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Abstract: The error in satellite precipitation-driven complex terrain flood simulations is characterized
in this study for eight different global satellite products and 128 flood events over the Eastern
Italian Alps. The flood events are grouped according to two flood types: rain floods and flash floods.
The satellite precipitation products and runoff simulations are evaluated based on systematic and
random error metrics applied on the matched event pairs and basin-scale event properties (i.e., rainfall
and runoff cumulative depth and time series shape). Overall, error characteristics exhibit dependency
on the flood type. Generally, timing of the event precipitation mass center and dispersion of the time
series derived from satellite precipitation exhibits good agreement with the reference; the cumulative
depth is mostly underestimated. The study shows a dampening effect in both systematic and random
error components of the satellite-driven hydrograph relative to the satellite-retrieved hyetograph.
The systematic error in shape of the time series shows a significant dampening effect. The random
error dampening effect is less pronounced for the flash flood events and the rain flood events with a
high runoff coefficient. This event-based analysis of the satellite precipitation error propagation in
flood modeling sheds light on the application of satellite precipitation in mountain flood hydrology.

Keywords: error propagation; flood event; event characteristics; satellite precipitation product;
complex terrain

1. Introduction

The potential of high-resolution satellite precipitation estimation in hydrological applications
has been investigated for more than two decades [1–5]. The main advantage to the conventional
ground-based measurements is that precipitation estimation from space-borne sensors is uninhibited
by topography, and thus can provide coherent global-scale estimates at high space (0.25˝) and time
(3 h) resolution [6–8]. This provides a potential solution for measuring precipitation over complex
terrain basins where ground-based measurement networks are sparsely distributed or unavailable.
However, precipitation estimates from satellite sensors are associated with errors that propagate to the
prediction of hydrologic variables through the rainfall-runoff modeling [3,5,9–11]. It has been argued
that the performance of satellite precipitation estimates and its driven simulation largely depend on
the regional rainfall properties (e.g., types, magnitudes, space-time pattern, etc.), the geomorphology
of the area (e.g., surface inclination, basin scales, etc.), the basin conditions (e.g., soil moisture, existence
of snow cover, etc.), the choice of modeling complexity and, finally, the interactions between all of
these factors [10–15].
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Mei et al. [16] classified 3249 storm events from 13 varying-sized basins (200 km2 to 4200 km2)
according to their rain volume and storm type (i.e., convective vs. organized frontal systems).
Their results showed that satellite precipitation estimates are more biased in frontal precipitation events.
On the other hand, it was shown that the error has a higher degree of variability for short-duration
events, which were associated with low rain accumulations over small basin scales. Similar results were
exhibited for satellite-driven hydrologic simulations by Wu et al. [14], who showed that the performance
of hydrologic simulations improved with flood duration. Vergara et al. [10] and Maggioni et al. [9]
conducted separate satellite precipitation error propagation analyses over mild-slope-terrain basins
with results revealing that the satellite precipitation error variance is buffered by the rainfall-runoff
process and that this dampening effect exhibits basin-scale dependence. Two other hydrologic
evaluation studies of satellite products [11,12] have shown terrain elevation dependence on the
performance of satellite precipitation estimation. Furthermore, Yong et al. [13,17] have shown that the
existence of snow cover and mixed-phase precipitation over complex terrain basins can significantly
affect satellite precipitation uncertainty and the satellite precipitation-driven simulations.

The majority of studies on satellite precipitation error propagation presented in the literature
rely on pixel-based evaluation or long-term basin-averaged time series. Few studies have focused
on storm events at the catchment scale, which represents the physical aspect of the rainfall-runoff
transformation process [2,3,5]. Nikolopoulos et al. [3] showed that the volumetric error in rainfall
is linearly translated to the error in the simulated runoff for the steep-slope topography of their
study region. Furthermore, Nikolopoulos et al. [15], for a major flash flood event in the same region,
showed that linearity in error translation appears for wet soil moisture conditions while for dry
antecedent conditions, error propagation was nonlinear. Several of the studies also revealed that the
magnitude of error in rainfall and runoff are reduced with increasing the satellite product resolution
and basin scale [2,5,15,18]; these dependencies of error vary seasonally and across climate regions [5,18].
Apart from the magnitude of error in hydrologic response, the timing error is another important source
of error with particular significance in satellite-based flood predictions. Hossain and Anagnostou [2]
showed that the time-to-peak error depends on various factors (e.g., duration of event, magnitude of
rainfall rate, etc.).

The event-based error analysis studies discussed above relied on a small number of flood events
and were focused on the error magnitude in rainfall or simulated runoff, missing other important
event properties (e.g., overall shape of hydrograph or hyetograph). Accurate representation of the
hydrographs is important for a number of flood-risk operations such as reservoir operation and timely
emergency response. This study focuses on the analysis of satellite precipitation error propagation
in flood simulations, expanding on two main aspects: (i) evaluating a relatively large number of
flood events that occurred over mountainous basins; (ii) examining error propagation for different
flood types and with respect to several characteristics of flood response (i.e., timing and magnitude).
Thus, we believe this study will provide new insights on the hydrologic implications of satellite
precipitation error propagation.

Previous studies over the Upper Adige region have investigated the uncertainty of satellite
precipitation products and their propagation in hydrologic simulations [11,16]. This study renders
the focus on the assessment of satellite precipitation for the prediction of flood events. Eight satellite
precipitation products and 128 flood events that occurred in the period of May to November between
2002 and 2010 over nine sub-basins of the region are used to support this study. The satellite
precipitation retrieval and flood modeling errors are defined with respect to reference rainfall and
reference rainfall–based simulations to directly make a connection between the error in quantifying the
basin-average rainfall and the corresponding error in satellite-driven runoff prediction. Events from
the cold season months (December to April) where precipitation in the region is dominated by snow
and the satellite products are significantly subjected to detection issues (typically non-detecting light
precipitation) were not considered [11]. It is noted that flood events occurring during the cold period in
the study area are typically triggered by rain falling on snow-covered areas or snowmelt processes [19].
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The study is organized as follows: Section 2 provides a description of the study area, the hydrologic
model used for flood simulations, the satellite and reference precipitation data, and the flood events
database. Section 3 introduces the method used to identify and match satellite events with reference
events and the error metrics used to quantify the event-based satellite product and flood simulation
error at the basin scale. Results and discussions are presented in Sections 4 and 5. Conclusions are
summarized in Section 6.

2. Study Area, Data and Hydrologic Model

2.1. Study Area

The study focuses on nine catchments of the Upper Adige river basin closed at Bronzolo (6967 km2)
and located in the Eastern Italian Alps (Figure 1). This is a mountainous area characterized by high
elevation from 200 to 3900 meters above sea level (m a.s.l.), steep slopes and a sharp hydro-climatic
gradient [20]. The nine selected study sub-basins (located on the west and north part of the Upper
Adige basin) have mean basin elevations above 1800 m a.s.l. and small drainage areas (50 to 600 km2)
(Table 1). This region is influenced by the Meridional South and Southeast circulation patterns and
western Atlantic airflows causing heavy precipitation events and associated flash floods and debris
flows in the August to November period. The late October to April period is typically dominated by
snow and widespread-type precipitation, which increases the cumulative snow depth. The following
late spring snow melting increases the soil moisture; precipitation and large snow melt episodes may
cause floods from June to early August [20–22].
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Table 1. Information of the study sub-basins.

ID Sub-Basin Name Area (km2) Mean of Elevation (m a.s.l.) NSI

1 Rienza at Monguelfo 269 2401 0.61
2 Aurino at Cadipietra 150 2165 0.78
3 Gadera at Mantana 397 1956 0.42
4 Rio Casies at Colle 117 2038 0.70
5 Anterselva at Bagni di Salomone 82 1899 0.75
6 Ridanna at Vipiteno 210 1852 0.81
7 Plan at Plan 49 1858 0.66
8 Aurino at San Giorgio 608 2035 0.86
9 San Vigilio at Longega 105 1846 0.37

Nash-Sutcliffe Index.

2.2. Precipitation Data

Eight quasi-global satellite precipitation products are evaluated. The first two products, named
3B42-CCA and 3B42-V7 (hereafter named TR and aTR), are from the National Aeronautics and
Space Administration Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis
(TMPA). The 3B42-CCA and 3B42-V7 products are corrected versions of the near-real-time 3B42
where the 3B42-CCA is adjusted according to the climatological correction algorithm (CCA)
and the other is the post-processing gauge-adjusted product [23,24]. The next two products
are the Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks (PERSIANN, hereafter named PE) [25] and its bias-adjusted version based on the GPCP
(Global Precipitation Climatology Project) product and the 2.5˝/monthly PERSIANN estimates
(hereafter named aPE) [26,27]. The National Oceanic and Atmospheric Administration Climate
Prediction Center morphing (CMORPH, abbreviated as CM) technique [28] and a recently available
gauge-adjusted version (named hereafter as aCM) based on daily gauge estimates from 30,000 gauges
worldwide are also investigated [29]. These six products are 0.25˝/3-hourly. We also included two
high-resolution products available at 0.073˝ and hourly space-time scale. These two products are the
Kalman Filter-based CMORPH and, similarly, its gauge-corrected counterpart (named as hC and ahC
hereafter). The Kalman Filter–based CMORPH incorporates additional infrared-based information and
the integration of all passive microwave- and infrared-based information from the original CMORPH
to produce accurate estimations of precipitation [30].

A network of 108 rain gauges distributed across the entire Upper Adige river basin represents
an untypically high density network (~1 gauge per 65 km2) for a mountainous area. The hourly rain
gauge record used in this study spans a nine-year period from 2002 to 2010. Rain gauge data were
interpolated, using the nearest neighbor method, which is the procedure used by the hydrologic model
to convert rain gauge data to basin averages; this interpolation method is consistent with previous
satellite precipitation error studies in the area [11,16]. Gauge and satellite precipitation fields are then
averaged at the sub-basin scale using areal weighting to produce the basin-average precipitation time
series for the nine study catchments. These time series were used to force the hydrologic model, which
is discussed next.

2.3. Hydrologic Simulations

In this study we applied the Integrated Catchment Hydrological Model (ICHYMOD), which
is an off-line version of the operational modeling scheme of the Adige River Flood Forecasting
System. ICHYMOD involves a semi-distributed conceptual rainfall-runoff model that consists of
a snow routine, a soil moisture routine and a flow routine model. The soil moisture component
of the ICHYMOD follows the structure of the probability-distributed moisture model [31,32].
Snow accumulation and melting is modeled based on temporally variable distribution functions which
exploit a combined radiation index degree-day concept originally developed by Cazorzi and Dalla
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Fontana [33]; potential evapotranspiration is estimated by the Hargreaves method [34]. The model
is applied in a semi-distributed way by dividing the study area into sub-basins. At the sub-basin
scale, runoff is routed by using a cascade of two linear conceptual reservoirs. Hydrographs are routed
through the river network by means of the Muskingum-Cunge method [35]. Application of the model
requires specification of 14 parameters for the snow routine, the runoff generation module and the
runoff propagation module [36]. The calibration procedure for determining the model parameters
is detailed in Borga et al. [37]. In our analysis, we adopt the same modeling parameters for our
simulations to allow results to be directly related to an existing flood forecasting application. This also
helps to exclude the effect of model uncertainty isolating the effect of precipitation error propagation,
which is the focus of our study.

The input precipitation forcing is aggregated at the sub-basin scale, accordingly with the
procedure reported in the previous section. Given the dense rain gauge coverage, sub-basin scale
rainfall estimates obtained by using the ground stations are considered as the ground reference for
inter-comparison in this work. Analogously, the gauge precipitation-driven hydrological simulations
are used as the reference for comparison with the satellite precipitation-driven hydrological simulations.
Hydrological simulations are carried out by using rain gauge-derived precipitation for the nine study
basins from 2002 to 2010, thus providing the reference discharge time series. The accuracy of the
simulations was qualified by using the Nash-Sutcliffe Index (NSI) [38]. The mean of the NSI determined
between the gauge-driven simulated stream flows and measured stream flows for the selected basins
and period of simulation is 0.66 (Table 1). We notice low model efficiency for basins 3 and 9, which is
partially attributed to the difficulties in simulating responses from a karst aquifer-dominated catchment.
The flood periods in the observed streamflow data are well captured by the model, whereas recession
periods are less reliably represented. The hourly runoff simulations for all satellite products were run
for the May to November period of each study year to avoid mixing satellite estimation errors for
rainfall and snowfall (snowfall dominates from December to April of the study area). Each simulation
cycle (i.e., May–November per year) was initialized by the state variables (snow and soil moisture
storage) obtained from the continuous gauge-based simulations.

2.4. Flood Events: Archive and Flood Types

The archive of observed flood events used in this study has been established based on the work
of Zoccatelli et al. [19]. In this work, the archive of the three most intense floods observed over each
year and over each study basin has been used to establish a flood-type classification based on a
combination of a number of process indicators, including the timing of the floods, storm duration,
rainfall depths, snowmelt, catchment state, runoff response dynamics, and spatial coherence [39].
In Zoccatelli et al. [19] the flood-type classification scheme is based on data from 33 basins distributed
along a North-South Alpine transect (including the nine basins used in the current study), with a focus
which permits us to analyze the changes in flood types along an altitudinal and climatic gradient.
The application of the ICHYMOD model over each basin allows retrieving variables such as catchment
soil moisture conditions, and solid precipitation/snowmelt contribution to flood formation.

The analysis, carried out based on a cluster analysis, helped to determine three flood types:

1. Snow-dominated floods: events in which the input from snowmelt dominates over
liquid precipitation.

2. Rain-dominated events: floods with time to flow peak exceeding 24 h and moderately intense
rainfall uniformly distributed over the area.

3. Flash flood events: events developing in smaller basins (mostly smaller than 200 km2) triggered
by intense rainfall and with time to flow peak less than 24 h.

In the current work, we limited the analysis only to the warm season floods (May to November),
which leads to the exclusion of the snow-dominated events. Thus, only two types of floods are used
here: (i) long-rain flood (116 events) and flash floods (12 events).
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The selected flood event properties are summarized in Table 2. It can be inferred that the flash
flood events are characterized by more intense rainfall and flow rates, given the shorter durations and
larger accumulations. The standard deviations (SDs) of the event hyetograph and hydrograph are
also different between the two types of flood events, with higher values obtained for the flash floods.
The above observations reveal the higher intensity and variability associated with flash floods relative
to rain floods. The average values and ranges of the initial soil moisture and the runoff coefficient, for
all the events analyzed, are also listed in the table. It is seen that although the mean of the initial soil
moisture is similar between the two flood types (1% higher in flash flood cases), the event-based runoff
coefficients (RC) are quite different between rain flood and flash flood events (22% vs. 35% average RC
with a wider value range for rain vs. flash flood events).

Table 2. Mean and range of event properties for rain flood and flash flood.

Number
of

Event

Event
Type

Time
Series

Mean and Range of Event Properties

Duration (h) Depth (mm) SD (mm/h)
Initial Soil
Moisture

(% Saturation)

Runoff
Coefficient (%)

116 Rain
Flood

Rainfall 45 [9–134] 47 [7–99] 1.8 [0.4–4.7]
57 [23–92] 22 [12–34]Runoff 104 [34–281] 23 [3–80] 0.1 [0.0–0.6]

12 Flash
Flood

Rainfall 32 [10–69] 54 [20–106] 2.4 [1.3–5.1]
58 [36–80] 35 [18–44]Runoff 62 [31–123] 32 [6–69] 0.3 [0.1–0.5]

Standard deviation of event time series.

3. Methodology

3.1. Event Matching

The start time and duration of a rainfall event varies across the different rainfall dataset, which
also results in varying temporal characteristics of simulated flood hydrographs. Therefore, event-based
analysis requires matching each satellite rainfall event and its associated simulated flood events with
the corresponding reference rainfall and flood events. In this section, we introduce the method utilized
to identify and match the 128 events from the database with their corresponding counterparts from
each of the flow simulations to form the “flood event pairs” used in the error analysis. A rainfall-runoff
event is considered as a combination of the basin-average rainfall and the resulting flood event.
Thus, matching a rainfall-runoff event required identifying the timing of both aspects. The method
is separated into two parts; first, the timing of flood events is identified and matched with the
database; second, rainfall events are identified for each product; and third, the rainfall events from
various products are matched to the corresponding flood event based on the Characteristic Point
Method (CPM, Mei and Anagnostou [40]). Inputs of the process are the timing of flood events from
Zoccatelli et al. [19], and the corresponding time series of both satellite and rain gauge–based rainfall
and simulated runoff. Outputs are the start/end time of matched gauge and satellite rainfall-runoff
events pairs. The following steps applied to each satellite product are:

(1) The start and end hour of each flood event are identified from the simulated flow time series of
all the products according to the database.

(2) Continuous periods of nonzero rainfall are identified based on the basin-average rainfall
time series.

(3) For each product match, rainfall periods from step 2 are matched with corresponding flood
events using CPM. Details of the technical steps are documented in Section 3.2.3 of Mei and
Anagnostou [40]. For each flood event, CPM identifies the associated rainfall period. If more than
one rainfall event satisfy the conditions, they are jointed as one rainfall event and are considered
as the inducing rainfall of the flood event. These rainfall and flood event pairs together form a
rainfall-runoff event.
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Two sample matched events derived from the above method are illustrated in Figure 2. As it is
exhibited in the figure, the start/end time of event rainfall and runoff could be varied from different
rainfall forcing. However, these differences are within relatively small extents, with hydrographs
having reasonable shapes. These together verify the matching technique applied in this study.
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3.2. Event Properties

We focus our error analysis on three event properties: the event cumulative rainfall or runoff
depth (VX, in mm), the centroid of the hyetograph or hydrograph from the starting time of the event
(CtX, in h) and the spreadness of the hyetograph or hydrograph (SdX, in h). The concept of event
cumulative depth is defined as:

VX “

ż

TX

X ptq dt (1)

where X can be properties from either the rainfall or simulated flow aspect. Thus, X(t) is the
precipitation or runoff time series for the satellite or reference (in mm/h) and TX is the duration
of the rainfall or runoff event.

The concept of the centroid is often used as a surrogate of time to peak to account for the time
series dynamic. It determines the arrival of the event mass center; it is the weighted average of time
with respect to the temporal dynamics of rainfall (or runoff) time series:

CtX “

r
TX

t X ptq dt
r

TX
X ptq dt

(2)
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Ctr defines the location of the event mass center with respect to the temporal variability of the
time series.

The last event property analyzed is the spreadness (denoted as Sdx), which quantifies the temporal
degree of dispersion of the event time series. It determines the variability of the event time (t) with
respect to the temporal dynamics of the time series:

SdX “

g

f

f

e

r
TX
pt´ CtXq

2 X ptq dt
r

TX
X ptq dt

(3)

Typically, larger Sdx values are associated with a more dispersed shape of the time series around
the centroid (i.e., high flow tends to locate on both the early and late phase of an event). For the same
number of peaks in the hydrograph (e.g., mono-modal or bi-modal), this parameter can be surrogate
to the peakedness of the time series.

3.3. Comparative Analysis

Comparison between reference- and satellite-based rainfall/runoff events has two main objectives.
First, differences in event properties (e.g., magnitude, variability, etc.) are assessed to demonstrate
the ability and limitations of satellite products in representing the characteristics of flood events.
Second, propagation of error from rainfall to runoff is evaluated to understand how certain properties
of error in rainfall translate into error in runoff. The error analysis is conducted based on metrics
determined for the properties of “event pairs” described in the previous section. We use the Taylor
diagram [41] to demonstrate the consistency between event properties calculated from the satellite
products and those attained from the reference time series. The Taylor diagrams are produced for both
rainfall and simulated flow. The metrics and statistics involved in the Taylor diagram are: the variance
(σ2) of satellite and gauge event time series, the centered root mean square difference (CRMSD) and
the correlation coefficient (ρ). Forms of these three metrics (illustrated for the cumulative depth
property) are:

σ2
V,G “

1
N

ÿ

„

VG pnq ´
1
N

ÿ

VG pnq
2

(4)

CRMSDV “

d

1
N

ÿ

„

VS pnq ´VG pnq ´
1
N

ÿ

rVS pnq ´VG pnqs
2

(5)

ρV “

1
N

ř

„

VS pnq ´
1
N

ř

VS pnq
 „

VG pnq ´
1
N

ř

VG pnq


σV,SσV,G
(6)

where n and N stand for the event index and the total number of events, and subscripts G and S
represent the gauge and satellite hyetograph/hydrograph, respectively.

Our comparative analysis also includes the evaluation of systematic and random error determined
from each event pair. The systematic error is quantified as the mean relative error (MRE) of event
properties between satellite and reference. The MRE form illustrated for the cumulative depth
property is:

MREVX “
VX,S ´VX,G

VX,G
(7)

Analogously, MRECt and MRESd are similarly defined by replacing V with Ct and Sd, respectively.
A value of MRE greater/smaller than 0 indicates over-/under-estimation of the reference property
for an event. The random error is calculated as the centered relative root mean square difference
(CRRMSD) determined for the time series of the “event pairs”. As shown in Figure 2, the timing
of the event time series of satellite products can be slightly different from the reference in terms of
the beginning and ending hour. To remove timing issues, we take the common period for satellite
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and reference hydrographs/hyetographs before calculating the CRRMSD. The CRRMSD is calculated
based on these new time series as:

CRRMSDX “

g

f

f

e

1
ˇ

ˇT˚
X

ˇ

ˇ

ř

«

X˚
S ptq ´ X˚

G ptq ´
1

ˇ

ˇT˚
X

ˇ

ˇ

ř
“

X˚
S ptq ´ X˚

G ptq
‰

ff2

1
ˇ

ˇT˚
X

ˇ

ˇ

ř

X˚
G ptq

(8)

where the asterisk (*) represents the time series with common period TX
*. The CRRMSD quantifies the

random error between the two time series as the smaller the value, the higher the degree of similarity
between the two time series.

To quantify the error propagation through the rainfall-runoff process, we take the absolute ratio
(γ) between error metrics (MRE and CRRMSD) for the flood and rainfall event. By taking the absolute
value, γ is always greater than 0, while values higher (lower) than 1 indicate amplification (dampening)
of the error magnitude. We further investigate the role of event-based RC (as a lumped indicator
of the initial condition and interaction between rainfall and the various catchment processes) on
error propagation by sorting the events to three thresholds: below 40th, 40th to 75th and above 75th
percentile groups of the RC values.

4. Results

As a qualitative inspection of the error pattern, we show two sample events (after completion
of the matching procedure) in Figure 2. In the first event, the CMORPH products, particularly
the gauge-adjusted ones (aCM and ahC), are overestimating the gauge rainfall. This leads also to
overestimation in the simulated flow. It is worth noting from this figure that, although the 3B42V7
product is underestimating the reference rainfall, its distinctly high initial flow condition yields
overestimation of the gauge-simulated flood event (note that the initial condition for each product
could be different since the simulations run continuously throughout each May–November period).
For the rest of the satellite products, their underestimation relative to the gauge rainfall and relatively
low initial flow rates resulted in strong underestimation of the reference flow simulations. For the
second sample event, all the products are underestimating the gauge rainfall with similar initial flow
rates. Thus, all of them are providing underestimation of the reference flood event. This shows
that the higher initial flow rate to the reference may not always yield higher cumulative flow depth
(implying overestimation) to the reference due to the difference in rainfall variability and its complex
interaction with the catchment processes.

4.1. Event Properties Error Statistics

First, we present the Taylor diagrams, which integrate the statistics introduced in Equations (4)
through (6) for the three event properties (cumulative depth, centroid and spreadness) in basin-average
rainfall and simulated runoff time series. Results for cumulative rainfall and runoff depths for the two
flood types are presented in Figure 3. As shown, the satellite products underestimate the variability of
cumulative depth of the reference precipitation and simulated runoff, especially for the flash flood
cases. Comparison between rain flood and flash flood events suggests that the σ2 of cumulative
depths decreases noticeably for the two 3B42 and PERSIANN products and only slightly for the
CMORPH and Kalman Filter-Based CMORPH. The CRMSD values exhibit distinct patterns between
the two flood types and between rainfall and simulated runoff parameters. Lower CRMSD values
are shown for the runoff-based event cumulative depth compared to the basin-average precipitation
event parameters. Comparing the CRMSD of the two flood event types for 3B42 and PERSIANN
shows that the flash flood events exhibit lower CRMSD values compared to the rain flood events on
both the event rainfalls and their corresponding flow simulations; reversed trends are shown on the
CMORPHs’ estimated cumulative rainfall depth. It is noted that the two gauge-adjusted CMORPHs
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exhibit similar (slightly decreased) CRMSD values with the corresponding unadjusted counterparts.
The last aspect shown on the Taylor diagram is the correlation between the V values of each satellite
product and reference. The correlation coefficients of cumulative event flow depth are higher than the
basin-averaged precipitation ones for most of the products, pointing to the fact that the inclusion of the
baseflow component in the cumulative depth parameter modulates the volumetric error. The ρ for the
hydrograph ranges from 0.4 to 0.8; ρ for the hyetograph is located around 0.4. Also, similar ρ values
are shown for the high-resolution Kalman Filter–Based CMORPH product compared to the original
CMORPH product.
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Results for the event centroid parameter are illustrated by the Taylor diagram in Figure 4. It is
shown that all the points are relatively closely distributed to each other regardless of the flood types and
rainfall or runoff. This is particularly seen for the rain flood hydrograph centroid cases. This means the
values of σ2, CRMSD and ρ are, in general, almost identical for the eight products and the estimations
on the reference flood event centroid are consistent. In other words, the effect of gauge adjustments or
spatial aggregation has little influence on the arrival of the event mass center. In detail, the CRMSDs
of runoff event centroids are closer to the reference compared to the rainfall ones, indicating a clear
dampening effect in the random error of the event centroid. This dampening effect can be further
confirmed by the less-than-one values of γMRE,Ct discussed in detail later in this section. The flash
flood events in this case also exhibit lower CRMSD values in contrast to the rain flood counterparts.
This is due to the shorter concentration time and duration (or equivalently shorter event centroid)
of the flash flood event than the rain flood event. Observations on the correlation coefficients reveal



Remote Sens. 2016, 8, 293 11 of 19

that the flood event centroid parameter values derived from the satellite products are characterized
with high correlation (above 0.95 and 0.8 for rain flood and flash flood, respectively). The correlation
coefficient is reduced in the rainfall event cases where the ρ values for rain flood and flash flood are
around 0.8 and 0.6, respectively.Remote Sens. 2016, 8, 293  
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The error metrics for spreadness are integrated in the Taylor diagrams of Figure 5. The variance of
reference spreadness is overestimated by nearly all of the satellite products. Similar to the results of the
event centroid, the satellite estimations on the reference time series in terms of the spreadness reveal
relatively low CRMSD. Meanwhile, the rain flood spreadness cases share fairly similar performances
among products where all the points are closely located to each other. This states the insignificant
influences from gauge adjustment and resolution to the spreadness parameter. The CRMSD values of
the hydrographs for the two flood types show negligible change compared to the hyetograph ones,
implying a small dampening effect in spreadness through the rainfall-runoff processes. This is also
later suggested by the close-to-one median of the γMRE,Sd. A comparison between rain flood and flash
flood reveals that the values of CRMSD are decreasing; this is because the spreadness of the flash flood
is smaller than that of the rain flood and thus results in a lower degree of random error. Different from
the CRMSD, the correlation values reveal improvements from the hyetograph to the hydrograph
(from below to above 0.8 and below to above 0.4 for rain flood and flash flood, respectively).
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The means of MRE determined based on the three properties of the study rainfall and flow event
time series are reported in Table 3 for each product. It is seen that MREs in rainfall depth is not linearly
related to those in the runoff depth, indicated by fairly low correlation coefficient (CC) values for most
of the products. Results suggest that the total depth of rainfall is mostly underestimated; this leads also
to underestimations for the event runoff. The MREs of runoff centroid and spreadness appear generally
uncorrelated with the MRE of the rainfall centroid, which suggests that differences in the hyetographs
are not linearly translated into differences in the shape of the hydrographs. A potential explanation for
this is given by the fact that hydrograph shape is controlled, apart from rainfall temporal variability,
by the space-time interaction between the generated flow and flow routing [42,43]. Most of the
mean MRE magnitudes in event rainfall centroid and spreadness are larger than the event flow ones,
indicating higher similarity in the shape of the hydrograph compared to the corresponding hyetograph.
This reveals the filtering effect of the catchment which smooths the high frequency precipitation signal
to a low frequency flow signal [44,45]. We show also the mean MRE of peak flow as a complement to
the spreadness parameter. Generally, the mean peak flow MREs are negative (except for the CM case),
indicating underestimation in the peak flow rate. The CC values demonstrate the positive relationship
between MREs in peak flow and rainfall depth (except for CM and aCM). A product-wise comparison
reveals that the gauge-adjusted products show improvements in the mean MRE of cumulative depth,
in contrast to the cases of event centroid and spreadness which show no improvements. This is an
expected observation since the gauge-adjustment algorithms for satellite products are monthly (i.e., the
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adjustment changes the cumulative volume of precipitation within the monthly period but maintains
the space-time variability of precipitation fields).

Table 3. Mean MRE for rainfall and runoff and the correlation coefficient between the biases.

Products
Cumulative Depth Centroid Peakedness Peak

Flow CC
Rainfall Flood CC Rainfall Flood CC Rainfall Flood CC

TR 0.22 ´0.03 0.53 0.60 0.00 0.15 0.86 0.19 0.35 ´0.12 0.62
aTR 0.00 ´0.02 ´0.03 0.60 0.52 ´0.05 0.81 ´0.01 0.12 ´0.28 0.48
PE ´0.20 0.40 0.08 0.11 ´0.04 0.10 0.49 ´0.18 0.25 ´0.28 0.86
aPE ´0.12 ´0.30 0.29 0.08 ´0.24 0.31 0.42 ´0.04 ´0.02 ´0.01 0.68
CM ´0.45 ´0.17 0.11 0.44 ´0.21 0.07 0.48 ´0.07 ´0.30 0.13 0.05

aCM ´0.21 ´0.46 0.44 0.44 ´0.62 0.18 0.49 ´0.36 ´0.14 ´0.02 0.06
hC ´0.45 0.12 0.01 0.16 ´0.21 0.15 0.26 ´0.34 ´0.16 ´0.47 0.73
ahC ´0.22 ´0.03 0.09 0.14 0.13 ´0.23 0.23 ´0.44 0.02 ´0.04 0.16

CC between MRE of cumulative depth of rainfall and peak flow.

The random errors quantified by the centered relative root mean square difference (CRRMSD) for
each event pair are visualized as boxplots in Figure 6 for the two food types. As it is observed from the
top and bottom panels, the medians and value ranges of event rainfall CRRMSD are almost 10 times
(four times) of the runoff ones for the rain flood (flash flood) events. This represents a significant
dampening of the random error component (in terms of the overall value and value variability) through
the rainfall-runoff process. Dampening in random error through the hydrologic model is expected
since the output flow signal is less dynamic relative to the rainfall forcing, which has been reported in
several error propagation studies [3,9–11]. Comparing the two flood types reveals that the centered
relative root mean square differences for both the event rainfall and runoff are closer for the flash flood
cases, characterized by narrower value ranges. This could be attributed to the higher runoff coefficient
condition in flash flooding, which leads to a more linear behavior in error translation. The magnitudes
of CRRMSD between the near–real-time and gauge-adjusted products are fairly similar which, again,
could be due to the nature of gauge-adjusted algorithms as stated in the previous paragraph.
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4.2. Error Propagation

To further investigate the patterns of the error propagation of event properties from precipitation
to runoff simulations, the ratios of MREs between rainfall and runoff are taken (denoted as γ).
The γ values for all the events and products are rendered as boxplots in Figure 7. The upper panel of
Figure 7 shows the ratio of MREs of cumulative depth for the two flood types. It is seen that the values
are mostly around 1, indicating a weak dampening effect in the volumetric error when translating
the event rainfall to runoff. This is consistent with the value magnitudes for mean MREs of rainfall
and runoff exhibited in Table 3. The middle panel of Figure 7 displays the γMRE of event centroids
(mostly from 0.01 to 10). A clear error buffering effect in the MRE of the event centroid is revealed
by the smaller-than-one γMRE,Ct values, confirming the observation from Table 3. This means that
with the various differences in the arrival of the rainfall event, the rainfall-runoff processes are able
to mitigate these differences and give a closer estimation in the arrival of flood events. The event
spreadness is demonstrated in the last panel, with results showing, again, a dampening effect as it is in
Table 3 (25th and 75th quantiles of γMRE,Sd are distributed within 0.1 to 1). This could be anticipated
since, in general, the shapes of the hydrograph (from different rainfall forcing) are much more alike
with each other than those of the hyetograph. The gauge-adjustment is concluded to have a limited
effect on the error in time series shape given the almost identical γMRE,Ct and γMRE,Sd between the
near–real-time products and their corresponding gauge-adjusted counterparts. This is also explained
by the same reason that gauge adjustment is not able to change the space-time dynamic of rainfall at
event scales.
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Similar to the MRE, the error propagation of CRRMSD is quantified by the γCRRMSD values shown
in Figure 8. The CRRMSD ratio patterns are not very distinctive between products. The upper panel
representing the two flood types further confirms the random error dampening effect (revealed in
Figure 6) by giving γCRRMSD values lower than 1. The figure also demonstrates that the differences
in random error dampening for the two flood types are not the same. The CRRMSD ratios of rain
flood range from 0.05 to 0.2 for most of the event pairs (in terms of the 25th and 75th quantiles)
while the flash flood counterparts are noticeably higher, distributed mostly from 0.1 to 0.4. This is
ascribed to the stronger linear precipitation-to-runoff error translation for the flash flood events (due to
the higher RC). The role of RC on the random error propagation is visualized in the lower panel
of Figure 8. The boxplots indicate an increase in the γCRRMSD values with the event-based runoff
coefficients but a decrease in their value ranges, indicating a positive relationship between RC and the
degree of linearity [3,15]. Values of γCRRMSD for both gauge-adjusted and near–real-time products are
almost identical because gauge adjustment changes the overall magnitude rather than the space-time
organization of precipitation.
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5. Discussion

Overall, results from this study show that the satellite-derived cumulative depth deviates
significantly from the gauge-based one while the satellite performance in estimating the centroid
and spreadness is generally better (both in terms of rainfall and simulated runoff). Specifically, a lower
degree of random error (CRMSD) with a higher temporal correlation (ρ) is found in the estimates
from the hydrograph cases for the three event properties’ parameters. It is also noted that the gauge
adjustments to the satellite products and spatial aggregation yield a similar degree of consistency in
the event centroid and spreadness parameters described by the Taylor diagram statistics.

The systematic error in terms of MRE revealed mostly underestimation in the cumulative depth
parameter. The MRE magnitudes for the shape parameters (centroid and spreadness) exhibited more
pronounced significance for the hyetograph relative to the simulated runoff due to the dampening of
error from rainfall to runoff. Systematic error of the cumulative depth and shape parameters in rainfall
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is uncorrelated with error in runoff depth. This is due to the fact that the volume and shape of the
flood hydrograph is controlled not only by the volume and shape of the hyetograph but also by the
space-time structure of runoff generation and routing. The magnitude of random error quantified by
CRRMSD is found to be higher in the hyetograph. Also, rain flood events exhibited higher CRRMSD
magnitudes than the flash flood events. Gauge adjustment in satellite products yielded improvement
in the systematic error of cumulative depth, but the systematic error of shape parameters as well as the
random error component remained unaffected.

Investigation of the propagation of precipitation error to runoff reveals a clear dampening effect
in the MRE of the centroid and spreadness parameters, but not in the cumulative depth. The error
propagation ratio of cumulative depth for most of the products is fairly close to one. These findings
indicate that discrepancies in hyetograph shape can be smoothed out by the rainfall-runoff process at
catchment scale, which acts as a space-time filter [45]. However, underestimation of rainfall volume
remains a main issue in capturing flood magnitude. Finally, examination of the error propagation
dependence on flood type and runoff coefficient showed a clear dependence to both factors. Specifically,
a higher degree of linearity in error propagation is associated with flash flood events and events with
higher runoff coefficients.

6. Conclusions

In this work, an event-based analysis of satellite rainfall estimation error and its propagation in
streamflow simulations is conducted for a number of flood events over mountainous basins in the
Eastern Italian Alps. Conclusions are summarized relative to two main aspects that include the error
statistics of rainfall/runoff properties (cumulative depth, centroid, spreadness) and the propagation
of error with reference to these properties. For the first aspect, it is concluded that compared to
the volumetric parameter, the shape-related parameters of rainfall and simulated runoff are better
captured by the satellite, indicated by lower random error and higher correlation in the Taylor diagram.
Comparisons between error statistics of parameters for different products also suggest that the gauge
adjustments have effects on the volumetric parameter but not on the shape-related parameters.

For the error propagation aspect, systematic error of the shape-related parameters and random
error show, on average, a general decrease from rainfall to runoff, but this does not hold for the error in
the volumetric parameter, which maintains a γ value close to 1. Results also reveal that higher linearity
in error propagation is shown for events with a higher runoff coefficient.

We recognize that results from this analysis can mainly represent satellite applications over
mountainous basins with hydroclimatic and geomorphologic characteristics similar to the Alpine
environment. Besides, this study was conducted based on a relatively limited number of flood events,
particularly for the flash flood event type given that the occurrence frequency of this flood event
type is comparatively low. However, the results of our study highlight current challenges in using
satellite-based precipitation for modeling flood response over complex topography. We believe that our
findings will offer the end users (e.g., hydrologic agencies, civil protection, etc.) important indications
on the associated sources and magnitude of uncertainty in satellite-based flood prediction, which can
serve as guidance for a number of flood-risk operations and decision-making. Future studies should
evaluate the potential of the newly available high-resolution (0.1˝/hourly) Integrated Multi-satellitE
Retrievals for GPM (IMERG) product by also including the snowmelt-driven floods, which, although
available in the flooding database, were excluded from this study. Lastly, even though this study
did not demonstrate a particular benefit from using the high-resolution CMORPH product, other
higher-resolution products such as the PERSIANN-CCS (0.04˝/hourly), GSMaP (0.1˝/hourly) and the
newly available IMERG should be examined to further understand the potential impact of product
resolution in the error properties of satellite precipitation–driven runoff simulations.
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