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Abstract: Land cover data derived from satellites are commonly used to prescribe inputs to models
of the land surface. Since such data inevitably contains errors, quantifying how uncertainties in
the data affect a model’s output is important. To do so, a spatial distribution of possible land
cover values is required to propagate through the model’s simulation. However, at large scales,
such as those required for climate models, such spatial modelling can be difficult. Also, computer
models often require land cover proportions at sites larger than the original map scale as inputs,
and it is the uncertainty in these proportions that this article discusses. This paper describes
a Monte Carlo sampling scheme that generates realisations of land cover proportions from the
posterior distribution as implied by a Bayesian analysis that combines spatial information in the
land cover map and its associated confusion matrix. The technique is computationally simple and
has been applied previously to the Land Cover Map 2000 for the region of England and Wales.
This article demonstrates the ability of the technique to scale up to large (global) satellite derived
land cover maps and reports its application to the GlobCover 2009 data product. The results show
that, in general, the GlobCover data possesses only small biases, with the largest belonging to
non–vegetated surfaces. In vegetated surfaces, the most prominent area of uncertainty is Southern
Africa, which represents a complex heterogeneous landscape. It is also clear from this study that
greater resources need to be devoted to the construction of comprehensive confusion matrices.

Keywords: land cover; Bayesian analysis; uncertainty; GlobCover 2009

1. Introduction

Since the advent of global imaging satellites such as AVHRR, the production of data on land
cover at global scales has been the focus of much effort internationally. Over the last decade several
such products have been released, including the MODIS land cover product suite [1,2], the Global
Land Cover 2000 product (GLC2000) [3], and the GlobCover products [4,5]. An important use for
these data is providing the spatial distribution of variables, such as Plant Functional Type (PFT),
for Earth System Models of varying degrees of complexity. For example, [6] used the AVHRR land
cover map developed by [7] to prescribe dominant cover in the US National Centre for Atmospheric
Research (NCAR) land model, and [8] parameterised a simple ecosystem model with MODIS land
cover data to estimate the regional carbon budgets in the Mid-West US. Some Dynamic Global
Vegetation Models (DGVMs) are able to ingest land cover data to initialise a dynamic run (i.e.,
where the DGVM predicts competition between PFTs over time) or simply to prescribe static PFTs
for the calculation of contemporary carbon budgets. Examples of the use of satellite-derived land
cover in DGVMs are given by [9,10]. Some models of this type are designed to be used as the
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lower boundary for climate models, and any errors in the model outputs have the potential to feed
into climate simulations. Satellite derived land cover data are also used in atmospheric transport
model inversion-based estimates of land–atmosphere fluxes of various chemical species: [11] use the
continuous vegetation fields produced by [12,13] to analyse the results of global inversions of CO2 and
O2 data; [14] used MODIS land cover data to assign SiB3 biome types for estimating high resolution
carbon fluxes using atmospheric inversion; [15] used the GLC2000 product to delineate tropical forest
for N2O emissions inventories.

Since remotely sensed land cover data inevitably contain mis-classifications, various methods
have been proposed to characterise the uncertainty associated with land cover maps constructed
by the the remote sensing community. Generally, quantifying uncertainty falls into one of three
categories: comparison against ground data, analysis of classification statistics (e.g., measures of
separation in spectral space), or comparisons between different land cover products. Comparison
against ground truth provides, in principle, the fullest description of the errors in land cover data.
The ideal scenario is that a very large number of sites are visited and the land cover present at
each is compared with that in the remote sensing land cover map. This information is typically
encoded in a confusion matrix, which provides the user of the data with an easily interpretable
overview of which classes are most likely to be incorrectly classified (and as what classes) as well
as an overall measure of mis-classification in the product. Further details are provided in Section 2.2
and a comprehensive description of the construction of such matrices and issues surrounding them
is given by [16]. In practice, it is often prohibitively time consuming or too expensive to obtain
enough samples. Furthermore, correctly representing the spatial scale of the satellite data from the
ground samples is problematic. Consequently, it is becoming more common to construct confusion
matrices against higher resolution satellite data that has been interpreted manually. Such a matrix is
used in this study and is described in greater detail in the methods section. Classification statistics,
such as entropy measures described by [17], are not considered in this paper but may provide
useful additional information in further studies. In essence, these methods assume that the more
homogeneous the maximum likelihood of a given class is (i.e., the lower its entropy) the more accurate
the classification. If this assumption holds, then the information could, in principle, be used directly
in the statistical model presented here. However, because the most readily available information on
classification accuracy is typically in the form of a confusion matrix, this is the focus of the current
study. Comparisons between land cover products, such as that presented by [18], are useful for
identifying problematic regions or classes but cannot provide a probabilistic measure of uncertainty
and are hence not considered here.

Despite the efforts taken to describe the uncertainty in satellite derived land cover data, little
has been done to assess the direct impact of these uncertainties on the predictions of large scale land
surface models, such as DGVMs. Quaife et al. [19] used various 1 km land cover data to prescribe PFT
distribution for the Sheffield Dynamic Vegetation Model [20] and compared the predicted carbon
balance to that predicted by the same model using a nominally accurate land cover map of the UK.
The results showed large discrepancies in the net carbon balance of the UK, depending on which
land cover product was used. Poulter et al. [21] define an index of dissimilarity between several
satellite land cover products to diagnose likely causes of uncertainties in modelled variables on
global scales, but the uncertainties are not propagated through a model. Neither of these studies
directly quantifies the impact of uncertainty in an individual land cover product on model outputs.
Rather, they infer uncertainty by comparison with other land cover data sets. While these studies are
undoubtedly valuable, there is an obvious need for techniques that connect the information on land
cover uncertainty from the remote sensing community with the needs of the modelling community.

It is important to acknowledge that the confusion matrix does not encompass all of the errors
associated with land cover data that might affect a land surface model. Perhaps the largest of these
is the translation between land cover classes represented in the remote sensing product and the plant
functional types required by a model. In some instances the translation is unambiguous; for example,
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if a land cover classification reports 100% presence of deciduous broadleaved trees, it is clear as to
which PFT this should be assigned. However, this is rarely the case. Often classification schemes
report mixed land cover classes with unspecified proportions or proportions within given ranges.
This is true of many of classes in the GlobCover maps, which are the focus of this paper. Typically,
the translation between land cover classification is done using subjective methods and hence contain
potentially significant errors. This is explored in detail in [21].

This papers focuses on errors in the classification alone. The motivation behind this is to illustrate
a technique for producing estimates of uncertainty in satellite derived land cover maps on large scales,
which can subsequently be propagated through a model so as to understand the sensitivity of its
prognostics variables to likely classification errors. Future work will extend this to incorporate errors
in land cover to PFT translation.

Often the remotely sensed pixels are aggregated to a site (in the order of 1◦) for the user to
incorporate into their model and represented as the proportion of different cover types within each
grid–cell. This article provides a Bayesian hierarchical model from which we are able to simulate the
proportions of true land cover types in each site, across the entire region, thereby providing spatially
varying posterior standard deviations to quantify uncertainty. Since the remotely sensed pixels are
potentially mis-classified, we treat the true land cover proportions in each site as latent variables
and model them by combining a spatial prior distribution constructed from the remotely sensed
recordings with data in the confusion matrix. The method not only models the spatial variation
in the true land cover values, but also the spatial variation in the errors of the remotely sensed data
through the confusion matrix. The spatial prior is constructed for the site-specific probabilities of
true land classes and is an approximation to a Markov random field prior. The model for the region
wide confusion matrix is similar to that of [22,23], but rather than modelling the probabilities of
the true classes, conditioned on the remotely sensed map, we model the probabilities of the remote
sensed map classes, conditioned on the true classes, and we allow these map error probabilities to
vary spatially.

One advantage of our method is in allowing for a Monte Carlo simulation scheme that generates
from the posterior distribution of true land cover proportions that easily computes when applied to
large scale problems. The output of the simulation scheme can then be used as inputs to any model
that requires land cover data as an input, and can consequently estimate likely errors in model outputs
due to uncertainties in land cover information. The statistical method is described in detail in [24],
where it is demonstrated on a relatively small number of pixels representing a handful of PFTs. In this
article, the method is applied to the GlobCover 2009 data set at the global scale, using the full range
of land cover classes. This highlights the utility of the method for working with global land surface
and climate models. The results show the spatial distribution of errors in the GlobCover data and the
performance of a subset of the classes is explored.

2. Data

2.1. GlobCover 2009

GlobCover is a European Space Agency initiative to produce global land cover maps from MERIS
300 m data. Currently, it has produced two such maps, covering the periods December 2004–June
2006 and January–December 2009. The GlobCover product represents 22 land cover classes based on
the UN Land Cover Classification System (LCCS), which are given in Table 1. Around 20 terabytes
of MERIS reflectance data were processed using a combination of supervised and unsupervised
classification to produce the 2009 product. For the purpose of this study, the GlobCover 2009 product
was resampled to a 1

2
◦

grid, calculating the proportion of each land cover type in each grid–cell.
As the nominal projection of the data is on a Plate–Carrée latitude–longitude grid, no geographic
re-projection was required.
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Table 1. Land cover classes represented in the GlobCover 2009 product. N refers to the total number
of samples of that class in the reference data. P refers to the producer’s accuracy (%). U refers to the
user’s accuracy (%).

ID N P U Description

11 78 24 73 Post-flooding or irrigated croplands
14 402 35 67 Rainfed croplands
20 20 100 12 Mosaic Cropland (50%–70%)/Vegetation (grassland, shrubland, forest) (20%–50%)
30 12 100 8 Mosaic Vegetation (grassland, shrubland, forest) (50%–70%)/Cropland (20%–50%)
40 344 72 88 Closed to open (>15%) broadleaved evergreen and/or semi-deciduous forest (>5 m)
50 89 60 40 Closed (>40%) broadleaved deciduous forest (>5 m)
60 22 32 14 Open (15%–40%) broadleaved deciduous forest (>5 m)
70 68 41 40 Closed (>40%) needleleaved evergreen forest (>5 m)
90 48 50 29 Open (15%–40%) needleleaved deciduous or evergreen forest (>5 m)
100 51 25 25 Closed to open (>15%) mixed broadleaved and needleleaved forest (>5 m)
110 5 100 6 Mosaic Forest/Shrubland (50%–70%)/Grassland (20%–50%)
120 3 100 4 Mosaic Grassland (50%–70%)/Forest/Shrubland (20%–50%)
130 229 29 44 Closed to open (>15%) shrubland (<5 m)
140 213 18 31 Closed to open (>15%) grassland
150 97 59 35 Sparse (>15%) vegetation (woody vegetation, shrubs, grassland)
160 6 50 14 Closed (>40%) broadleaved forest regularly flooded—Fresh water

170 8 75 55 Closed (>40%) broadleaved semi-deciduous and/or evergreen forest regularly
flooded—Saline water

180 30 23 39 Closed to open (>15%) vegetation (grassland, shrubland, woody vegetation) on
regularly flooded or waterlogged soil—Fresh, brackish, or saline water

190 45 20 69 Artificial surfaces and associated areas (urban areas >50%)
200 246 69 88 Bare areas
210 110 70 93 Water bodies
220 44 68 83 Permanent snow and ice

For the purpose of the analysis presented here, a land mask has been applied to the data to
exclude ocean areas. Consequently, the results for class 210 correspond only to coastal and inland
water bodies.

2.2. Confusion Matrix

A confusion matrix represents a tally of comparisons of a land cover map against some form of
validation. Numbers on the leading diagonal correspond to samples from the land cover map that
are in agreement with the validation data and off-diagonal elements show the number of samples
that were incorrectly classified as each of the other land cover types. Consequently, this information
explicitly accounts for both errors of omission and commission. Sums of rows and columns provide
marginal values for each class, which, when compared to the leading diagonal, are often referred to
as the “user’s” (i.e., commission) and “producer’s” (i.e., omission) accuracies. As well as providing
a quantitative means of describing errors in classification data, confusion matrices are also used in
methods to improve classifications [25].

The GlobCover 2009 product contains two such matrices constructed against a comprehensive
set of high resolution image data, which have been interpreted by local experts [4]. In this study, the
matrix built using “certain” and “heterogeneous” validation points (shown in Table 2) has been used
for two reasons. First, it reports a higher degree of uncertainty in the land cover (overall accuracy
of 58.0%), and consequently, the results of the analysis presented here will represent an upper bound
on the uncertainty of the product. Second, for practical reasons it is not possible to use the matrix
generated from the “certain” and “homogeneous” validation data, as not all land cover classes have
been sampled, and hence it is not possible to apply the proposed method.
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Table 2. The “certain” and “heterogeneous” confusion matrix for the GlobCover 2009 product.

Class ID 11 14 20 30 40 50 60 70 90 100 110 120 130 140 150 160 170 180 190 200 210 220

11 19 4 1 2
14 29 141 7 1 9 11 2 1 1 5 4
20 10 75 20 11 3 2 1 3 12 14 3 7 2
30 6 58 12 12 1 1 1 17 21 3 1 1 2 5 1
40 2 16 249 3 1 1 8 1 1 1
50 17 20 53 2 6 2 12 15 3 1 1 1
60 11 10 2 7 1 14 3 1 2
70 3 2 2 2 28 6 4 9 5 1 3 1 3 1
90 1 1 3 2 17 24 4 7 11 2 3 2 5 1

100 1 1 9 8 1 13 6 8 2 2
110 14 1 2 1 2 5 18 20 4 1 1 3 8
120 1 8 2 1 6 2 3 17 16 5 2 5
130 1 24 12 7 2 3 1 66 19 2 1 5 2 1 3
140 1 24 3 1 1 4 20 38 12 2 6 11 1
150 4 1 3 6 2 5 30 57 2 4 29 13 7
160 16 1 3 1
170 1 1 1 6 2
180 1 1 1 5 7 3
190 1 1 1 9 1
200 3 1 1 3 5 6 1 169 1 1
210 2 2 2 77
220 1 1 4 30
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The distinction between the heterogeneous and homogeneous confusion matrices is the nature
of land cover at the points in the data set used to construct them. The homogeneous matrix (i.e.,
the one not used in this study) only uses data from pixels where the land cover belongs to a singular
class in the high resolution validation data set. The heterogeneous matrix also uses these data points,
but additionally includes data where the land cover is mixed. Consequently, it contains a larger
number of samples (2190 vs. 1408).

Table 1 contains additional information derived from the confusion matrix: the total number of
samples in the reference data set, and the producer’s and user’s accuracies. The producer’s accuracy
is a measure of how likely an area represented by a pixel on the ground is correctly classified, and the
user’s accuracy is a measure of how likely a pixel classified as a given class is actually that class on
the ground. Note that the numbers reported here differ slightly from those reported in [4], as they
have not been grouped into similar classes, and are hence lower in some instances.

Clearly the confusion matrix itself will also contain errors from factors such as human
interpretation of the validation data, but these are extremely difficult to quantify and are not
considered further here. In any case, the choice of value of the parameter d used (Section 3) is likely
to encompass this. One additional aspect not considered in the analysis presented here is the case of
classes that are not in strong disagreement with each other. These are off-diagonal elements of the
confusion matrix where the land cover classes are likely to appear very similar in the validation data,
and/or in the remote sensing data. A clear example of this is that rain-fed and irrigated croplands
are likely to be difficult to distinguish from spectral classification or image interpretation. The full
set of cases that this refers to is described in [4]. To consider this in the statistical model described in
Section 3 would require that these classes be aggregated. Furthermore, from the point of view of a
user of the data, this confusion is real: if an application sought to discriminate between rain-fed and
irrigated crops, then regardless of their spectral similarities, there will be associated uncertainty in
the land cover map.

3. Simulating the Distribution of True Land Cover Classes

The technique applied in this paper is specifically designed to model uncertainty in remotely
sensed land cover maps that have been aggregated to coarser spatial resolutions. The technique
incorporates the data in the confusion matrix, spatial correlation in true land cover, and spatial
correlation in misclassification or error probabilities, with the advantage of permitting a simple
Monte Carlo simulation scheme to draw from the posterior distribution of the true land cover classes.
Standard deviations of this posterior distribution allows the quantification of uncertainty. Here we
only describe the components required to illustrate the implementation of the simulation scheme and
the analysis of uncertainty of the GlobCover data. The reader is directed to [24] for more details on
the statistical method and assumptions.

Say there are s = 1, 2, . . . , S sites in a region, and each site contains ns recorded pixels, of which
ns

t′ are classified as land cover type t′ by the remote sensed map. Then ∑
p
t′=1 ns

t′ = ns, where p
represents the total number of land classes under consideration. It is important to note that it is the
true, but unknown, land class that we are interested in. We denote the true land class for a pixel as
t. The relevant probability then is the conditional probability that the true land class at a pixel within
site s is t, conditioned on the fact that the remote sensed map classified the pixel as t′. We denote this
conditional probability as κs

tt′ , for s = 1, 2, . . . , S, t = 1, 2, . . . , p and t′ = 1, 2, . . . , p.
Write γs to be a p × 1 vector representing the true land cover proportions for site s. It is the

posterior distributions of γs from which we wish to simulate in order to provide uncertainty estimates
for the proportions of land cover classes in each site. Given the ns

t′s and the κs
tt′s, we can write the

posterior distributions of these proportions as a mixture of multinomial distributions where

γs|κs
t′ ∼

1
ns

p

∑
t′=1

M(ns
t′ , κs

t′) for s = 1, 2, . . . , S (1)
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and M(ns
t′ , κs

t′) is the multinomial distribution over the ns
t′ remotely sensed land cover types t′ in

site s. The vector κs
t′ = (κs

1t′ , κs
2t′ . . . , κs

pt′)
T contains the conditional probabilities that at site s the true

land class cover is t, given the remotely sensed land cover class being t′.
We now describe how data from the remotely sensed observations and the confusion matrix are

used to model κs
t′ . First, a prior distribution is constructed for the probability of the true land cover

classes within site s, which we denote πs
t for t = 1, 2, . . . , p. The remotely sensed land cover data itself

is used to construct πs
t by averaging over the proportions of land class t in a neighbourhood of the site

s, thereby capturing the spatial distribution of the true land cover probabilities. In this application,
the neighbourhood is taken as the 3× 3 sites (i.e., 1.5◦ × 1.5◦ area) adjacent to site s.

Second, the data in the confusion matrix are used to construct the likelihood used to model
the error probabilities, defined as the probability that the remotely sensed land classification is t′,
conditioned on the fact that the true land class is t. We denote this conditional probability λt′t.
Consider the region-wide error probability vector, λt = (λ1t, λ2t, . . . , λpt)T . The tth column of the
confusion matrix records the number of (mis)classifications, given the true land cover observed
was t. Modelling the tth column, denoted ct, as a multinomial observation with vector probability
λt and specifying a Dirichlet prior λt ∼ Di(α), where α is the p× 1 parameter vector for a Dirichlet
distribution, results in the posterior distribution for the region-wide error probabilities as

λt|ct, α ∼ Di(ct + α)

It is natural to suppose that the error probabilities also exhibit some form of spatial correlation,
in that neighbouring pixels are more likely to be misclassified in a similar fashion than pixels further
apart. To explicitly incorporate spatial dependence among the error probabilities at a global scale,
such as the application in this paper, would be computationally very demanding. Also, we have no
information available to model spatial variability in the error probabilities. Instead, we induce spatial
correlation implicitly by allowing the λs

ts to vary randomly from the region wide vector λt according
to a Dirichlet distribution where

λs
t |λt, d ∼ Di(dλt)

independently for each site in the region. This introduces a single parameter, d, to control the degree
of increased variability, and hence the degree of correlation at the pixel level. For our application, we
set a value of d = 1, representing rather high correlation. This represents a somewhat conservative
estimate in the sense that it is likely to over-estimate the errors globally. Experiments with other
values of d (not shown here) exhibited only small sensitivities to the choice of parameter value
(See [24] for a discussion on the modelling of the spatial error probabilities and the robustness of
the results for different values of d).

Finally, given πs
t and λs

t , Bayes’ Theorem allows us to model each κs
tt′ as

κs
tt′ =

λs
t′tπ

s
t

∑
p
t=1 λs

t′tπ
s
t

(2)

that are required for Equation (1). A Monte Carlo algorithm to simulate N realisations from
Equation (1) is then the following straightforward procedure:

For g = 1, 2, . . . , N
(1) Simulate λt ∼ Di(ct + α) for t = 1, 2, . . . , p

For s = 1, 2, . . . , S
(2) Calculate πs

t for t = 1, 2, . . . , p
(3) Simulate λs

t ∼ Di(dλt) for t = 1, 2, . . . , p
(4) Calculate κs

t′ = (κs
1t′ , κs

2t′ , . . . , κpt′)
T for t′ = 1, 2, . . . , p from Equation (2)

(5) Simulate γs ∼ 1
ns ∑

p
t′=1 M(ns

t′ , κs
t′)

end
end.
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4. Results

The statistical model described in Section 3 was applied to the GlobCover data to sample
10000 unique land cover map instances from the posterior distribution. Various methods are used
in this section to summarise the results and provide an overall analysis of the performance of the
GlobCover product. Six land cover classes have been chosen to illustrate the results: the choice of
these particular classes is motivated only by the fact that they represent the range of uncertainty
seen amongst the classes of the GlobCover data, from highly accurate (class 40) to exhibiting strong
bias (class 140). These are: rainfed croplands (14), closed to open broadleaved evergreen and/or
semi-deciduous forest (40), open needleleaved deciduous or evergreen forest (90), closed to open
shrubland (130), closed to open grassland (140) and sparse vegetation (150). The fractions of each of
these classes as recorded in the original data is shown in Figure 1.

Figure 1. The proportion of six land cover classes as recorded in the GlobCover2009 data: (a) class 14;
(b) class 40; (c) class 90; (d) class 130; (e) class 140 and (f) class 150. Class definitions are given in
Table 1.
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4.1. Statistics for Example Classes

Figure 2 shows the mean proportion of each of the six land cover classes averaged over all of the
10000 generated land cover maps. Visual comparison with Figure 1 shows very little difference (i.e.,
little bias) between these data and the original land cover map. This is expected from the form of the
confusion matrix—the general structure of the matrix is that it is strongest on the leading diagonal,
meaning that the majority of pixels in most classes are correctly assigned. However, some small
differences are apparent. For example, rainfed croplands (14) appear to be more prevalent in North
America as reported by the mean of the posterior samples, and there is a greater amount of sparse
vegetation (class 150) on the border of the Sahara desert.

Figure 2. The posterior estimate (mean) of the proportion of six land cover classes: (a) class 14;
(b) class 40; (c) class 90; (d) class 130; (e) class 140 and (f) class 150. Class definitions are given in
Table 1.

The uncertainties are represented by the standard deviations of the posterior distributions
(Figure 3). The general pattern is that uncertainties for a given class are relative to the abundance
of that class. However, this is not always the case. For example, the sparse vegetation class (150) is
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almost absent from Southern Africa (Figure 1), but this area is one where it exhibits one of the highest
standard deviations. This is due to high levels on confusion with closed to open grassland (140),
which can be seen in the confusion matrix (Table 2).

Figure 3. The modelled uncertainty, approximated by the posterior standard deviation, in six land
cover classes: (a) class 14; (b) class 40; (c) class 90; (d) class 130; (e) class 140 and (f) class 150. Class
definitions are given in Table 1.

Scatter plots of the original data (Figure 1) and the mean of the samples from posterior
distribution (Figure 2) are shown in Figure 4. While these plots hide the spatial information
present in the maps, they provide additional information about the global uncertainties of the six
selected classes. It can be clearly seen, for example, that the closed to open broadleaved evergreen
and/or semi-deciduous forest (40) is relatively accurate; the majority of the samples sit close to the
one–to–one line, and the overall amount of spread is small. By contrast, all other classes exhibit a
much higher degree of spread, and some show a degree of bias. This is especially true of closed to
open grassland (140), which shows that at high levels of abundance, the original data contains more
of the class than that predicted by the statistical model. This is unsurprising given the high level of
confusion seen between this class and others in Table 2.
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Figure 4. Scatter plots of land cover proportion reported in the GlobCover product against the mean
of the posterior. The classes are (a) class 14; (b) class 40; (c) class 90; (d) class 130; (e) class 140 and
(f) class 150. The x–axis is the original data and the y–axis is the output from the statistical model.

4.2. Global Posterior Distributions

The posterior distribution of the global total area covered by each land cover class is shown in
Figure 5. It is a powerful feature of this technique that it is able to provide distributions on the actual
areas of the classes present. This is not something immediately available from the confusion matrix
itself. The probability distribution function PDF curves are reconstructed from the 10,000 draws from
the posterior using kernel density estimation. Vertical dashed lines indicate the total global area
reported by the land cover product itself. For many classes, the dashed line falls within or close to the
posterior PDF, and several classes show very good agreement; i.e., where the dashed line is close to the
peak of the posterior. Classes exhibiting the highest accuracy for reported global area are 50, 90, 160,
and 170. These are all examples of forest classes (see Table 1), and indeed other predominately forest
classes tend to fall well within the boundaries of their posterior PDFs (60, 70, 100). This suggests
that, on a global scale, the GlobCover map is reporting forests with reasonable accuracy and low
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bias. However, care must be taken in interpreting some of these results; the sampling of some of
these classes in the confusion matrix is poor, and this will reduce the reliability of the predictions, in
particular this is true of classes 170 (which presents a very narrow PDF) and 160 (which has a notably
skewed PDF). In general, this is only likely to be a problem for classes that cover relatively small
proportions of the global surface area.

Figure 5. The modelled posterior PDF in the total area covered by each land cover type. Vertical
dashed lines show the corresponding totals from the Glob Cover product itself. Class definitions are
given in Table 1.

Various classes exhibit notable biases, and a high proportion of these are non-vegetated surfaces:
bare areas (200), inland water bodies (210), and artificial surfaces (190). This has potential impacts
for modelling studies using these data. Water bodies in particular exhibit very different radiative
properties from other cover types (low albedo and high specific heat), and hence biases in the
reported global area could potentially lead to significant biases in predictions from models that use
these data. The bias in this instance is negative, implying that models will under-predict the total
energy absorbed by inland water bodies, and also the resulting latent heat flux to the atmosphere.
Some vegetated classes also exhibit strong biases; for example, classes 20 and 30. These are strongly
confused with class 14, and indeed this class exhibits a bias in the opposite direction partly as a
consequence of this.

4.3. Beta Diversity

To summarise the uncertainty spatially in a single image, the beta diversity metric as described
by [21] has been used. Beta represents the mean euclidean distance between the land cover
proportions in the original data set and those generated by the method described in this paper.
The motivation for using this particular metric is because it provides a one-variable summary of
the uncertainty in the multi-variable space, and because its use for problems of this type has been
demonstrated before [21]. Results calculated against all land cover classes are shown Figure 6.
The most striking feature is the high value of the beta metric in South-West Africa. This is an area
dominated by a complex and heterogeneous mix of shrub land and grasses. In particular, this area
contains a large proportion of class 140 (closed to open grassland), which also has the broadest PDF
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(i.e., the most uncertainty) in the global totals (Figure 5). Figure 2 shows the spatial distribution
of class 140. It is also a similar mix of cover types that accounts for the patches of high beta in
Australia and directly on the southern border of the Sahara desert. The confusions that lead to these
features have already been discussed in Section 4.1, but the advantage of the beta diversity is that it
summarises this statistic for all of the classes. It has already been noted that forested areas exhibit
some of the lowest levels of confusion, and indeed these areas tend to have very low values of the
beta metric.

Figure 6. Uncertainty in the GlobCover data as represented by the beta diversity for all classes.

An important feature of the method described in this paper is highlighted by the beta metric:
as well as representing the confusion matrix spatially, the method also accounts for the spatial
heterogeneity in the data. Areas that are dominated by one class over large areas will also tend to
have low levels of confusion. This is due to the way in which the prior is constructed by taking into
account the classes in the immediate area. If there is zero proportion of a given class in the 3× 3 areas
used to define the prior for a given grid–cell, then there is a zero probability of that class in the prior.
Consequently the sampler will not predict its presence, regardless of the confusion matrix. This is the
reason why, for example, the Sahara Desert shows low beta scores despite the bare area class having
moderate levels of uncertainty. This effect is also present in other classes, especially forested ones,
albeit to a lesser extent.

5. Discussion

5.1. Underlying Causes of Uncertainty

The pattern of uncertainties evident in the beta diversity shown in Figure 6 is controlled by
two factors: (1) the magnitude of the uncertainty of the classes present at any given point, and the
degree to which they are confused with each other (i.e., according to the confusion matrix) and; (2) the
actual mix of classes present—even if a very confused class is present, the classes with which it is
confused must also be present for it to become uncertain. Consequently, homogeneous areas such as
the Amazon forest have very low uncertainty. Parts of southern Africa exhibit very high uncertainties,
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and these are due to the presence of class 140 (closed to open grassland) along with other classes that
it is confused with. Class 140 itself is one of the most erroneous in the original confusion matrix.

To examine the high uncertainties in southern Africa in more detail, Figure 7 shows the
two-dimensional marginal probability distributions. The land cover classes represented in the figure
are those that are most abundant in the region: mosaic vegetation (grassland, shrubland, forest) and
cropland (30), closed broadleaved deciduous forest (50), open broadleaved deciduous forest (60),
and closed to open grassland (140). Contours in these plots are lines of equal likelihood of area
covered by each class, and the vertical and horizontal lines are the values calculated from the original
GlobCover data. Where a line bisects the centre of the distribution, this indicates no bias between the
GlobCover and the statistical model. This is only the case for class 50, which agrees with the global
area distributions in Figure 5. The pattern of bias for the other classes also mimics the biases seen in
the global data: classes 140 and 30 have a positive bias, whereas 60 has a negative bias. This illustrates
an important shortcoming of the specific experiment presented here, rather than the technique in
general. Because the uncertainty information comes from a confusion matrix that represents the
whole globe, the pattern of uncertainties will be broadly the same for every location. In reality, this is
not likely to be the case. This is discussed further in Section 5.2.

Figure 7. 2D marginal posterior distributions for southern Africa. Axis labels indicate the land cover
class, and contour values are the likelihoods that each contour corresponds to. The axes themselves
show total area covered by the class in m2. The vertical and horizonatal lines show the areas predicted
areas from the original data.
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One interesting feature of the results that is only visible in Figure 7 is that some of the classes
exhibit covariance. The most obvious example is the negative correlation between class 140 and class
60. In this case, a negative correlation implies that an error in one land class will correspond to an
error in the opposite direction in the other. This can be seen in the global posterior distributions
(Figure 5), where the bias in the global area of classes 140 and 60 is in the opposite direction.

5.2. Assumptions and Limitations

One key assumption in the method presented in this paper is that the confusion matrix describes
classification uncertainties that do not vary spatially. For example, confusion between grasses and
crops is taken to be the same regardless of whether this occurs in, say, the United Sates or Asia.
This may not hold true for two principal reasons: first, the amount and quality of data may not
be the same from location to location (due to orbital characteristics and variable amount of clouds,
for example) and second, because the spectral characteristics of a specific land cover may be different
(for example, due to different soil types). In principle, it is possible to extend the method to cope
with a spatially varying confusion matrix. The simplest way of achieving this being to have several
regional confusion matrices, or matrices which are built from ground samples within a given range
of a grid–cell. However, either of these approaches would need a much larger validation data set and
is beyond the scope of this study.

Some cover types are poorly sampled in the confusion matrix, which is likely to make the
results for these classes less reliable. Again, the only solution is to produce confusion matrices with
larger numbers of observations. Practically this is very time consuming and resource intensive for
global maps of this nature, and consequently requires coordinated input from relevant agencies.
A recommendation from this paper is that such activities require a greater level of funding.

5.3. The Role of the Prior

In many ways, the maps of uncertainty produced can be viewed as a spatialisation of the
confusion matrix. So what role does the prior play? To calculate Bayesian estimates of any quantity
necessarily requires a prior estimate, and these are often subjective in nature. Prior information in
this paper comes from a spatially smoothed version of the land cover map consisting of a 1.5◦ × 1.5◦

moving average. Larger windows up to 5.5◦ × 5.5◦ were tried and showed only marginal difference
(results not shown). The same spatial patterns in uncertainty and distributions of bias in global
areas were observed. One example of an alternative prior might be to use some estimate of the
grid–cell heterogeneity in land cover (e.g., how “patchy” the landscape is). A less ad-hoc alternative
would be to use the inherent information available in the classification procedure itself. There are a
number of metrics, such as fuzzy classifications, typically based on measures of spectral separability
between classes, that assign probabilities of membership of each pixel to a given land cover class.
These may be a more informative prior for the statistical model used here. This information is not
generally made available for global land cover products such as GlobCover, but the approach merits
further investigation as a means of combining the spectral and validation data into a single estimate
of uncertainty.

One important role that the prior plays in this study is that it excludes classes that are not present
in the local region. To illustrate with an extreme example: the bare areas class (200) exhibits a small
amount of confusion with permanent snow and ice (220). Based on the confusion matrix alone this
would mean that there is a small probability of snow and ice existing anywhere that bare areas appear,
including the Sahara desert. Clearly this is not desirable. However, because the prior contains zero
proportion of class 220 in this region, it means that the posterior probability for it is also zero.

5.4. Application to Modelling

This paper has only demonstrated the application of the technique as far as producing posterior
estimates of uncertainty from a land cover product. However, the motivation of this study is



Remote Sens. 2016, 8, 314 16 of 18

ultimately to provide a technique that will allow these uncertainties to be propagated through any
environmental model that uses land cover data as an input, such as the Sheffield Dynamic Vegetation
Model, SDGVM [20], or the Joint UK Land Environment Simulator, JULES [26]. An important part of
this process that has not been considered in this paper is the conversion of land cover as represented
in a remotely sensing product to the classes required by the models (typically called plant functional
types). This is likely to have two main impacts: either where a PFT contains multiple land cover
classes, or where a land cover class contains multiple PFTs. The first is likely to reduce uncertainty in
the model predictions due to the land cover uncertainty, whereas the second will increase uncertainty.
Further studies will look at the propagation of the derived uncertainties through such models to
examine the impact on predictions of, for example, carbon and energy fluxes between the land surface
and the atmosphere. Clearly the most important question to ask is not how much error there is in
a given land cover product, but how this will impact a given application. Such experiments are
computationally intensive and beyond the scope of this paper; future studies will address this issue.

The process by which the uncertainty estimates presented here can be propagated by a model
is simple and requires no modification to the model. The sampler presented in Section 3 is capable
of producing an unlimited number of realisations of the true land cover. Each of these realisations
can then be used as an instance of the land cover (or PFTs) for a model run, using as many runs as
necessary to calculate the required statistics. Typically this could be between 100’s to 10000’s of model
runs. The uncertainty in model predictions due to uncertainty in the land cover can then be calculated
using the ensemble of model outputs that has been generated.

6. Conclusions

This paper applies a method of drawing samples from the posterior distribution of land cover
proportions implied by the GlobCover 2009 global land cover data set and an associated uncertainty
matrix. The method is designed to handle large data sets and was able to provide measures of
uncertainty in the GlobCover 2009. The results highlight both the specific classes and the geographical
regions in which the land cover product performs either poorly or well. Geographically, most
uncertainty is seen in southern Africa (Figure 6), in which exists a complex heterogeneous landscape
consisting of shrubs and grass. In particular, this uncertainty is driven by the presence of a specific
class (140) within this landscape. The largest overall biases in areal coverage reported by the
GlobCover product shown in Figure 5 are dominated by non-vegetated surfaces: bare areas, inland
water bodies, and artificial surfaces. The largest biases in vegetation occur post-flooding or irrigated
cropland and the two mosaic cropland/vegetation classes. Overall, however, the analysis shows
the GlobCover 2009 product to be of high accuracy: biases for most classes are small, and PDFs are
relatively narrow.

Future work is planned to propagate these uncertainties through a Global Vegetation Model to
demonstrate the impacts on model predictions of the net carbon balance of the land surface. As part
of this, it will also be necessary to address the uncertainties in the cross-walk between land cover
and plant functional types; however, the work outlined here lays the foundation for this analysis.
Although the focus in this study has been preparing to work with Global Vegetation Models, in
principle the technique can be used for any model that requires land cover as an input—for example,
climate models or hydrological models.

A strong recommendation arising from this work is that more funding is required to produce
accuracy assessments of land cover products. With a greater level of sampling in the confusion
matrix it would be possible to apply the method presented here on a regional level and ultimately
provide more detailed analysis to inform onward use of the data. In addition, some classes are
under-represented in the existing confusion matrix, and uncertainty estimates generated for these
will be the least reliable.
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