Next Article in Journal
A Spectral-Spatial Classification of Hyperspectral Images Based on the Algebraic Multigrid Method and Hierarchical Segmentation Algorithm
Next Article in Special Issue
An Online System for Nowcasting Satellite Derived Temperatures for Urban Areas
Previous Article in Journal
Operational Surface Water Detection and Monitoring Using Radarsat 2
Previous Article in Special Issue
Assessing the Capability of a Downscaled Urban Land Surface Temperature Time Series to Reproduce the Spatiotemporal Features of the Original Data
Article Menu

Export Article

Open AccessArticle
Remote Sens. 2016, 8(4), 297; doi:10.3390/rs8040297

A Comparison of Multiple Datasets for Monitoring Thermal Time in Urban Areas over the U.S. Upper Midwest

1
Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD 57007, USA
2
Department of Natural Resource Management, South Dakota State University, Brookings, SD 57007, USA
These authors contributed equally to this work.
*
Author to whom correspondence should be addressed.
Academic Editors: Benjamin Bechtel, Iphigenia Keramitsoglou, Simone Kotthaus, James A. Voogt, Klemen Zakšek, Richard Müller and Prasad S. Thenkabail
Received: 18 February 2016 / Revised: 18 March 2016 / Accepted: 22 March 2016 / Published: 31 March 2016
View Full-Text   |   Download PDF [10309 KB, uploaded 31 March 2016]   |  

Abstract

Traditional studies of urban climate used air temperature observations from local urban/rural weather stations in order to analyze the general pattern of higher temperatures in urban areas compared with corresponding rural regions, also known as the Urban Heat Island (UHI) effect. More recently, satellite remote sensing datasets of land surface temperature have been exploited to monitor UHIs. While closely linked, air temperature and land surface temperature (LST) observations do not measure the same variables. Here we analyze land surface temperature vs. air temperature-based characterization and seasonality of the UHI and the surface UHI (SUHI) from 2003 to 2012 over the Upper Midwest region of the United States using LST from MODIS, and air temperature from the Daymet modeled gridded daily air temperature dataset, and compare both datasets to ground station data from first-order weather stations of the Global Historical Climatology Network (GHCN) located in eleven urban areas spanning our study region. We first convert the temperature data to metrics of nocturnal, diurnal, and daily thermal time and their annual accumulations to draw conclusions on nighttime vs. daytime and seasonal dynamics of the UHI. In general, the MODIS LST-derived results are able to capture urban–rural differences in daytime, nighttime, and daily thermal time while the Daymet air temperature-derived results show very little urban–rural differences in thermal time. Compared to the GHCN ground station air temperature-derived observations, MODIS LST-derived results are closer in terms of urban–rural differences in nighttime thermal time, while the results from Daymet are closer to the observations from GHCN during the daytime. We also found differences in the seasonal dynamics of UHIs measured by air temperature observations and SUHIs measured by LST observations. View Full-Text
Keywords: Daymet; Global Historical Climatology Network; Growing Degree-Days; land surface temperature; MODIS; surface urban heat island; urban heat island Daymet; Global Historical Climatology Network; Growing Degree-Days; land surface temperature; MODIS; surface urban heat island; urban heat island
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Krehbiel, C.; Henebry, G.M. A Comparison of Multiple Datasets for Monitoring Thermal Time in Urban Areas over the U.S. Upper Midwest. Remote Sens. 2016, 8, 297.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top