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Abstract: Field crop yield prediction is crucial to grain storage, agricultural field management,
and national agricultural decision-making. Currently, crop models are widely used for crop yield
prediction. However, they are hampered by the uncertainty or similarity of input parameters when
extrapolated to field scale. Data assimilation methods that combine crop models and remote sensing
are the most effective methods for field yield estimation. In this study, the World Food Studies
(WOFOST) model is used to simulate the growing process of spring maize. Common assimilation
methods face some difficulties due to the scarce, constant, or similar nature of the input parameters.
For example, yield spatial heterogeneity simulation, coexistence of common assimilation methods
and the nutrient module, and time cost are relatively important limiting factors. To address the yield
simulation problems at field scale, a simple yet effective method with fast algorithms is presented for
assimilating the time-series HJ-1 A/B data into the WOFOST model in order to improve the spring
maize yield simulation. First, the WOFOST model is calibrated and validated to obtain the precise
mean yield. Second, the time-series leaf area index (LAI) is calculated from the HJ data using an
empirical regression model. Third, some fast algorithms are developed to complete assimilation.
Finally, several experiments are conducted in a large farmland (Hongxing) to evaluate the yield
simulation results. In general, the results indicate that the proposed method reliably improves spring
maize yield estimation in terms of spatial heterogeneity simulation ability and prediction accuracy
without affecting the simulation efficiency.

Keywords: yield simulation; prediction accuracy; spatial heterogeneity; WOFOST model;
fast assimilation algorithms; remote sensing

1. Introduction

Because of its vast territory and sparse population, Northeast China is home to many big farms.
Owing to the fertile soil and modern agriculture management in these big farms, this region has
become the main maize planting area and contributed the maximum growth of maize yield in China,
the world’s second-largest maize producer (FAO, 2013). Modern agriculture comprises more than 70%
of China’s total maize production (National Bureau of Statistics of China, 2014). Therefore, timely
and precise simulation is important for farms to optimize management and boost yield. However,
most yield prediction methods depend on conventional techniques including forecasting based on
agro-meteorological models or establishing a relationship between remote sensing (RS) spectral
vegetation indexes (VIs) and field-measured yields. One of the main drawbacks of these methods is
that they are only applicable to specific crop cultivars, crop growth stages, or geographical regions [1,2].
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In contrast, a crop model can effectively address these problems owing to its comprehensive
mathematical descriptions of key physical and physiological processes, simulation of soil processes,
and ability to overcome issues such as abnormal weather conditions and natural disasters [3–6]. Thus,
crop models have emerged as the most potent tools for yield estimation, and they have been shown
to be effective for various types of crops in different countries. Several studies have confirmed that
such crop models can be successfully applied to crop yield prediction at field scale [7–13]. However,
they are also found to be limited under regional-scale extrapolation for estimating crop yield owing to
uncertainties in input parameters or initial conditions [1,14]. In particular, these uncertainties include
two different cases: parameters that are hard to obtain at pixel or field scale and parameters that
change in a single growth season or over years. Obtaining additional unknown or variational input
parameters is an effective way to address these problems; however, in general, it is extremely expensive
and even infeasible.

Optical remote sensing techniques provide extensive and diverse spatial information on the
actual growth status of a crop. For example, HJ-CCD has high revisit frequency, moderate-resolution
imaging spectroradiometer (MODIS) has wide coverage, and Quickbird has high spatial resolution.
Fully exploiting RS data is useful for addressing problems in many research fields, including field
yield simulation [15,16]. Since the 1980s, when Steve Maas first attempted to combine RS data
for modeling [17], several methods for assimilating RS data into crop models have been explored.
The ensemble Kalman filter (EnKF) is used in the CERES-Wheat model [18], WOFOST model [1,5,19–21]
and SWAP (soil–water–atmosphere–plant) model [22] for many different crops. Particle filtering (PF)
is used to reduce uncertainty in the STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard)
model prediction [23]. Four-dimensional variational data assimilation (4DVar) is also used in the
CERES (crop-environment resource synthesis)-Wheat model [24] to improve prediction accuracy.
However, many factors may influence the assimilation performance. In our study, three main factors
when we applied common data assimilation method (EnKF) into the model for yield simulation.
Firstly, the spatial heterogeneity between or within fields was worse. Secondly, the common data
assimilation method encountered problems when the nutrient module, which is used after growth
simulation [11], was applied to obtain precise yields. Spatial heterogeneity and the nutrient module
are both important in our study when the simulation yield is adopted for further application. At the
meantime, the efficiency of simulation is another factor when the model is applied to a larger farm.
Thus, such problems have to be addressed in order to obtain useful yield estimates by using crop
models and RS data.

This paper presents a new method with fast algorithms to address the problems of yield simulation
at field scale when using crop models and RS data. The fast algorithms aim to avoid errors in RS
data and assimilate time-series HJ-1 CCD data into the calibrated and validated WOFOST model.
Thus, two major objectives are achieved: improving the spatial heterogeneity simulation ability
and prediction accuracy of the crop model (nutrient-limited level) for a large- or medium-sized
farmland without affecting the simulation efficiency. Several experiments and analyses are carried
out in Hongxing farm to evaluate the spatial heterogeneity and prediction accuracy. In addition,
the simulation time is recorded. Complete details of the proposed assimilation method and analysis
results are presented in the following sections.

2. Materials and Methods

2.1. Study Area

The study was conducted in a large farmland, namely, Hongxing Farm (Hongxing), which is
located in the central region of Heilongjiang (48˝091N, 127˝031E), Northeast China. The farm is in
the mid-temperate zone, characterized by average annual precipitation of 548.8 mm and average
annual accumulative temperature (>10 ˝C) of 2293 ˝C. The major crops are soybean, spring maize,
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and spring wheat. In 2014, the proportion of the spring maize planting area in Hongxing was nearly
50%. The growing season in the study area extends from the beginning of May to mid-October.

The average size of the fields is more than 55 hectares and moderate-resolution remote sensing data
such as HJ-CCD data with a spatial resolution of 30 m can be easily obtained. The farm management is
scheduled by an independent organization. Hence, each field is usually planted with only one type of
crop, and the sowing and harvest times are easily simulated. Figure 1 shows the location and field
distribution of the study area.
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2.2. WOFOST Model

In this study, the WOFOST model [11,25] was used to simulate the growing process of spring
maize. The model, which originated from the Center of World Food Studies located in the Netherlands,
is a member of the family of Wageningen crop models [5,26], and it is the central component of the
Crop Growth Monitoring System (CGMS) [9]. WOFOST can simulate daily crop growth (two or
more days can also be selected for the simulation step) and compute the yield at the end of the
growing season. The types of yield calculated include the potential yield (Ypt), water-limited yield
(Ywl), and nutrient-limited yield (Ynl). Ypt is determined on the basis of meteorological conditions
and crop physiological characteristics by assuming the absence of water and nutrient stress factors.
In other words, Ypt is the highest yield level that can be obtained in theory. Ywl is derived from Ypt by
considering the water supply, which is influenced by rainfall, soil type, and field topography. Thus,
Ywl is usually lower than Ypt. Finally, the model can also consider soil nutrients to obtain Ynl. Ynl is
calculated statically on the basis of soil characteristics and Ywl (Ypt can also be used).

2.3. Field Campaign and Model Calibration

The WOFOST model has been developed mainly for European conditions and it has been
used to simulate the production of the chief annual crops in Europe [27,28]. Although it has
also been used for regional land evaluation, yield potential simulation, risk analysis, and yield
forecasting studies in Europe, Africa, and China [9,29,30], new calibration is necessary for crop
growth simulation in the present study. In general, the main input parameters are weather, soil, crop,
and management parameters.

These parameters were calibrated in four ways: documentary method, farm data collection,
field observation, and RS estimation. Parameters calibrated by the documentary method included
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previously researched parameters, WOFOST default parameters, and some soil parameters from the
1:1,000,000 Chinese soil database (http://www.soil.csdb.cn).

Data collected from Hongxing farm included historical field measurement data and management
data. Because the farm carries out surveys in the fields each year, we could obtain the yield and
soil nutrient at field level for more than five years. The farm also requested Heilongjiang Bayi
Agricultural University to investigate the soil fertility of the cultivated land, and some soil parameters
could be calibrated on the basis of the corresponding results. The farm has been running a weather
station for several years; it can provide daily meteorological data including mean, maximum, and
minimum temperature, wind speed, vapor pressure, precipitation, humidity, and radiation data. Most
meteorological data were collected at the farm level, except temperature, which could be resolved into
different temperature zones by landform and physiognomy. In addition, nitrogen fertilizer data could
also be obtained in this manner.

The field campaigns were carried out in both 2014 and 2015. During the entire growing season of
spring maize from 11 April to 30 October 2014, the main collected data included yield, LAI, biomass,
soil nutrients, and crop growth period. The observed yields in 2014 were obtained using two methods.
In the first method, 19 fields were selected to be the experimental plots; three locations were selected
in each field, and their average yield was considered as the yield of the field. In the second method,
a group of technicians were asked to obtain the total weight after the harvester finished harvesting
each field. In addition, the percentage impurity and water content were recorded. In all the yield
results, the impurities were removed and the water content was converted to 25%. The observation
period was 25 September–25 October. Series observations of biomass and LAI were made at fixed
sites for at least one month of the entire growing season. From 25 April to 1 May, soil samples were
collected for assays in order to obtain the soil parameters and basic soil nutrient data. Furthermore,
crop key growth period data such as sow time, anthesis, and harvest time were collected by technicians.
The soil and growth period data were obtained from the same sites as the biomass and LAI.

In 2015, some special campaigns were also carried out for the key parameters of WOFOST. Based
on the parameters calibrated in 2014, the selected calibration order was: (1) growth stages; (2) biomass;
and (3) yield. Four observation areas (shown in Figure 2) were selected to observe the growth stages
every two (during growth stages) or five (before growth stages) days. The growth stage observation
information (listed in Table 1) can be used to calculate TSUM1, TSUM2, TBASEM, and TEFFMX.

Remote Sens. 2016, 8, 303 4 of 23 

 

These parameters were calibrated in four ways: documentary method, farm data collection, 
field observation, and RS estimation. Parameters calibrated by the documentary method included 
previously researched parameters, WOFOST default parameters, and some soil parameters from the 
1:1,000,000 Chinese soil database (http://www.soil.csdb.cn). 

Data collected from Hongxing farm included historical field measurement data and 
management data. Because the farm carries out surveys in the fields each year, we could obtain the 
yield and soil nutrient at field level for more than five years. The farm also requested Heilongjiang 
Bayi Agricultural University to investigate the soil fertility of the cultivated land, and some soil 
parameters could be calibrated on the basis of the corresponding results. The farm has been running 
a weather station for several years; it can provide daily meteorological data including mean, 
maximum, and minimum temperature, wind speed, vapor pressure, precipitation, humidity, and 
radiation data. Most meteorological data were collected at the farm level, except temperature, which 
could be resolved into different temperature zones by landform and physiognomy. In addition, 
nitrogen fertilizer data could also be obtained in this manner. 

The field campaigns were carried out in both 2014 and 2015. During the entire growing season 
of spring maize from 11 April to 30 October 2014, the main collected data included yield, LAI, 
biomass, soil nutrients, and crop growth period. The observed yields in 2014 were obtained using 
two methods. In the first method, 19 fields were selected to be the experimental plots; three locations 
were selected in each field, and their average yield was considered as the yield of the field. In the 
second method, a group of technicians were asked to obtain the total weight after the harvester 
finished harvesting each field. In addition, the percentage impurity and water content were 
recorded. In all the yield results, the impurities were removed and the water content was converted 
to 25%. The observation period was 25 September–25 October. Series observations of biomass and 
LAI were made at fixed sites for at least one month of the entire growing season. From 25 April to 1 
May, soil samples were collected for assays in order to obtain the soil parameters and basic soil 
nutrient data. Furthermore, crop key growth period data such as sow time, anthesis, and harvest 
time were collected by technicians. The soil and growth period data were obtained from the same 
sites as the biomass and LAI. 

 
Figure 2. Observation areas of Hongxing in 2015. 

Figure 2. Observation areas of Hongxing in 2015.



Remote Sens. 2016, 8, 303 5 of 22

Table 1. Key growth stages of four observation areas in 2015.

Observation Area Growth Stages Date (Month–Day) DVS Observation Area Growth Stages Date (Month–Day) DVS

Area 1
First emergence time 22 May 0.04

Area 3
First emergence time 20 May 0.03

Widespread emergence time 25 May 0.08 Widespread emergence time 26 May 0.07
Last emergence time 27 May 0.09 Last emergence time 29 May 0.09

First anthesis time 17 July 0.85 First anthesis time 18 July 0.87

Widespread anthesis time 22 July 0.94 Widespread anthesis time 22 July 0.95

Last anthesis time 27 July 1.03 Last anthesis time 31 July 1.12

First maturity time 20 September 1.92 First maturity time 21 September 1.90

Widespread maturity time 25 September 1.97 Widespread maturity time 25 September 1.94

Last maturity time 28 September 1.99 Last maturity time 29 September 1.98

Area 2
First emergence time 27 May 0.09

Area 4
First emergence time 23 May 0.05

Widespread emergence time 1 June 0.11 Widespread emergence time 28 May 0.09
Last emergence time 4 June 0.13 Last emergence time 30 May 0.10

First anthesis time 20 July 0.87 First anthesis time 21 July 0.88

Widespread anthesis time 25 July 0.96 Widespread anthesis time 25 July 0.99

Last anthesis time 30 July 1.04 Last anthesis time 1 August 1.15

First maturity time 23 September 1.90 First maturity time 22 September 1.90

Widespread maturity time 27 September 1.97 Widespread maturity time 28 September 1.94
Last maturity time 30 September 1.99 Last maturity time 30 September 1.97

For biomass and yield, continuous campaigns were carried out in the four observation areas (shown in Figure 2) in order to obtain the dry matter weight of different crop portions,
which could be used for calibrating the parameters of conversion efficiency of assimilates and fraction of above ground dry matter. These weight data (listed in Table 2) were collected
on 24 May, 27 June, 31 July, and 30 August.
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Table 2. Dry matter weight of observation Area 2.

Date (Month-Day) DVS Portion Mean Dry Matter Weight (g/plant)

24 May 0.1
leaves 3.1
stem 0.93

storage organs 0.0

27 June 0.5
leaves 20.6
stem 8.6

storage organs 0.0

31 July 1.1
leaves 36.0
stem 49.1

storage organs 7.9

30 August 1.7
leaves 78.0
stem 61.2

storage organs 106.5

From Table 1, we can see that different areas in the farm have different growth stages. For example,
the widespread emergence time in Area 2 is seven days later than that in Area 1. These necessary
parameters can hardly be obtained by field campaigns at field scale; however, RS can overcome this
problem. Time-series NDVI data for every day calculated from HJ-CCD, MODIS, and GF-1 were used
to obtain the emergence time. The inflection point (shown in Figure 3) at which the NDVI time-series
curve starts to rise was selected as the emergence time. We defined the inflection point by a simple
but fast and effective algorithms. First, Savitzky–Golay filter was used to obtain trend line of NDVI
time-series, and the trend line usually have six inflection points: the first one for emergence time,
the second one for anthesis time, which is hard to define, the fifth one for mature time, and sixth
one for harvest time. Then, a five days filter was used to define the first and fifth inflection point.
For example, before the first point, the slope of trend line was closed to zero which had only small
fluctuations caused by water changes and noise of RS data while the field was covered with bare
soil. When the line reached this point, the crop began to emerge and the slope of trend line become
larger. The five days filter used to find the change which slope began to increase. The third day was
selected as the inflection point. The simulation results are listed in Table 3. From the table, we can
also find that the date from RS minus nine days usually matches that from field observation. Due to
the report from Hongxing, the maize cannot be harvested as soon as mature (influenced by the grain
procurement); thus, the mature time was used instead of the harvest time. The maturity time can be
calculated by RS [31], which are also listed in Table 3. The accuracy of emergence and harvest time
both remained at a high level, with errors less than 2 days and the R2 more than 0.90; thus, we can
obtain ideal emergence and harvest times using this method with daily RS NDVI data.Remote Sens. 2016, 8, 303 7 of 23 
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Table 3. Widespread emergence and harvest time from field observation and remote sensing.

Area Name
Emergence Date from

Field Observation
(Month-Day)

Emergence Date
from RS

(Month-Day)

Harvest Date from
Field Observation

(Month-Day)

Harvest Date
from RS

(Month-Day)

Area 1 22 May 31 May 25 September 27 September
Area 2 1 June 12 June 27 September 28 September
Area 3 26 May 5 June 25 September 24 September
Area 4 28 May 6 June 28 September 26 September

Using the methods described above, we can calibrate the parameters of WOFOST at three different
levels: meteorological (except temperature) and most crop and soil parameters at farm level, some soil
parameters at field level, and some other key parameters (growth stages and LAI) at pixel level.
The main crop and soil parameters are listed in Tables 4 and 5 respectively.

Table 4. Input crop parameters of the WOFOST model.

Parameters Description Values Unit Source

TDWI Initial total crop dry weight 120 kg/ha Farm data
TSUM1 Temperature sum from emergence to anthesis 890 ˝C¨d RS and M
TSUM2 Temperature sum from anthesis to maturity 710 ˝C¨d RS and M

TBASEM Lower threshold temperature for emergence 7 ˝C RS and F
TEFFMX Maximum threshold temperature for emergence 34 ˝C RS and F

CVL Conversion efficiency of assimilates into leaf 0.65 kg/kg Field observation
CVO Conversion efficiency of assimilates into storage organ 0.82 kg/kg Field observation
CVR Conversion efficiency of assimilates into root 0.72 kg/kg WOFOST default
CVS Conversion efficiency of assimilates into stem 0.69 kg/kg WOFOST default
FRTB Fraction of total dry matter to root 0–0.40 kg/kg Field observation

FOTB01 Fraction of above ground dry matter to storage organs
(DVS = 0.1) 0 kg/kg Field observation

FOTB05 Fraction of above ground dry matter to storage organs
(DVS = 0.5) 0 kg/kg Field observation

FOTB11 Fraction of above ground dry matter to storage organs
(DVS = 1.1) 0.20 kg/kg Field observation

FOTB17 Fraction of above ground dry matter to storage organs
(DVS = 1.7) 0.73 kg/kg Field observation

FLTB01 Fraction of above ground dry matter to leaves (DVS = 0.1) 0.77 kg/kg Field observation
FLTB05 Fraction of above ground dry matter to leaves (DVS = 0.5) 0.69 kg/kg Field observation
FLTB11 Fraction of above ground dry matter to leaves (DVS = 1.1) 0.25 kg/kg Field observation
FLTB17 Fraction of above ground dry matter to leaves (DVS = 1.7) 0.19 kg/kg Field observation
FSTB01 Fraction of above ground dry matter to stem (DVS = 0.1) 0.23 kg/kg Field observation
FSTB05 Fraction of above ground dry matter to stem (DVS = 0.5) 0.31 kg/kg Field observation
FSTB11 Fraction of above ground dry matter to stem (DVS = 1.1) 0.55 kg/kg Field observation
FSTB17 Fraction of above ground dry matter to stem (DVS = 1.7) 0.08 kg/kg Field observation

Q10 Relative change in respiration rate per 10 ˝C 2 - WOFOST default
SPAN Life span of leaves growing at 35 ˝C 33 day WOFOST default

AMAX Maximum leaf CO2 assimilation rate 25–75 Kg(CO2)/
ha(leaf)/h WOFOST default

TMPFTB Reduce factor of AMAX by temperature 0–42 — WOFOST default
EFF Initial light-use efficiency of single leaves 0.47 kgCO2/J/ha/hm2s Farm’s database

CFET Correction factor transpiration rate 1 — Farm data
RML Relative maintenance respiration rate leaves 0.025 — WOFOST default
RMO Relative maintenance respiration rate storage organs 0.009 — WOFOST default
RMR Relative maintenance respiration rate roots 0.01 mm WOFOST default
RMS Relative maintenance respiration rate stems 0.015 day WOFOST default

RS and M denotes remote sensing and meteorological data, RS and F denotes remote sensing and farm data.
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Table 5. Input soil parameters of the WOFOST model.

Parameters Description Values Unit Source

NBASE Mean basic soil nitrogen content 316 mg/kg Field observation
PBASE Mean basic phosphorus content 40 mg/kg Field observation
KBASE Mean basic potassium content 176 mg/kg Field observation

NF Quantity of nitrogen fertilizer 261.5 kg/ha Farm data
PF Quantity of phosphorus fertilizer 138 kg/ha Farm data
KF Quantity of potassium fertilizer 150.5 kg/ha Farm data

SMTAB-1 Volumetric moisture content (pF = ´1) 0.41 cm3/cm3 Field observation
SMTAB01 Volumetric moisture content (pF = 1) 0.395 cm3/cm3 Field observation
SMTAB02 Volumetric moisture content (pF = 2) 0.265 cm3/cm3 Field observation
SMTAB06 Volumetric moisture content (pF = 6) 0.084 cm3/cm3 Field observation

SMFCF Soil moisture content at field capacity 0.295 cm3/cm3 Field observation
SMW Soil moisture content at wilting point 0.084 cm3/cm3 Field observation
SM0 Soil moisture content of saturated soil 0.41 cm3/cm3 Field observation

RDMCR Maximum root depth allow by soil 2.5 Cm Farm’s database
CONTAB 10-log hydraulic conductivity(pF = 0–4.2) ´7.2–2.0 cm3/cm3 WOFOST default

K0 Hydraulic conductivity of saturated soil 10 — WOFOST default
SOPE Maximum percolation rate in the root zone Initially 10 cmd´1 WOFOST default
WAV available water in total root-exploitable soil 20 cm WOFOST default

2.4. Remote Sensing Data and LAI Calculation Model

The HJ-CCD data were selected as the input RS data. HJ-CCD data were collected from two
Chinese environmental remote-sensing satellites, HJ-1A and HJ-1B. The former employs a CCD camera
and an infrared multi-spectral camera, whereas the latter employs a CCD camera and a hyperspectral
camera. The onboard imaging systems and infrared cameras provide a global scan every two days.
The two identical CCD cameras observe a broad coverage of 360 km with a spatial resolution of 30 m.
They have four visible and near-infrared bands, which include B1 (430–520 nm), B2 (520–600 nm),
B3 (630–690 nm), and B4 (760–900 nm). The useful data in this study were all collected by CCD
cameras, and we obtained 15 images of Hongxing in 2014. Precise geometric correction, projection
transformation, and atmospheric correction were performed using ERDAS, ENVI, and ArcGIS.
For example, the time-series HJ-CCD data of Hongxing are listed in Table 6.

Table 6. Time-series HJ-CCD data of Hongxing.

Satellite Sensors Image Date Solar Zenith Solar Azimuth Sensor Azimuth Sensor Zenith

HJ-1A CCD1 13 April 2014 45.13 318.79 ´76.55 9.34
HJ-1A CCD1 29 April 2014 49.97 315.24 ´75.92 13.48
HJ-1B CCD1 24 May 2014 55.22 309.54 ´74.45 6.45
HJ-1B CCD2 31 May 2014 53.28 303.31 99.17 22.90
HJ-1B CCD2 12 June 2014 54.31 302.24 99.75 8.16
HJ-1A CCD2 22 June 2014 54.98 302.93 99.97 16.37
HJ-1B CCD1 7 July 2014 54.40 304.15 98.64 9.65
HJ-1B CCD1 14 July 2014 56.20 309.67 ´75.08 9.90
HJ-1A CCD1 26 July 2014 54.34 312.03 ´74.87 6.82
HJ-1A CCD2 19 August 2014 46.48 313.58 99.12 15.75
HJ-1A CCD2 12 September 2014 38.96 319.35 98.59 17.82
HJ-1B CCD2 18 September 2014 36.57 319.87 98.75 25.43
HJ-1A CCD1 24 September 2014 37.13 326.88 ´76.43 9.95
HJ-1B CCD1 30 September 2014 34.77 327.28 ´75.24 7.64
HJ-1B CCD1 4 October 2014 33.34 328.01 ´71.60 2.58

Before assimilation, time-series LAI data are required. Physical-model-based methods [8,32] and
empirical regression methods [33] are widely used in LAI calculation. Radiative transfer models
are the main physical models for LAI simulation. Thus, for comparison, the PROSAIL model
(physical-model-based method) and a simple empirical regression model (empirical regression method)
were used to obtain the LAI time-series data from time-series HJ-CCD data. The LAI data were
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observed for spring maize and soybean of the whole farm (shown in Figure 1) and the observed
LAI data were collected on 10 June, 8 July, 25 July, 25 August, and 5 September. Accordingly,
the corresponding LAI were calculated using RS images captured on 12 June, 7 July, 26 July, 19 August,
and 12 September. The accuracy was analyzed on the basis of the R2, RMSE, and F values; the results,
which are listed in Table 7, showed that the accuracy of the empirical regression method is much
higher than that of the PROSAIL model. Considering that the study conditions are homogeneous and
that the crop type remains stable for years, the disadvantage of the empirical regression method such
as poor performance due to change in time, crop type, and geographic position can be disregarded.
Based on the analyses described above, the empirical regression method was selected to build a model
for LAI calculation. However, the physical model is recommended when the study area is large or the
crop type changes several times annually.

Table 7. Analysis results of PROSAIL and regression methods for LAI calculation

Time Model R2 F RMSE

10 June Y = 2.437X + 0.409 0.33 10.80 0.118
PROSAIL 0.13 4.13 0.216

8 July Y = 4.305X ´ 0.7002 0.21 9.34 0.121
PROSAIL 0.11 3.19 0.154

25 July Y = 5.711X ´ 0.247 0.40 19.32 0.123
PROSAIL 0.26 13.87 0.124

25 August Y = 21.845X ´ 14.212 0.59 41.15 0.178
PROSAIL 0.03 0.73 0.174

5 September Y = 1.677X + 1.701 0.67 74.34 0.115
PROSAIL 0.01 0.20 0.212

DVS = 0–1 Y = 5.828X ´ 0.784 0.96 980.02 0.218
DVS = 1–2 Y = 4.564X + 0.026 0.80 233.64 0.193

The normalized differential vegetation index (NDVI) was selected as the independent variable
and the calculated LAI was selected as the dependent variable to construct an equation of linear
regression. LAI values from all key growth periods of the growing season were included in the
empirical regression model in order to obtain better R2, F, and RMSE values. However, when we tried
to build the model, we faced another problem: for the entire growing season, NDVI and LAI of one
crop showed a similar trend of first rising then falling, whereas the rate did not remain the same. Thus,
one NDVI value might match two different LAI values, one from an earlier stage and the other from
a later stage of the growing season. Therefore, two models were selected to simulate LAI for earlier
and later stages. Further, DVS = 1 (for anthesis) was considered as the limit of both stages because
the LAI reached its peak value at that time. We also analyzed the accuracy by calculating the R2, F,
and RMSE values. The results, which are listed in Table 7, showed that the empirical regression model
could calculate the LAI with higher accuracy than other methods.

3. Proposed Assimilation Method

Assimilation is a useful method for combining RS data and crop models in order to avoid errors
when the crop model lacks the necessary parameters. LAI usually serves as the bridge for assimilation,
as it can be calculated using both RS data and the crop model. In the WOFOST model, leaf simulation
is an important process. The model calculates the dry matter increase of the leaves by considering
CO2 assimilation, conversion, and distribution, as well as the dry matter decrease by considering
maintenance, respiration, and death. In particular, death simulation is an independent process that
calculates the lifespan of new and old leaves every day. The maximum lifespan of leaves is an input
parameter (SPAN) of the model, and all the leaves are assumed to die when they reach the SPAN value.
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Based on the biomass of the leaves, stems, and storage organs as well as their conversion coefficients
(SLATB, SPA, and SSATB), the model can precisely obtain the LAI at the potential or water-limited
yield for each simulation step [11]. Thus, assimilation methods, including EnKF, can be easily applied
to the WOFOST model [5,18].

Furthermore, certain obstacles exist, and three of them are obvious. In the WOFOST model,
the nutrient-limited yield is calculated only when the growing period is over; the nutrient-limited LAI
of each step cannot be obtained. Therefore, because nutrient data are a necessary factor in the study,
common assimilation methods encounter a problem that the Ynl is lower than the measured results.
One main reason is that the LAI obtained from RS data is usually lower than that obtained from the
model without considering the effect of soil nutrients. The second problem is the spatial heterogeneity.
In the study area, many input parameters such as most weather data and crop parameters are similar
or constant for the entire farm, and it is difficult to obtain these parameters at field or pixel scale.
The soil nutrients and fertilization are the only soil parameters that can be obtained at field scale,
but common assimilation methods may face other problems when these data are used. Thus, the spatial
heterogeneity at both field level and within the fields cannot meet the practical requirements. Lastly,
the computational efficiency must be considered when simulation has to be performed at pixel
scale. The complex algorithms of common assimilation methods entail a long simulation time.
In summary, common assimilation methods face three problems: poor spatial heterogeneity simulation
ability, conflict with nutrient modules, and relatively low computational efficiency. Therefore, a new
assimilation method that has good spatial heterogeneity simulation ability and that can coexist well
with the nutrient module while providing high computational efficiency is necessary for obtaining
useful yield estimates to guide the field action.

For this purpose, a new method is presented to assimilate the RS data into the crop model.
The method is simple yet effective in improving the spatial heterogeneity and prediction accuracy. The
flow of the proposed method and the reasons for selecting it are shown in Figures 4 and 5 respectively.Remote Sens. 2016, 8, 303 11 of 23 
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The theoretical bases and primary concepts underlying the construction of the proposed method
are listed below:

(a) It is necessary to use the nutrient parameters in the WOFOST model to obtain the nutrient-limited
yield in the study area; therefore, assimilation must be applied at the water-limited level to ensure
accuracy of the yield result.

(b) The spatial heterogeneity of the original model with common assimilation methods is not ideal.
Ideal spatial heterogeneity, which is important for managing the field action, should be provided
by the new method.

(c) One important advantage of RS is its ability to distinguish surface features in a single image,
and we should exploit it fully.

(d) The new method should have high computational efficiency because the crop model itself is a
complex system.

Based on these theoretical bases, the core algorithm of the new method is expressed by the
following equation:

LAI “
LAIWF `

ˆ

1`
LAIRS ´ LAIRSM

LAIRSMX ´ LAIRSMN
ˆ a

˙

ˆ LAIWFM

2
(1)

where LAI is the assimilation result that will be used in the simulation of the next step, LAIWF is the
LAI simulation result of the previous step in WOFOST, LAIRS is obtained from the empirical regression
model and the corresponding time of LAIWF, LAIWFM is the mean value of LAIWF in the study area,
LAIRSM is the mean value of LAIRS, LAIRSMX and LAIRSMN are the predefined maximum and minimum
LAIRS values, respectively, and a is a coefficient that can magnify the effect of the RS data to improve
the spatial heterogeneity.
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The core equation includes two important parts, namely, WFinfo and RSinfo. WFinfo includes the
LAI information of WOFOST, obtained from each step of the model simulation. The crop model
executes each simulation step at the water-limited level. Therefore, WFinfo is equal to LAIWF. RSinfo
includes the LAI information of RS, obtained from the simulation result of the empirical regression
model. The value of RSinfo is given by

RSin f o “ 1`
LAIRS ´ LAIRSM

LAIRSMX ´ LAIRSMN
ˆ a (2)

RSinfo is the LAI information normalized by LAIRSMX and LAIRSMN, which are computed as

LAIRSMX “ LAIRSM ` 2ˆ δ (3)

LAIRSMN “ LAIRSM ´ 2ˆ δ (4)

where δ is the standard deviation of LAI from RS.
The usage rate of the RS data is controlled by the coefficient a. The value of coefficient a was

suggested to be determined by the method’s performance of spatial heterogeneity. In this study, when a
was set 11, we can obtain the closest value of CV compared with the observed yield (shown in the
section of results). Further, RSinfo is applied to the core equation through LAIWFM, and we set two
coefficients (b, c) to change the proportion of WFinfo and RSinfo. The final core equation is given by

LAI “ bˆWFin f o ` cˆ RSin f o ˆ LAIWFM (5)

The values of the two coefficients depend on coefficient a, the accuracy of the WOFOST model,
and the quality of RS data. Usually, c can be gave a greater value if we have higher quality of RS and a
lower value may be considered if we can calibrate more parameters of WOFOST. For simplicity, we can
consider only a ˆ c to meet the spatial heterogeneity requirement. The sum of coefficients b and c is
always equal to 1. When b and c are both 0.5, we can obtain the same equation as Equation (1).

Before the method can be applied to the calibrated WOFOST, two problems remain: the scale,
field, distribution, and crop type of the study area and the quality of RS images. The condition of
the study area is the premise for applying the new assimilation method. The study area should not
be too large and the fields in this area should have a centralized distribution and uniform sowing
plan; Hongxing meets these requirements. In short, the crop should have similar DVS in WOFOST.
The main reason is that the spatial difference of the RS images is the most important information
for the new method. Therefore, it is necessary to ensure that the spatial difference is caused only
by the limiting factors and not by different growth seasons. The maize variety can influence crop
phenology and growing condition and then influence the spatial difference. The crop parameters
need to be recalibrated when the variety has changed. The crop growth simulation should be done
respectively if there is more than one varieties of maize planting in study area. Base on the farming
report of Hongxing, they have never planted two or more varieties maize for one year since the year
2008. We hence ignored the influence of maize variety to phenology and growing condition. The same
climatic conditions and management measures are also required in the study area to have to ensure
that the crop has similar growth seasons, especially in terms of sow time, emergence time, anthesis,
and maturity time. The sub-area method is useful when the scale of the study area is too large or the
field distribution is not centralized. The sub-area method can be developed on the basis of the field
distribution, DEM, environment, and field management measures for different farms. Accordingly,
Hongxing was divided into two different districts.

In terms of the RS data quality, the time-series HJ data makes it impossible to ensure that there
are no cloudy or bad pixels. After precise geometric correction and atmospheric correction, a few
bad pixels remain, especially in July and August, i.e., during the rainy season in Northeast China.
These pixels may significantly influence the assimilation LAI result as the coefficient a increases.
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Two methods are applied before LAI is assimilated into the crop model. First, Savitzky–Golay (S-G)
filtering is applied to the LAI results of RS to obtain the filtered LAI. This method can eliminate cloudy
pixels using time-series data when a cloudy pixel does not occur continuously. Some bad pixels
remain in the filtered LAI; they are checked and corrected using a method that is expressed by the
following equation:

LAIRS “

$

&

%

LAIWF , LAIRS ď a1LAIWF or LAIRS ď b1LAIRSM
LAIRS ` LAIWF

2
, LAIRS ą a2LAIWF or LAIRS ą b2LAIRSM

(6)

where we set a1 = 0.65 and b1 = 0.45 to account for the cloud cover and its shadow, which can cause the
NDVI to be much lower than usual, and a2 = 1.4 and b2 = 1.8 to account for the bad pixels, which can
cause NDVI to be much higher than usual. The lower pixels do not include useful information;
therefore, the LAI simulation result of WOFOST (LAIWF) is selected instead of LAIRS. Although the
bad pixels that cause NDVI to be higher than usual cannot be used to obtain LAI, they may include
useful information. Therefore, the mean of LAIRS and LAIWF is selected instead of LAIRS. The values
of a1, a2, b1, and b2 were obtained through intensive analyses and tests using HJ-CCD data and LAI
measured data.

4. Results

The accuracy of the calibrated WOFOST model was analyzed firstly before we applied the
new assimilation method to Hongxing in Northeast China. The analysis results (listed in Table 8)
showed that the calibrated model can simulated phenology, LAI variation and mean yield value with
high prediction accuracy. Meanwhile, the R2 and spatial heterogeneity needs to be improved and
assimilation can resolve this problem.

Table 8. Analysis results of the calibrated WOFOST model in 2014 (kg/ha).

Name Observed Result Simulaton Result R2 CV

Yield 9808.20 9767.696 0.134 0.039%
LAI (DVS = 0.5) 1.78 1.84 0.783 3.01%
LAI (DVS = 1.0) 3.56 4.34 0.528 1.19%
LAI (DVS = 1.5) 3.07 4.18 0.638 1.56%
Emergence time 25 May 27 May - -

Anthesis time 22 July 23 July - -
Maturity time 20 September 24 September - -

Some experiments about water stress have also been done in the year 2013 and 2014. From the
Hongxing production report, the year 2014 is a bumper year while the year 2013 is an off one under
the influence of abnormal meteorology. Hence, the number of stress days, including wet days and dry
days, were counted. The results, which are listed in Table 9, verified the production report and showed
that the calibrated model can exclude the water stress influence to yield to some extent. The EnKF and
new method can obtain similar R2 and mean yield both at water-limited level and nutrient limited
level when the water stress was serious such as the year 2013. However, when the water stress was not
serious such as 2014, the EnKF performed obviously worse than the new method for mean yield at
nutrient-limited level, R2 and CV. In other words, the new method is better than EnKF especially when
the water stress is not serious.

Based on the experiments and analysis results, we can obtain that the new method is useful to
obtain more accurate yield simulation results, especially when water stress was not serious. Further
experiments were conducted to check the yield simulation accuracy and the ability to improve spatial
heterogeneity. Then, the simulation times of different methods were evaluated.
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Table 9. Analysis results of the yields of Hongxing in 2013 and 2014 (kg/ha).

Method Year Stress Days Mean R2 CV

New method 2014 6 9710.73 0.584 6.55%
EnKF (nutrient-limited) 2014 6 9942.92 0.582 1.81%

EnKF (water-limited) 2014 6 9985.12 0.373 1.41%
New method 2013 34 7819.22 0.498 11.32%

EnKF (nutrient-limited) 2013 34 7791.39 0.456 8.01%
EnKF (water-limited) 2013 34 7821.87 0.447 7.56%

4.1. Simulation Accuracy

The simulation accuracy was analyzed by LAI and yield. LAI was the key parameter that was
used to execute assimilation by connecting WOFOST and RS data. The improvement of time series LAI
accuracy that different assimilation methods can bring into the model’s step crop growth simulation is
a direct index to judge the effect of assimilation. From the calculation principle of the new method,
the mean LAI value of the whole farm was not changed after assimilation. Hence, we analyzed the
mean LAI value of Area 1 instead of the whole farm. The LAI profiles of original WOFOST model,
RS calculation result, WOFOST with EnKF and the new method (Figure 6) showed that the two
assimilation methods can improve the time series LAI accuracy to some extent. Due to the parameters
of WOFOST were calibrated at water-limited level, the LAI simulation result of original model was
larger than RS one. The EnKF method lower the LAI because this difference and included more
WOFOST simulation information than RS one. The new method can take full advantage of the LAI
information from both WOFOST simulation and RS calculation. In other words, the new method,
which can be applied well at water-limited level, was a better method to improve the time-series LAI
accuracy in this study.
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The mean yield value and the correlation of the observed yield and the simulation result were
selected as indexes to check the yield simulation accuracy. First, common assimilation methods
cannot coexist well with the nutrient module of WOFOST, and the yield will be reduced if we use
the nutrient module after applying the assimilation method. Therefore, we calculated the mean yield
value of: (1) the EnKF method at the water-limited and nutrient-limited levels; (2) the original model;
and (3) the new method as well as the observed yield. The results, which are listed in Table 10, showed
that the original model could provide the most precise result, whereas the nutrient-limited yield of
EnKF was the lowest. The new method provided a good result (only slightly worse than that of
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the original model). Therefore, the results showed that we could obtain the ideal yield only at the
water-limited level if we used the EnKF method.

Table 10. Mean yield value (kg/ha) and relative error of different method.

Model Mean Value Relative Error

Observed yield 9808.20 0%
EnKF with nutrient module 9442.92 ´3.72%

EnKF without nutrient module 9985.12 1.80%
Original model 9767.69 ´0.41%

New method (a = 11) 9710.73 ´0.99%

The compatibility problem can also reduce the correlation of the simulation yield and the observed
yield in common assimilation methods. The R2, F, and RMSE values were used to check this correlation.
These indexes were calculated for EnKF without the nutrient module, EnKF with the nutrient module,
and the new method. The results are listed in Table 11 and plotted in Figure 7. We can see that the R2, F,
and RMSE values of the new method are slightly better than those of EnKF with the nutrient module,
while they are clearly better than those of EnKF without the nutrient module. Thus, we can obtain the
best correlation of the simulation yield and the observed yield by using the new simulation method.

Table 11. Analysis results of the yields of Hongxing in 2014 (kg/ha).

Method Quantitative Relationship R2 F RMSE

New method Y = 0.984 X + 232.91 0.584 185.11 530.81
EnKF (nutrient-limited) Y = 3.580 X ´ 24,024.64 0.582 182.55 530.42

EnKF (water-limited) Y = 1.867 X ´ 8863.99 0.373 79.16 652.14
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From the Tables 10 and 11 the EnKF method can obtain ideal mean yield value at water-limited
level and ideal R2 at nutrient-limited level. The mean yield value becomes poor if the nutrient-limited
yield is selected as simulation result and R2 become poor for water-limited result. In short, we cannot
obtain ideal yield with EnKF for both R2 and mean value while the new method can. Thus, the new
method is the best method for yield simulation among the three method applied in this study.

4.2. Spatial Heterogeneity between Fields

We selected a variable coefficient (CV) to check the spatial heterogeneity. CV is calculated as

CV “
SD

Mean
ˆ 100% (7)

where SD is the standard deviation of the yield in the study area and Mean is the mean value of
the yield.

Between fields and within fields were selected as different scales in order to check the spatial
heterogeneity. First, the spatial heterogeneity between fields was compared using the original model,
the EnKF assimilation method, and the new assimilation method. The mean yield for each field in
Hongxing and their CV for different conditions were calculated. For the new method, we set the
coefficients b and c to 0.5, and varied coefficient a from 1 to 20 in steps of 1.0. The results, which
are listed in Table 12, showed that the spatial heterogeneity of the observed yield was much better
than that of the original model and the EnKF assimilation method because the CV of the observed
yield was much higher. Thus, the model’s ability to simulate the spatial heterogeneity was quite
poor, and common assimilation methods could not solve this problem. However, the new method
could simulate the spatial difference much more effectively. Furthermore, the CV of the new method
ranged from 2.95% to 6.82%, while the coefficient a ranged from 1 to 20, which was higher than that
of the observed yield when a was greater than 11. We can also see that when a was greater than 10,
the increase in CV slowed down, and the CV was close to that of the observed yield when a was 11.
By assuming that the errors in the RS data may be amplified when the coefficient a increases, a = 11 or
a ˆ c = 5.5 was selected as the ideal value to solve the spatial heterogeneity problem. For example,
if we set c = 0.6, then a = 9 may be the ideal value. Furthermore, coefficient c can be assigned different
values according to the model simulation and RS data quality. a = 15 or larger value may be selected if
some key parameters were hard to be calibrated or less RS time-series images can be obtained.

Figure 8 shows similar results. The difference in the yield spatial distribution can be easily seen in
the yield maps shown in Figure 8a–c. For example, in the map of the new method, the fields in the
southwest had a lower yield level than others, and the observed yields supported this trend. Moreover,
from Figure 8d, we can see that the amplitude of variation of the new method was larger than that of
EnKF although they have similar R2 values.
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Table 12. Spatial heterogeneity of yield simulation results between fields (kg/ha).

Method Number of Fields Summation Mean Variance CV

Observed yield 134 1,314,299 9808.20 413,396.90 6.56%
Original model 134 1,308,870 9767.69 1350.03 0.39%
EnKF method 134 1,265,351 9442.92 29,253.91 1.81%

New method (a = 1) 134 1,302,662 9721.36 82,011.15 2.95%
New method (a = 2) 134 1,300,297 9703.71 141,061.91 3.87%
New method (a = 3) 134 1,299,280 9696.12 202,282.08 4.64%
New method (a = 4) 134 1,299,185 9695.41 254,321.80 5.20%
New method (a = 5) 134 1,299,440 9697.31 295,604.00 5.61%
New method (a = 6) 134 1,299,883 9700.62 327,879.85 5.90%
New method (a = 7) 134 1,300,338 9704.02 352,750.03 6.12%
New method (a = 8) 134 1,300,725 9706.90 371,514.83 6.28%
New method (a = 9) 134 1,301,017 9709.08 385,701.57 6.40%
New method (a = 10) 134 1,301,237 9710.73 396,609.74 6.49%
New method (a = 11) 134 1,301,394 9711.90 405,242.46 6.55%
New method (a = 12) 134 1,301,503 9712.71 412,132.20 6.61%
New method (a = 13) 134 1,301,575 9713.25 417,726.38 6.65%
New method (a = 14) 134 1,301,610 9713.50 422,362.01 6.69%
New method (a = 15) 134 1,301,610 9713.50 426,307.37 6.72%
New method (a = 16) 134 1,301,590 9713.36 429,652.84 6.75%
New method (a = 17) 134 1,301,552 9713.08 432,554.87 6.77%
New method (a = 18) 134 1,301,503 9712.71 435,077.34 6.79%
New method (a = 19) 134 1,301,446 9712.28 437,272.04 6.81%
New method (a = 20) 134 1,301,380 9711.79 439,230.48 6.82%
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4.3. Spatial Heterogeneity within Fields

The spatial heterogeneity within fields and that between fields are equally important for guiding
field management; hence, the CV for the measured points from the same or adjacent fields was
calculated to check the spatial heterogeneity within fields. In this study, we selected nine points in
three adjacent fields (shown in Figure 2), for which the yields for 2014 were collected. The CV and R2

(new method, a ˆ c = 5.5) are shown in Table 13 and Figure 9e. The CV of new method is larger than
EnKF method and original model and the R2 keep a high level. Furthermore, the histograms for all
pixels in the farm were drawn, and similar information could scarcely be obtained. The histograms
shown in Figure 9a–d indicate that the amplitude of variation for the new method (around 3000 kg/ha)
was not only larger than that for the original method (around 600 kg/ha) but also larger than the EnKF
(around 1500 kg/ha), while it was close to that for the observed yield (around 3500 kg/ha). In short,
the new method can improve the model’s spatial heterogeneity simulation ability effectively at the
within fields scale with high accuracy.
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Table 13. Spatial heterogeneity of yield simulation results within fields (kg/ha).

Method Number of Fields Summation Mean Variance CV

Observed yield 9 99,508.55 11,056.51 3,646,241.22 2.98%
Original model 9 93,937.31 10,437.48 1,531,424.86 1.41%
EnKF method 9 92,380.36 10,264.48 1,700,142.28 1.61%

New method (a = 1) 9 94,226.02 10,469.56 1,753,887.44 1.60%
New method (a = 11) 9 101,014.58 11,223.84 3,551,981.69 2.82%
New method (a = 20) 9 100,831.12 11,203.46 4,403,890.69 3.51%

In other words, the original method could precisely obtain the mean yield but it had poor
correlation with the observed yield. The EnKF could obtain high R2 and F values with the nutrient
module but poor mean yield (owing to conducive growing weather in 2014, soil nutrient became the
key limiting factor for yield simulation in WOFOST); the mean value could be obtained accurately but
the correlation was poor if the nutrient module was not used. The correlation and mean value of the
new method were better than those of the other three methods. Furthermore, the new method was the
only method that could solve the spatial heterogeneity problem effectively.

4.4. Simulation Time

For Hongxing, around 1.5 million pixels needed be calculated each day; thus, the simulation had
to be executed more than 200 million times for the entire growing season (the growing season of spring
maize is around 150 days). Therefore, the simulation time was an important factor. When the original
model simulated crop growth in pixels, it took more than two hours. Considering that the model might
be applied to a larger farm, the simulation time must be reduced. To improve the simulation efficiency,
a different programming language was adopted: we used IDL to recode the WOFOST model; thus,
the simulation could be performed with arrays. The time was reduced to 38 min by considering the
LAI calculation model, whereas the time taken by the new method and EnKF method were 41 and
127 min, respectively. We can see that the new method can reduce the simulation time to less than
one-third of the original, and when the model is applied to a larger farm, plenty of time will be saved.
The reason for the increase in the simulation time of EnKF was that the simulation must be executed
on the basis of pixels owing to the principle of EnKF, whereas the new method employs arrays.

In conclusion, the analysis results indicated that the new method could enable the WOFOST
model to obtain more realistic simulation results with higher accuracy and better spatial heterogeneity
without increasing the simulation time significantly.

5. Discussion

We developed a new assimilation method for improving spring yield simulation at field scale.
The parameters of the crop model used in this study were scarce, which caused many problems for
field yield simulation. In addition to the lacking input parameters, constant and similar inputs can
also introduce errors into the results of this study. For example, the weather in Hongxing, to which
the model is highly sensitive, may aggravate the spatial heterogeneity simulation ability of the model.
Moreover, it is difficult to update all the parameters every year as some soil and crop parameters
change owing to soil erosion and breeding conditions. With different assimilation methods, RS was
applied to the crop model in different ways. The analysis results proved that exploiting RS data could
improve the regional yield simulation; the same has been proved by many previous studies [1,3,18,34].
Some other problems appeared when applying assimilation methods to the WOFOST model for farm
yield in Hongxing, and a new assimilation method was designed to resolve these problems.

One important factor is the spatial heterogeneity. The CV was calculated for the observed yields,
origin model, and EnKF assimilation method. The results showed that the ability of WOFOST to
simulate the spatial difference of spring maize was quiet poor, and the EnKF method played a limited
role in this study. In the new method, coefficient a is introduced into the assimilation algorithms
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to intensify the effect of the spatial variability obtained from the RS data. In Hongxing, the CV
(6.55%, a = 11) is close to that of the observed yield (6.56%), while it is much greater than that of the
original model (0.39%) and the EnKF method (1.81%). The coefficient a can be changed depending on
the application requirements for different study areas.

Another advantage of the new method is that it resolves the coexistence problem of the
assimilation method and the nutrient module. This problem is caused by the structure of WOFOST:
the yields are simulated at three levels (Ypt, Ywl, and Ynl), and Ypt or Ywl must be obtained first,
followed by Ynl. However, RS provides the actual crop information. Common methods face problems
in obtaining yields by considering both water and nutrient limits; therefore, assimilation is usually
applied to obtain Ypt or Ywl. Further, Ynl is necessary because the soil nutrient condition is a key factor
affecting crop growth in Hongxing. The analysis results showed that the yield simulation accuracy is
significantly influenced by the nutrient module; for the common assimilation method, the R2 value fell
from 0.582 to 0.373 whereas the RMSE value increased from 530.42 to 652.14 without considering the
nutrient factors. Furthermore, it is the premise for some other applications; for example, soil nutrient
simulation based on the WOFOST model and RS technology needs to employ both the assimilation
method and the nutrient module.

Computational efficiency is one of the main factors to be considered when designing assimilation
algorithms. The new method includes three fast algorithms, one for assimilation and two for correcting
bad pixels (the fast check method expressed by Equation (6) and S-G filtering). With the addition of
the LAI calculation model, the simulation time is increased by around 3 min, which ensures that the
crop model can be introduced to larger areas for pixel yield simulation.

In spite of these advantages, there remain certain aspects in which the new method should be
improved. First, the new method requires the crop growth stages in different fields to be similar for the
entire season; otherwise, uncertainty errors could be introduced into the final result. Variation in crop
breed and environment might cause differences in the growth stages. Therefore, spatial scale and crop
type are important factors to be considered. Although environmental differences can be addressed by
the sub-area method, this method cannot be applied to the model if there are two or more breeds of
crops in the same study area. Another problem is that the new method may magnify errors existing
in a single RS image. Although the new method can avoid errors between images, errors within a
single image may be magnified by the coefficient a. Cloudy image pixels are typical errors that can be
magnified; these errors can be avoided using Equation and the S-G filter. In addition, it is necessary to
avoid cloudy pixels for time-series RS data.

The new method has considerable potential in many areas such as yield calculation and nutrient
simulation at field or pixel scale. It can resolve the prediction accuracy and spatial heterogeneity
problems of the WOFOST model in a farm where the inputs are scarce, similar, or constant. The sub-area
and cloud removal methods are key technological issues that should be resolved in future studies.

6. Conclusions

In this study, the WOFOST crop model was used to estimate spring maize yield at field level,
and a new method was adopted to assimilate time-series HJ-CCD data into the model by means of
the LAI. Although several problems need to be resolved, the new method can enhance the model’s
simulation accuracy and improve the model’s spatial heterogeneity simulation ability. In addition,
the new method can coexist with the nutrient module perfectly; thus, it is possible to apply the model
to other applications such as soil nutrient simulation. The calculation principle of the new method
enables us to easily select the RS time-series data without considering obstacles such as different sensors.
Furthermore, the high computational efficiency of the new method ensures a relatively short simulation
time for large areas. In conclusion, the new method is a simple yet effective approach for addressing
the problems of the WOFOST model, especially the prediction accuracy and spatial heterogeneity.
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