined from per
class posteriori probabilities and then calibrated via logistic regression to derive soft probabilities.
Integration of indicator-coded reference data with soft probabilities is finally carried out for mapping
classification accuracy. It is demonstrated via a case study involving classification of multi-temporal
and multi-sensor SAR datasets, that the proposed approach can provide a map of locally-varying
accuracy values, while respecting the overall accuracy derived from the confusion matrix. It can
also highlight areas where the benefit of data fusion was significant. It is expected that the indicator
approach presented in this paper could be a useful methodology for assessing the spatial quality of
classification results in a probabilistic way.
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1. Introduction

Thematic mapping through classification of remote sensing data has been regarded as one of
the most important application fields of remote sensing. Classification-derived area class maps, such
as land use/cover and crop type maps, are routinely used as input data for various environmental
modeling tasks, such as natural disaster prediction modeling, crop yield assessment, and spatial
estimation of air pollution [1–3]. Since class maps are used as inputs into environmental models, any
errors arising during classification may propagate to the applied model outputs, hence leading to
error propagation problems [4]. Therefore, it is of critical importance to generate reliable classification
results for further analysis. Many efforts have been made to improve classification accuracy by
either developing advanced classification algorithms or using multi-source/sensor data [5–13]. The
classification procedure for thematic mapping can also be regarded as the prediction of target classes
prevailing at unsampled locations. Therefore, the development of methods for the accuracy assessment
of classification results should be considered to be an equally important task in the classification
procedure as the development of advanced classification algorithms.
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Classification accuracy is traditionally reported in terms of several statistical measures derived
from a confusion matrix, also called an error matrix [14,15]. Several accuracy statistics, such as
overall accuracy, user’s accuracy, producer’s accuracy, and the Kappa coefficient, can be derived from
the confusion matrix and have been widely used for evaluating the quality of classification results.
However, such accuracy measures are global class-specific statistics; they pertain to all pixels of a
given class and do not reveal any within-class spatial variation. It is, therefore, very difficult, or
even impossible, to pinpoint areas where detailed ground surveys are needed within the limits of a
particular class.

Several approaches have been proposed for spatial accuracy assessment or mapping classification
accuracy distributions. The first approach uses the byproducts of soft classification directly as measures
of map quality. Exaggeration and ignorance uncertainties based on fuzzy logic were proposed in [16].
Exaggeration uncertainty was defined as the deviation from unity of the membership values of
the assigned class. Ignorance uncertainty quantified by an entropy measure was regarded as the
degree of ignorance of other class memberships due to class assignment or hardening [16]. Although
these two uncertainty measures are related to the spatial variation of classification uncertainty, they
do not provide information on classification accuracy because reference data are not involved in
the estimation procedure. Steele et al. [17] estimated misclassification probabilities by interpolating
bootstrap estimates at training data locations via kriging. Reference data that are independent of the
classification procedure are invaluable sources for accuracy assessment. Such data, however, were not
used for estimating misclassification probabilities in this case. Kyriakidis and Dungan [18] presented
two local indices of map quality, termed confusion and inaccuracy indices, by integrating reference
data with soft probabilities computed from the user’s accuracy within an indicator geostatistical
framework [19]. Since soft probabilities were derived based on the user’s accuracy, a global statistic,
varying degrees of classification reliability and actual classification results (i.e., correct or incorrect
classification) at reference data locations were not accounted for in the map quality indices.

In this study, a simple but efficient geostatistical approach is presented for the spatial estimation of
classification accuracy by combining correct or incorrect classification results at reference data locations
with exhaustive image-derived ambiguity information. The spatial distribution of classification
accuracy is defined in this study as the probability of correct classification at any image pixel. That
probability attains a binary value (1 or 0) at reference pixels, where true class labels are available and,
hence, a pixel can be either correctly (1) or incorrectly classified. Other pixels, except the reference
pixels, have the probability between 0 and 1. The term “classification accuracy probability” will
be used as above probability of correct classification throughout this paper. Under the assumption
that classification accuracy probability is related to ambiguity or uncertainty involved in the class
assignment, a discrimination capability index (DCI) is first defined as an image-derived ambiguity
measure from class-specific posteriori probabilities. The DCI is then calibrated into soft probabilities via
logistic regression and it is finally integrated with indicator-coded reference data using indicator kriging
with local means. The main difference from the previous study of Kyriakidis and Dungan [18] lies in the
integration of all available information related to classification accuracy. Classification accuracy can be
measured only at reference data locations. Meanwhile, the image-derived ambiguity index, available at
all locations, provides indirect information about classification accuracy. By combining these datasets
with different information content and availability, the classification accuracy probability can be
estimated at all locations in the area of interest. Methodological developments are illustrated through a
case study of the fusion of multi-temporal and multi-sensor SAR datasets for land-cover classification.

2. Study Area and Data

The case study was conducted in Dangjin, Korea where multi-temporal C-band SAR datasets,
including Radarsat-1 (HH polarization) and ENVISAT ASAR (VV polarization), were acquired
(Figure 1).
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Figure 1. Location of the study area and the Radarsat-1 average backscattering coefficient image 
with training data (red dots) and reference data (blue dots). 

From the multi-temporal SAR datasets used in Park and Chi [20], the northern portion was 
selected as the study area and nine Radarsat-1 and seven ENVISAT ASAR backscattering coefficient 
images were used as the input features for land-cover classification (Table 1). After pre-processing, 
all of the features consist of 360,000 pixels at a 25 m spatial resolution. Detailed descriptions on 
SCL-format data pre-processing can be found in Park and Chi [20]. 

Table 1. List of SAR data sets used in this study. 

Sensor Acquisition Date Mode (Incidence Angle) Polarization

Radarsat-1 

1 April 2005 

Ascending F2 (40°) HH 

24 April 2005 
19 May 2005 
12 June 2005 
6 July 2005 
30 July 2005 

23 August 2005 
16 September 2005 

10 October 2005 

ENVISAT ASAR 

20 Mar 2005 

Descending IS2 (23°) VV 

24 Apr 2005 
29 May 2005 
3 July 2005 

7 August 2005 
11 September 2005 

16 October 2005 

Five land-cover types including paddy fields, dry fields, forest, water, and built-up regions 
were identified in the study area and then considered for supervised classification. In particular, 
paddy fields are widely distributed in the center of the study area. Ground truth data collected by 
field survey were randomly partitioned and some pixels extracted by visual interpretation from 
input data sets were added to the training data. Finally, 1458 training and 906 reference pixels were 
prepared for supervised classification and accuracy assessment, respectively (Figure 1 and Table 2). 
  

Figure 1. Location of the study area and the Radarsat-1 average backscattering coefficient image with
training data (red dots) and reference data (blue dots).

From the multi-temporal SAR datasets used in Park and Chi [20], the northern portion was
selected as the study area and nine Radarsat-1 and seven ENVISAT ASAR backscattering coefficient
images were used as the input features for land-cover classification (Table 1). After pre-processing,
all of the features consist of 360,000 pixels at a 25 m spatial resolution. Detailed descriptions on
SCL-format data pre-processing can be found in Park and Chi [20].

Table 1. List of SAR data sets used in this study.

Sensor Acquisition Date Mode (Incidence Angle) Polarization

Radarsat-1

1 April 2005

Ascending F2 (40˝) HH

24 April 2005
19 May 2005
12 June 2005
6 July 2005
30 July 2005

23 August 2005
16 September 2005

10 October 2005

ENVISAT ASAR

20 Mar 2005

Descending IS2 (23˝) VV

24 Apr 2005
29 May 2005
3 July 2005

7 August 2005
11 September 2005

16 October 2005

Five land-cover types including paddy fields, dry fields, forest, water, and built-up regions were
identified in the study area and then considered for supervised classification. In particular, paddy
fields are widely distributed in the center of the study area. Ground truth data collected by field survey
were randomly partitioned and some pixels extracted by visual interpretation from input data sets
were added to the training data. Finally, 1458 training and 906 reference pixels were prepared for
supervised classification and accuracy assessment, respectively (Figure 1 and Table 2).
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Table 2. The number of training and reference data.

Class Training Data Reference Data

Paddy fields 940 489
Dry fields 182 154

Forest 136 91
Water 81 53

Built-up 119 119
Total 1458 906

3. Methodology

The geostatistical approach proposed in this paper for the spatial estimation of classification
accuracy probability consists of three steps (Figure 2): (1) generation of class-wise probabilities for
land-cover classes by applying any probabilistic classification algorithm (probabilistic classification);
(2) computation of DCI values (defining ambiguity level); and (3) application of indicator kriging with
local means combined with logistic regression (integration and mapping). A detailed description on
each of the steps is given hereafter.
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Figure 2. Flowchart of the processing steps presented in this study.

3.1. Probabilistic Classification

In the first processing step, any probabilistic algorithm capable of generating class-wise posteriori
probabilities can be adopted. Bayesian probabilistic classifiers or machine learning algorithms can
be applied to obtain class-wise probabilities, although some machine learning algorithms, such as
support vector machines, require further post-processing to generate such posteriori probabilities. In
this study, a multilayer neural network (MLP) was adopted as the main classifier, on the basis of our
previous study [20].

For comparison purposes, the following three classification scenarios were considered, based on:
(1) Radarsat-1 features only; (2) ENVISAT ASAR features only; and (3) fusion of (1) and (2). The reason
for choosing these scenarios is to highlight the effects of data fusion on classification performance
by comparing the spatial distributions of classification accuracy. A concatenating fusion approach
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was adopted to combine the Radarsat-1 and ENVISAT ASAR features and, thereafter, the stacked
multi-sensor features were used as inputs for MLP-based classification. Note that any advanced
feature- or decision-level fusion technique could be applied for data fusion. However, the simple
concatenating approach was selected in this study, because the main purpose here is to demonstrate
the effectiveness of the proposed approach, not to select the best classifier or fusion technique.

For traditional pixel-based accuracy assessment, accuracy statistics including overall accuracy,
user’s accuracy, producer’s accuracy, and the Kappa coefficient were computed from the confusion
matrix. The statistical significance of the differences in classification accuracy was evaluated using the
McNemar test [21].

3.2. Defining Ambiguity Level

To quantify the ambiguity in class assignment, a DCI is derived from the class-wise posteriori
probabilities. In this study, the DCI is defined as the difference between the largest and the second
largest posteriori probabilities as:

DCI puq “ p pωmax1|z puqq ´ p pωmax2|z puqq (1)

where ω is one among the K possible land-cover classes and z puq is a feature set at a certain pixel u in
the study area. ωmax1 “ argmaxωPK tp pω|z puqqu and ωmax2 “ argmaxωPKzωmax1

tp pω|z puqqu are the
most probable and the second most probable classes, respectively.

A large DCI value indicates that the class was assigned more unambiguously. The basic
assumption adopted in this study is that any locations with larger DCI values are likely to have
a higher accuracy level. However, the DCI provides information only on the quality of classification
based on a certain input feature set and the classification algorithm used, not on the classification
accuracy that can only be quantified from reference data. Therefore, another processing step is required
to link the DCI values to the classification results obtained using reference data that provide actual
classification accuracy (i.e., 1 or 0).

3.3. Integration and Mapping

This step involves the incorporation of classification accuracy probabilities derived at a small
number of reference pixels into the image-derived exhaustive DCI values for estimating the spatial
distribution of classification accuracy probabilities across the entire image.

Suppose that there are n reference pixels tuα, α “ 1, 2, ¨ ¨ ¨ , nu where true land-cover types are
known and the DCI values are available at all pixels in the study area. The binary information
on classification accuracy (correct or incorrect) at the reference pixels amounts to direct (hard)
measurements of classification accuracy. Meanwhile, the DCI values provide indirect (soft) information
on classification accuracy. Using both direct and indirect information, the unknown classification
accuracy probabilities are estimated over the study area within an indicator framework [19].
Applications of the indicator geostatistical framework for remote sensing data classification have
been previously reported in the literature [22–24].

The indicator approach begins with indicator coding of the available information. The binary
indicators at the reference pixels (i puαq) are defined as:

ipuαq “

#

1 correctly classified

0 misclassified
(2)

The DCI values are then calibrated or transformed into soft indicators (probabilities) to be used
as local means in kriging of the above indicator-coded hard data. The soft indicator probabilities are
derived from quantitative relationships between the DCI values and the hard indicator data at the
reference pixels. In this study, logistic regression is adopted for calibrating the DCI values, as it is
suitable for regression with a binary dependent variable [25]. In the context of this case study, the data
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on the dependent and independent variables are the hard indicator data and the DCI values at the
reference pixels, respectively. More specifically, the calibrated DCI value at a certain pixel u in the
study area (DCI_cal(u)) is defined by the following formula [25]:

DCI_cal puq “ 1{ r1` Exp r´ pa` bˆDCI puqqs (3)

where a and b are the intercept and the regression coefficient of DCI in the linear logistic
model, respectively.

As logistic model predictions, the calibrated DCI values range between 0 and 1 and can, thus,
be regarded as soft probabilities. Calibrated DCI values, however, need not revert to 0 or 1 at the
reference pixels; hence, do not fully reproduce the corresponding hard indicator data on classification
accuracy. It is, therefore, necessary to integrate both the hard indicator data and the soft DCI-derived
probabilities (soft indicators) for estimating classification accuracy over the entire image.

In this work, hard and soft indicators are integrated via simple indicator kriging with local
means. The constant mean in simple kriging is replaced by the soft indicators (i.e., calibrated DCI). The
classification accuracy probability (p˚acc puq) at an arbitrary pixel in the study area is estimated as the
conditional expectation of an indicator random variable (I puq) from of nearby hard and soft indicator
data as:

p˚accpuq “ EtIpuq|pinfoqu “ jpuq `
npuq
ÿ

α“1

λαpuqripuαq ´ jpuαqs (4)

where j(u) is the soft probability derived from the DCI (i.e., calibratd DCI), λαpuq is a simple kriging
weight, and n(u) is the number of hard indicators within a predefined search window. The neighboring
hard and soft indicators are denoted as (info).

The simple kriging weight (λα puq) is obtained by solving the following simple indicator kriging
system [24]:

npuq
ÿ

β“1

λβpuqCrpuα ´ uβq “Crpuα ´ uq, @α “ 1, ¨ ¨ ¨ , npuq (5)

where Cr is the covariance function of the residuals (r puq “ i puq ´ j puq).
As denoted in Equations (4) and (5), the estimate of simple indicator kriging with local means is a

weighted sum of the soft indicators available at all pixels and the simple kriging estimate of residuals.
By interpolating the residuals through kriging, the difference or discrepancy between hard and soft
indicators can be accounted for in the classification accuracy probability estimates. The accuracy value
(1 or 0) at the reference pixels is reproduced because of the exactitude property of kriging [26]. At other
locations, the accuracy probability is affected by both the soft probabilities and residuals at the nearby
reference pixels. As the estimation location gets farther away from the reference pixels, the impact of
the soft probability becomes dominant and the estimated classification accuracy, thus, approaches to
soft probability [26]. Since kriging is a non-convex interpolator [27], indicator kriging estimates that
should be valued between 0 and 1 might have values less than 0 or greater than 1. These values are
reset to the closest bound, 0 and 1 by adopting the common correction procedure [26,27].

4. Results and Discussion

4.1. Classification and Accuracy Assessment

MLP neural network supervised classification was employed under three scenarios, using:
(1) Radarsat-1 features only; (2) ENVISAT ASAR features only; and (3) fusion of (1) and (2). For
each scenarios, the MLP neural network consists of an input layer with neurons corresponding to the
size of the features, one hidden layer, and an output layer with five neurons. The optimal number of
neurons in the hidden layer was selected through four-fold cross validation and the conjugate gradient
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algorithm was used to train the network. The DTREG software [28] was used to implement MLP
neural network supervised classification.

Once the posteriori probability for each class was obtained, the classification result was generated
by applying a maximum a posteriori decision rule (Figure 3). From the visual inspection, paddy
fields in the central region and water are well identified in all classification scenarios. However,
the three classification scenarios, except for these two classes, showed different classification results,
particularly in the northwestern region of the study area. In that region, more fragmented classification
patterns and decreased dry fields are observed in the classification result using Radarsat-1 features
(Figure 3a), in comparison to other classification results. Meanwhile, the respective increase and
decrease of forest and dry fields in that region are shown in the classification result using ENVISAT
ASAR features (Figure 3b). The fusion of all features from each sensor displays mixed patterns of
above two classification results from both sensors, particularly more clustered dry fields and forest
classes (Figure 3c). In addition, most pixels in the bottom right corner of the study area were classified
as forest, unlike the classification result from each single sensor. These different classification results
indicate the different classification performance or accuracy between the three classification scenarios.
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The confusion matrices with related accuracy statistics for the three classification scenarios are
listed in Tables 3–5. When comparing the accuracy statistics of each single sensor feature set, the overall
accuracy and Kappa coefficient based on the Radarsat-1 features were slightly higher than those of
using ENVISAT ASAR features. However, the McNemar test revealed that the difference in the overall
accuracy between these two classification results is not statistically significant at the 5% significance
level. The fusion of multi-sensor features showed the best accuracy statistics. Increases of about 6.4
and 8.7 percentage points in overall accuracy were achieved, compared with the classification results
from Radarsat-1 and ENVISAT ASAR features, respectively. These differences in the classification
accuracy are statistically significant at the 5% significance level.

Table 3. Confusion matrix and accuracy statistics for classification using Radarsat-1 features.

Reference Paddy
Fields

Dry Fields Forest Water Built-up User’s
AccuracyClassification

Paddy fields 445 84 30 5 38 73.92%
Dry fields 22 51 17 1 9 51.00%

Forest 11 11 32 0 9 50.79%
Water 2 2 1 47 0 90.38%

Built-up 9 6 11 0 63 70.79%
Producer’s accuracy 91.00% 33.12% 35.16% 88.68% 52.94%

Overall accuracy: 70.42%
Kappa coefficient: 0.51

Table 4. Confusion matrix and accuracy statistics for classification using ENVISAT ASAR features.

Reference Paddy
Fields

Dry
Fields Forest Water Built-up User’s

AccuracyClassification

Paddy fields 443 61 19 8 35 78.27%
Dry fields 31 71 36 3 46 37.97%

Forest 8 18 33 2 8 47.83%
Water 2 0 1 40 0 93.02%

Built-up 5 4 2 0 30 73.17%
Producer’s accuracy 90.59% 46.10% 36.26% 75.47% 25.21%

Overall accuracy: 68.10%
Kappa coefficient: 0.48

Table 5. Confusion matrix and accuracy statistics for classification using fusion of all features.

Reference Paddy
Fields

Dry
Fields Forest Water Built-up User’s

AccuracyClassification

Paddy fields 445 49 7 3 21 84.76%
Dry fields 25 79 22 3 20 53.02%

Forest 8 22 61 0 14 58.10%
Water 1 0 0 47 0 97.92%

Built-up 10 4 1 0 64 81.01%
Producer’s accuracy 91.00% 51.30% 67.03% 88.68% 53.78%

Overall accuracy: 76.82%
Kappa coefficient: 0.63

The different classification accuracies between the three classification scenarios were further
highlighted by comparing class-wise accuracy statistics. As expected from the visual inspection of the
classification results shown in Figure 3, the accuracies of dry fields and forest are relatively low. In the
classification using Radarsast-1 features, most of the dry fields and forest were misclassified as paddy
fields and exaggerated paddy fields thus exist in the northwestern region, as shown in Figure 3a. Using
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ENVISAT ASAR features also yields misclassification of dry fields and forest. In particular, the forest
class was misclassified mainly as dry fields, which results in the decreased forest in the northwestern
region of Figure 3b. It is noteworthy that most built-up reference pixels were misclassified as paddy
fields and dry fields, showing the lowest producer’s accuracy. The built-up areas typically exhibit high
backscattering coefficients, but the backscattering signatures depend on the orientation and density
of structures. The study area is a rural area that consists mainly of low-rise houses and structures
with low density. The backscattering signatures from VV polarization with the steep incidence angle
may have a wide range in some of the built-up areas and, thus, overlap with those of other classes.
The fusion of all features leads to the improvement in the accuracy statistics in all classes. Although
dry fields and forest still have relatively lower classification accuracies than those of other classes,
confusion between these classes is reduced. In particular, the contribution of a combination of multiple
polarization features is significant in forest.

4.2. Classificaion Ambiguity Analysis

As a quantitative measure of classification ambiguity, the DCI was computed from class-wise
posteriori probabilities using Equation (1). As shown in Figure 4, the highest DCI values are observed
in both paddy fields and water, regardless of the classification scenario. Relatively low DCI values in
all classification scenarios are observed in other regions classified as dry fields and forest, indicating the
high ambiguity or uncertainty in class assignment of these classes. The fusion of all features showed a
slight increase of the mean of DCI values at all pixels (0.36), in comparison to those of Radarsat-1 and
ENVISAT features (0.32 and 0.34, respectively).

To investigate the relationships between DCI values and the classification results at reference
pixels, summary statistics of the DCI values at correctly and incorrectly classified reference pixels
were computed and are listed in Table 6. The overall DCI values at the correctly classified reference
pixels are much greater than those at the misclassified reference pixels, regardless of the classification
scenario. This distinctive difference in the distributions of the DCI values between correct and incorrect
classification implies that the DCI can be used as a good discrimination index in class assignment and,
thus, used as indirect information on classification accuracy at areas where true land-cover types are
not available.

Table 6. Summary statistics of DCI values at the correctly and incorrectly classified reference pixels for
different classification scenarios.

Class Data Mean Std. dev. Lower
Quartile Median Upper

Quartile

Correctly classified
Radarsat-1 0.405 0.205 0.214 0.512 0.569

ENVISAT ASAR 0.424 0.197 0.269 0.530 0.578
Fusion 0.424 0.189 0.269 0.533 0.573

Misclassified
Radarsat-1 0.137 0.153 0.030 0.077 0.176

ENVISAT ASAR 0.146 0.146 0.043 0.093 0.185
Fusion 0.185 0.157 0.058 0.136 0.281
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However, the paddy fields class, which is a major land-cover type in the study area (about 54% in
reference data) and was also classified correctly for the most part, may affect the distribution of DCI
values at the correctly classified reference pixels. To further investigate this issue, the distributions of the
DCI values for each class were also generated (Figure 5). The water class was excluded from the analysis
because its small number of misclassified reference pixels was not suitable for statistical analysis. As
expected, the distributions of the DCI values between the correctly and incorrectly classified reference
pixels are well separated in paddy fields. Despite some overlap between the distributions, the built-up
class also exhibits distinct differences. The fusion of all features shows an increase in the DCI values at
correctly classified reference pixels, which indicates that complimentary information could be obtained
from the fusion of multiple polarization features resulting into improved classification accuracy. On the
contrary, DCI values for dry fields and forest, classes exhibiting relatively low classification accuracies,
show significant overlapping distributions at both correctly and incorrectly classified reference pixels,
unlike paddy fields and built-up. Much greater variance and range values are also observed in the
distributions of DCI values at misclassified reference pixels, regardless of the classification scenario.
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In particular, using Radarsat-1 features results in much smaller DCI values at correctly classified
dry fields pixels than at misclassified dry fields pixels. This poor distinction of dry fields and forest
indicates that some pixels of those two classes were confidently assigned to the incorrect class due
to the lack of proper information from input features. This result implies that such discrepancies
between the DCI values and the classification accuracy at the reference pixels should be calibrated or
accounted for when used as indirect soft information for the estimation of the spatial distribution of
classification accuracy.

Remote Sens. 2016, 8, 320 11 of 16 

 

some pixels of those two classes were confidently assigned to the incorrect class due to the lack of 
proper information from input features. This result implies that such discrepancies between the 
DCI values and the classification accuracy at the reference pixels should be calibrated or accounted 
for when used as indirect soft information for the estimation of the spatial distribution of 
classification accuracy. 

 

Figure 5. Box plot of DCI values per each class at the correctly and incorrectly classified reference 
pixels for different classification scenarios. For each box plot, whiskers above and below the box 
indicate the 90th and 10th percentiles, respectively. The top and bottom boundaries of the box 
indicate upper and lower quartiles, respectively. The line within the box corresponds to the median. 

4.3. Spatial Estimation of Classification Accuracy 

4.3.1. Logistic Regression 

Once the DCI values for all classification scenarios were prepared, they were calibrated via 
logistic regression with indicator-coded reference data. By definition, the mean of the calibrated 
DCI values corresponds to the proportion of correctly classified reference pixels (i.e., overall 
accuracy), while the residuals, which are the differences between the hard indicators and the 
logistic model predictions, have a zero mean. The overall fit of logistic regression was quantified 
using the Nagelkerke R-squared, with values of 0.364, 0.419, and 0.370 for Radarsat-1, ENVISAT 
ASAR, and fusion, respectively. To consider the different distributions of DCI values at the 
correctly and incorrectly classified reference pixels in Figure 5, the land-cover classification results 
at reference pixels were used as data on another independent variable in logistic regression. By 
including land-cover classes at reference pixels with DCI values, the Nagelkerke R-squared values 
increased, i.e., 0.397, 0.430, and 0.377 for Radarsat-1, ENVISAT ASAR, and fusion, respectively. 
However, not all logistic regression coefficients were statistically significant at the 5% significance 
level. For example, when both DCI and land-cover classes were used for logistic regression 

Figure 5. Box plot of DCI values per each class at the correctly and incorrectly classified reference pixels
for different classification scenarios. For each box plot, whiskers above and below the box indicate the
90th and 10th percentiles, respectively. The top and bottom boundaries of the box indicate upper and
lower quartiles, respectively. The line within the box corresponds to the median.

4.3. Spatial Estimation of Classification Accuracy

4.3.1. Logistic Regression

Once the DCI values for all classification scenarios were prepared, they were calibrated via logistic
regression with indicator-coded reference data. By definition, the mean of the calibrated DCI values
corresponds to the proportion of correctly classified reference pixels (i.e., overall accuracy), while the
residuals, which are the differences between the hard indicators and the logistic model predictions,
have a zero mean. The overall fit of logistic regression was quantified using the Nagelkerke R-squared,
with values of 0.364, 0.419, and 0.370 for Radarsat-1, ENVISAT ASAR, and fusion, respectively. To
consider the different distributions of DCI values at the correctly and incorrectly classified reference
pixels in Figure 5, the land-cover classification results at reference pixels were used as data on another
independent variable in logistic regression. By including land-cover classes at reference pixels with
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DCI values, the Nagelkerke R-squared values increased, i.e., 0.397, 0.430, and 0.377 for Radarsat-1,
ENVISAT ASAR, and fusion, respectively. However, not all logistic regression coefficients were
statistically significant at the 5% significance level. For example, when both DCI and land-cover
classes were used for logistic regression modeling of the Radarsat-1 dataset and the reference class
for categorical land-cover classes was set to water, only DCI was statistically significant at the 5%
significance level. Even though slightly lower R-squared values are obtained from logistic regression
using only the DCI values, the variability unexplained by logistic regression is included in the residuals
and could affect the estimation of classification accuracy via kriging of the residuals. Thus, land-cover
classes were not used as additional independent variables for logistic regression. However, the use
of other variables, such as the dimension of land-cover patches and the proximity to the border, may
affect logistic regression modeling. The effects of those variables should be further investigated in
future research.

Figure 6 presents the distributions of residuals at the reference pixels. The positive and negative
residuals, which are associated with correctly and incorrectly classified reference pixels, respectively,
are separated reasonably well for all classification scenarios. The relatively large residuals of
misclassified hard data indicate that the logistic model fits better to the correctly classified hard
data than the misclassified hard data with much greater variance and a wide range of DCI values.
Since the residuals that were not accounted for by the DCI could not be ignored, they were incorporated
into the estimation of the accuracy probability.
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4.3.2. Integration and Mapping

To estimate residuals at any pixel in the study area, experimental variograms were first computed
and fitted visually. The variogram model type and its associated parameters are given in Table 7. After
variogram modeling of residuals, the residuals were estimated over the entire image using simple
kriging and the variogarm model of the residuals. The estimated residuals were then added to the
calibrated DCI values to obtain the final accuracy probability values at all pixels in the study area.

Table 7. Model type and associated parameters for the variogram of residuals.

Data Model Type Nugget Effect Partial Sill Range (m)

Radarsat-1 Spherical 0.11 0.03 830
ENVISAT ASAR Spherical 0.10 0.04 614

Fusion Spherical 0.07 0.06 614
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Figure 7 presents three classification accuacy probability maps obtained using simple indicator
kriging with local means. The bull’s eye effects around misclassified reference pixels are mainly due to
the short range structure of the variogram model of residuals. The mean of all accuracy probability
values in the study area corresponds to overall accuracy; in other words, locally varying degrees of
accuracy can be estimated while maintaining the overall global accuracy statistics corresponding to the
reference data. The distributions of the accuracy probability for each class of the different classification
scenarios are also presented in Figure 8. From Figures 7 and 8 paddy fields and water showed the
largest accuracy probability in all classification scenarios. The fusion of all features resulted in an
increase in the accuracy probability in other classes that showed relatively low classification accuracy
when features from a single sensor were used for classification; this result confirms the benefit of data
fusion for land-cover classification.
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Figure 8. Box plots of accuracy probability values per class for different classification scenarios. R, E,
and F on the x-axis stand for Radarsat-1, ENVISAT ASAR, and fusion, respectively. Numbers next to
abbreviations indicate class codes (1: paddy fields, 2: dry fields, 3: forest, 4: water, 5: built-up).

The difference maps between the classification scenarios were also generated to identify the area
where a significant increase in the accuracy probability was obtained by data fusion (Figure 9). The
effects of data fusion are well presented in the areas classified as dry fields and forest (red color in
Figure 9). In particular, an increase in the accuracy probability was observed in some built-up areas at
the center of the study area that were misclassified as other classes in the classfication using ENVISAT
ASAR features (Figure 9b). Despite an overall improvement in accuracy estimation by data fusion,
there are still some areas exhibiting a decrease in the accuracy probability (blue color in Figure 9).
These areas are mainly located near the misclassfied reference data, but were correctly classified when
using features from a single sensor. Some paddy fields also showed a slight decrease in accuracy
probability values for the data fusion scenario. These results indicate that the fusion of features from
multiple polarization data did not always lead to an improvement in the classfication accuracy at
all locations. Therefore, a detailed ground survey or an investigation of the intrinsic characteristics
of input features and/or the MLP classifier may be required in those regions. The low classification
accuracy in dry fields and forest implies a necessity to use other features that were not considered for
the current classification, but can provide more discriminative information to improve the classification
accuracy for those classes. In this type of further investigation, the spatial distribution of classification
accuracy can still be a primary information source.
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5. Conclusions

An indicator geostatistical approach incorporating quantitative ambiguity measures derived from
probabilistic classifiers was presented in this study to estimate the spatial distribution of classification
accuracy. Unlike traditional accuracy statistics from a confusion matrix, the proposed approach can
furnish classification accuracy probability values in areas where true land-cover types are not available
and, hence, provide a useful source of information for assessing map quality and guiding additional
ground surveys. A case study using multi-temporal and multi-sensor SAR datasets for land-cover
classification demonstrated the applicability of the presented approach, while also highlighting the
benefit of data fusion.

From a methodological viewpoint, the main novelty of the proposed approach lies in the
derivation and integration of the DCI that provides indirect information about varying degrees
of classification ambiguity or uncertainty. Logistic regression and interpolation of residuals are also
combined to calibrate the DCI so as to reflect the actual classification results (correct or incorrect
classification) at a small number of reference pixels, respectively. Through this integration approach,
overall accuracy from a confusion matrix can be still estimated while also providing per pixel accuracy
probability values. The simplicity of the integration procedure via indicator kriging with local means is
other advantage of the proposed approach. If data on other indirect information are available, logistic
regression can be easily applied to the entire set of indirect information and only one variogram model
for the residuals is required, unlike co-kriging that calls for time-consuming variogram modeling.

The output of the indicator approach in this study provides estimated classification accuracy
probability values quantifying the degree of correct classification for all land-cover classes. In
practice, however, this probability may not be sufficient for the investigation of the misclassification
characteristics of a certain class of interest. For example, one may be interested in the misclassification
probability of dry fields into forest or paddy fields. To derive this kind of information, another source,
for example, the user’s accuracy from the confusion matrix, should be defined and integrated. Future
research along these lines is required to extend the proposed approach for furnishing additional
interpretable probabilistic products.
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