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Abstract: More than 50% of the national lands in Japan have been surveyed by airborne laser
scanning (ALS) data with different point densities; and developing an effective approach to take
full advantage of these ALS data for forest management has thus become an urgent topic of study.
This study attempted to assess the utility of ALS data for individual tree detection and species
classification in a mixed forest with a high canopy density. For comparison, two types of tree tops
and tree crowns in the study area were delineated by the individual tree crown (ITC) approach
using the green band of the orthophoto imagery and the digital canopy height model (DCHM)
derived from the ALS data, respectively. Then, the two types of tree crowns were classified into four
classes—Pinus densiflora (Pd), Chamaecyparis obtusa (Co), Larix kaempferi (Lk), and broadleaved trees
(Bl)—by a crown-based classification approach using different combinations of the three orthophoto
bands with intensity and slope maps as follows: RGB (red, green and blue); RGB and intensity (RGBI);
RGB and slope (RGBS); and RGB, intensity and slope (RGBIS). Finally, the tree tops were annotated
with species attributes from the two best-classified tree crown maps, and the number of different
tree species in each compartment was counted for comparison with the field data. The results of
our study suggest that the combination of RGBIS yielded greater classification accuracy than the
other combinations. In the tree crown classifications delineated by the green band and DCHM data,
the improvements in the overall accuracy compared to the RGB ranged from 5.7% for the RGBS to
9.0% for the RGBIS and from 8.3% for the RGBS to 11.8% for the RGBIS. The laser intensity and slope
derived from the ALS data may be valuable sources of information for tree species classification,
and in terms of distinguishing species for the detection of individual trees, the findings of this
study demonstrate the advantages of using DCHM instead of optical data to delineate tree crowns.
In conclusion, the synthesis of individual tree delineation using DCHM data and species classification
using the RGBIS combination is recommended for interpreting forest resources in the study area.
However, the usefulness of this approach must be verified in future studies through its application to
other forests.

Keywords: forest resource measurement; airborne laser scanning; 3D point clouds; digital canopy
height model; orthophoto; individual tree crown approach; object-based classification

1. Introduction

The forest land in Japan has an area of approximately 25.1 million ha and accounts for
approximately 66% of the country’s area [1]. Planted forests comprise approximately 10 million
ha and are composed of conifers, including Chamaecyparis obtusa, Pinus densiflora, Larix kaempferi, and
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Cryptomeria japonica. These main plantations with 35- to 55-year-old trees are managed by thinning or
selection cutting. Forest resource information, such as species composition, stem density and volume,
is the basis of sustainable forest management. A national GIS database for forest management was
created and is managed by the Forestry Agency of Japan. The database is renewed every five years
using forest inventory data that are mainly obtained from traditional field surveys, including the
number of trees, species and measurements of diameter at breast height (DBH) and tree height in small
sample plots. One plot is typically established in each subcompartment (the minimum unit of forest
management in Japan). However, this method is too costly and time consuming and less accurate for
large forests in which stand conditions, species and stem densities vary [2,3]. Moreover, it is difficult
to measure the forests in the distant mountainous regions and nearly impossible to obtain spatially
explicit stand information on tree species composition and distribution patterns over large areas based
solely on ground measurements [4,5]. In addition, management operations have been abandoned in
some forests following decreases in timber prices and as land owners age and retire. More accurate
information on the condition of forest resources is required for forestry officers and landowners [1].

The acquisition of spatially detailed forest information over large areas can be enabled by the advent
of remote sensing techniques, which can obtain various types of spatial information simultaneously,
such as the coverage type of the ground surface and position [6–8]. Since the 1990s, airborne digital
sensors with four multispectral bands and high spatial resolution have been successfully applied for
forest studies in many developed countries [9–13]. The commercial satellites GeoEye-1, WorldView-2
and WorldView-3 were launched successfully in 2008, 2009 and 2014, respectively. These satellites can
obtain imagery at low cost for several areas simultaneously with a high resolution of 0.5 m or less in
panchromatic mode, enabling the measurement of forest resources at the individual tree level by satellite
remote sensing and computer technology [14–16]. However, it is difficult to accurately interpret the
three-dimensional attributes of forests, such as tree height, DBH and volume, at the individual tree level
using only multispectral imagery [17–19].

As a newly advanced measurement technique, small-footprint light detection and ranging
(LiDAR) data can provide detailed vegetation structure measurements at discrete locations covering
circular or elliptical footprints from a few centimeters to tens of meters in diameter [18,20,21].
LiDAR instruments emit active laser pulses and measure various echoes of the signal, resulting
in accurate 3D coordinates for the objects. Over the past two decades, a large number of researchers
have contributed to the study of the application of LiDAR data for forestry [22–26]. For example,
numerous studies estimated the stem volume, biomass, and canopy height at the stand level using
small-footprint airborne laser scanning (ALS) data by area-based approaches [17,18,20,27–32], whereas
several researchers retrieved the tree height, stem density, and volume at the individual tree level in
boreal forests [33–38]. However, it is difficult to accurately classify mixed forests using only point
clouds [39,40]. Additionally, many man-made single-species forests in Japan have become mixed
forests due to lack of management. Therefore, developing an effective method for forest classification
by combining the LiDAR point cloud information with other information, such as true color images,
has become an urgent topic of study.

In addition, in modern forest management, the selective thinning approach has been used
to replace the traditional clear-cutting of trees. Accurate forest information at the individual tree
level is critical for the selection of target trees [41]. Many modern systems for forest management
planning also require forest information at the tree level [40]. Therefore, individual tree crown
delineation methods have received greater attention from researchers in the forest remote sensing
field [1,13,33,34,42–45]. Extraction methods for delineating tree crowns include three main approaches:
bottom-up, top-down and template-matching algorithms [46]. The valley-following method is one
stream of a bottom-up algorithm that treats the spectral values as topography, with shaded and
darker areas representing valleys and bright pixels delineating tree crowns. Top-down algorithms
can be divided into watershed, multiple-scale edge segments, threshold-based spatial clustering
and double-aspect methods. The template-matching algorithms match a synthetic image model or
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template of a tree crown to radiometric values [11,47,48]. The valley-following method, developed
by Gougeon [49], has been successfully used to extract tree crowns and tops of man-made coniferous
forests in temperate zones by using optical photographs [1,16,42,43]. Additionally, the individual tree
crown (ITC) approach using the valley-following method has been successfully programmed by the
Pacific Forestry Centre of the Canadian Forest Service, making it possible to delineate tree crowns
and tops on a large scale. Because of the integration of the ITC suite with PCI Geomatica software
(PCI Geomatics, Markham, Canada), the preprocessing of remotely sensed data and the delineation of
individual trees can be completed without programming or additional software. The user-friendly
interface and detailed user guide made the ITC suite easy to use. This approach can be used to
gather detailed crown information at the stand level over a large area for forest inventories [15].
A 30-km2 study site has been successfully interpreted without being time consuming using the ITC
suite [16]. Several previous studies demonstrated the successes of this approach in the interpretation
of optical imageries [1,16,42,43], but its usefulness for various types of remotely sensed data remains
to be verified.

Several professional measurement companies introduced airborne LiDAR systems to Japan in
2000. Lands with a total area of approximately 200,000 km2 were covered by the airborne LiDAR data
as of July 2013, accounting for 52.9% of the country’s area [50]. ALS data have been widely used for
volcano measurement, crisis management, urban planning, and preventing natural disasters, such
as flood and mudflows, in Japan. Although some researchers estimated forest attributes, such as
volume and biomass, using airborne laser data based on the area-based approaches [30–32], few studies
on the semi-automatic extraction of tree tops, delineation of tree crowns, and tree quantification of
forests using high-point-density ALS data have been reported in Japan. Furthermore, the increasing
requirements of forest data users include species-specific diameters and volume distribution at the tree
level. The use of individual tree detection-based ALS technology is a potential solution for obtaining
diameter and volume class distributions, but the species information is still needed [40]. Consequently,
this study focused on the following objectives:

1. To evaluate the possibility of quantifying forest resources at the tree level using airborne laser
data by applying the ITC approach;

2. To determine whether the reflectance of forests on laser scanning and the average slope of tree
crowns can contribute to forest classification; and

3. To compare the estimation capability of ALS data with that of optical bands for interpreting
forest resources.

2. Materials and Methods

2.1. Study Area

The study area was the campus forest located in the Faculty of Agriculture at Shinshu University
in Nagano Prefecture, central Honshu Island, Japan (Figure 1). The campus has an area of 52.7 ha,
which includes approximately 15 ha of forest. The campus forest, with a total of 15 compartments,
consists of high-density plantations with trees ranging from 30 to 90 years old and is a unique
multipurpose educational training and research facility with wood production aimed at sustainable
forest management [1]. Compartments 1–7 were selected as the test site in this study (Figure 1).
The center of the study site is at 35˝521N, 137˝561E and has an altitude of 770 m above sea level. The area
consists of smooth geographical features and flat land. The forests are mainly composed of conifer
plantations in which the dominant tree species are Pinus densiflora (Pd), Chamaecyparis obtusa (Co),
Larix kaempferi (Lk), and secondary broadleaved trees (Bl) (Figure 1).
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Figure 1. Map of the study area showing field data collected from April 2005 to June 2007. DBH, 
diameter at breast height; Pd, Pinus densiflora; Co, Chamaecyparis obtusa; Lk, Larix kaempferi; Bl, 
broadleaved trees. 

2.2. Field Measurements and Geographic Information System (GIS) Data 

In this study, we selected compartments 1–7 of the campus forest, with an area of approximately 
7.3 ha, as the research object. All trees with a DBH larger than 5 cm in each compartment were 
surveyed, and the geographical position, species, DBH, and height were recorded. Each tree was 
tagged with a permanent label and noted as either live or dead, and the stems were mapped to the 
nearest 0.1 m and measured to the nearest 0.1 cm DBH. Tree heights were measured using Vertex IV 
(Haglöf, Långsele, Sweden), and tree locations were calculated using the geographic coordinates of 
the vertices of the plots, which were measured with a Global Positioning System (GPS) device 
(Garmin MAP 62SJ, Taiwan). All plot vertices were recorded when the GPS steadily displayed its 
highest accuracy, ±3 m, and the locations were post-processed with local base station and ALS data, 
resulting in an average error of approximately 0.5 m (within 2 pixels of the orthoimagery). The 
investigation was conducted from April 2005 to June 2007. Additionally, all trees in compartment 4 
were surveyed again in June 2015 to determine whether the dominant tree species in the canopy layer 
changed. The results suggested no obvious changes in the canopy layer because no management 
activities, such as thinning or timber harvest, were conducted during this period. These field data 
were used to test the accuracy of the interpreted tree tops and to perform the supervised 
classifications of tree species (Figure 1). The conditions of the forests in the study area are summarized 
in Table 1. The DBH frequency distribution for all trees in the study area is shown in Figure 2. 

In addition, compartment boundaries, forest roads, forest survey data, and geographical data, 
such as contour lines on the base map of the campus forest, were compiled for this study as a forest 
database using permanent marks located along the compartment edges. Moreover, all tree positions 
from the field survey were transferred and displayed using ArcGIS software (Esri, Redlands, CA, 
USA) (Figure 1) and then compared with the image analysis of the delineated crowns. 

Figure 1. Map of the study area showing field data collected from April 2005 to June 2007.
DBH, diameter at breast height; Pd, Pinus densiflora; Co, Chamaecyparis obtusa; Lk, Larix kaempferi;
Bl, broadleaved trees.

2.2. Field Measurements and Geographic Information System (GIS) Data

In this study, we selected compartments 1–7 of the campus forest, with an area of approximately
7.3 ha, as the research object. All trees with a DBH larger than 5 cm in each compartment were
surveyed, and the geographical position, species, DBH, and height were recorded. Each tree was
tagged with a permanent label and noted as either live or dead, and the stems were mapped to the
nearest 0.1 m and measured to the nearest 0.1 cm DBH. Tree heights were measured using Vertex IV
(Haglöf, Långsele, Sweden), and tree locations were calculated using the geographic coordinates of the
vertices of the plots, which were measured with a Global Positioning System (GPS) device (Garmin
MAP 62SJ, Taiwan). All plot vertices were recorded when the GPS steadily displayed its highest
accuracy, ˘3 m, and the locations were post-processed with local base station and ALS data, resulting
in an average error of approximately 0.5 m (within 2 pixels of the orthoimagery). The investigation
was conducted from April 2005 to June 2007. Additionally, all trees in compartment 4 were surveyed
again in June 2015 to determine whether the dominant tree species in the canopy layer changed.
The results suggested no obvious changes in the canopy layer because no management activities,
such as thinning or timber harvest, were conducted during this period. These field data were used
to test the accuracy of the interpreted tree tops and to perform the supervised classifications of tree
species (Figure 1). The conditions of the forests in the study area are summarized in Table 1. The DBH
frequency distribution for all trees in the study area is shown in Figure 2.

In addition, compartment boundaries, forest roads, forest survey data, and geographical data,
such as contour lines on the base map of the campus forest, were compiled for this study as a forest
database using permanent marks located along the compartment edges. Moreover, all tree positions
from the field survey were transferred and displayed using ArcGIS software (Esri, Redlands, CA, USA)
(Figure 1) and then compared with the image analysis of the delineated crowns.
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Table 1. Condition of the forests in the study site surveyed from April 2005 to June 2007. DBH, diameter
at breast height.

Compartment Dominant
Species

Min
DBH
(cm)

Max
DBH
(cm)

Average
DBH
(cm)

Average
Height

(m)

Density a

(Stem/ha)
Density b

(Stem/ha)

Basal
Area

(m2/ha)

1 Pd, Lk, Bl 5.4 59.0 22.8 15.2 583 245 31.0
2 Pd, Lk, Bl 7.4 56.9 21.8 15.9 822 299 39.1
3 Pd, Lk 5.0 58.7 22.3 16.7 744 328 37.4
4 Pd, Co, Lk 5.0 77.1 22.2 16.2 954 405 49.6
5 Pd, Co 5.0 81.6 24.3 16.5 775 385 46.8
6 Pd, Co 6.8 63.6 23.6 15.9 710 294 42.6
7 Pd, Co 7.7 65.3 26.3 17.4 632 362 41.8

Notes: a stem density of the trees with a DBH larger than 5 cm; b stem density of the trees with a DBH larger than
25 cm (the upper trees). Pd, Pinus densiflora; Co, Chamaecyparis obtusa; Lk, Larix kaempferi; Bl, broadleaved trees.
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Figure 2. Frequency distribution of all trees in the study area with a DBH larger than 5 cm. The x-axis
shows the DBH class; for example, the “6” and “10” classes represent the trees with DBHs ranging
from 5 to 7 cm and from 9 to 11 cm, respectively. The y-axis is the number of the trees included in each
DBH class.

2.3. Airborne LiDAR Data

ALS data were acquired in June 2013 by a special public measurement project using a Leica
ALS70-HP system (Leica Geosystems AG, Heerbrugg, Switzerland). The average flying altitude was
1800 m above ground level at a speed of 203 km/h, with a maximum scanning angle of ˘15˝, a beam
divergence of 0.2 mrad and a pulse rate of 308 kHz. The wavelength of the laser scanner is 1064 nm.
The sensor can record the first, second, third and last pulses reflected from the objects with the laser
intensity. The lowest point density was ensured to be 4 points/m2. To obtain a high point density, the
study area was overflown twice, with a large side overlap of 50%. Additionally, true color images with
a resolution of 25 cm and three channels were obtained at the same time as the ALS data by the RCD30
sensor using the color mode. The original true-color images were ortho-rectified using the laser point
data in TerraScan and TerraPhoto software.

The raw data were preprocessed by the measurement company, including producing the 3D
point clouds, deleting noise points, and assessing the level of accuracy. The average vertical error was
0.031 m, with a root mean square error (RMSE) of 0.039 m, tested by 48 ground control points (GCPs).
The maximum error between different courses was 0.09 m. The preprocessed original data with a las
ver1.2 format and the orthophotos with red (R), green (G) and blue (B) bands were used in this study.
The ALS data in the study area have a point density ranging from 13 to 30 points per m2. The original
orthophotos with a resolution of 25 cm were rescaled to a resolution of 50 cm, which was most suitable
for individual tree extraction [1,43,51].
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2.4. Data Analyses

2.4.1. Interpretation of Airborne Laser Scanning (ALS) Data

The research flowchart in Figure 3 provides an overview of the methods. The original ALS data
were first used to extract the digital elevation model (DEM) and digital surface model (DSM) with
a resolution of 50 cm by the ENVI LiDAR software, and an intensity map of forest reflectance was
simultaneously generated during processing. Second, the digital canopy height model (DCHM) was
calculated by subtracting the DEM from the DSM using ArcGIS software. Then, the interpreted DCHM
and forest reflectance intensity map with a 50 cm resolution were subjected to further analysis.

In laser scanning, the reflectance of objects can be calculated by the formula:

R “ Pr ˆ Sˆ exp p2µHq { pPe ˆ aq (1)

where R is the reflectance of objects; Pr is the returned laser intensity; S is the beam spot area; µ is the
attenuation coefficient caused by the atmosphere; H is the flying altitude; Pe is the emission intensity,
and a is footprint area [52]. Prior to species classification, the reflectance image data were resampled as
unsigned 8 bit integers.
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2.4.2. Interpretation of Tree Tops Using the Individual Tree Crown (ITC) Approach

In this study, two types of tree tops were interpreted with the ITC approach in PCI Geomatica
v9.1 software with the ITC Suite using the DCHM data generated in Section 2.4.1 and the green
band of the orthophoto (Figure 3). The detailed steps of the interpretation are provided in previous
studies [1,16,51,53]. First, preprocessing for the tree top interpretation was necessary to normalize the
object bands based on their own ranges, which was performed twice to smooth using an averaging
filter of 5 ˆ 5 pixels (2.5 ˆ 2.5 m) [1,51]. Second, a bitmap with a DCHM value of less than 5.0 m,
which could be used to separate the forest caps, understory trees, and shrub and grass areas, was
established for the non-forest mask by the THR (Thresholding Image to Bitmap, which can be used to
create bitmaps with any threshold values) function. Additionally, the blue band with a value larger
than 80 could be used to separate the man-made structures, such as monitoring towers built in the
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study area. Finally, the non-forested regions of the study site were extracted by the areas with a DCHM
less than 5.0 m plus the pixels with a blue value larger than 80.

The ITC isolation image was produced using the valley-following algorithm [49]. Using the
normalized DCHM and green bands and the non-forested mask, this method treats the spectral values
as topography, with shaded and darker areas representing valleys and bright pixels delineating the
tree crowns [1]. This method produces a bitmap of segments of valley and crown materials in forest
areas. A rule-based system follows the boundary of each segment of crown material to create isolations,
which are taken to represent tree crowns, whereas the pixel with the highest gray value at each tree
crown is interpreted as the tree top by a local maximum filtering technique [33,51]. To better compare
the results interpreted using different data, we only attempted to extract the tops of the canopy trees in
the study area using a filter with a moving window of 5 ˆ 5 pixels, which, in theory, may extract trees
with a crown diameter of more than 2.5 m and has been proven effective in previous studies [16].

The interpreted accuracy of the tree tops can be calculated by the formula

ϕ “ p1´|DI ´ Ds|{Dsqˆ 100 (2)

where Φ is the interpreted accuracy (%), DI is the stem density of trees interpreted by the ITC method,
and DS is the stem density of trees in the surveyed data. In this study, based on the DBH frequency
distribution of all trees in the study area and the average DBH in each compartment (Figure 2, Table 1),
the surveyed trees with a DBH larger than 25 cm were selected as the upper trees and used to test the
accuracy of the interpreted tree tops in distinguishing species.

2.4.3. Supervised Classification and Counting for Different Tree Species

Different tree species have different three-dimensional crown shapes. We attempted to test
whether the average slope of the tree crowns can contribute to the classification of the tree species
in this study. Accordingly, a slope map was calculated using the DCHM data in ArcGIS software
(Figure 3). Some authors suggested that the intensity of laser scanning with a wavelength of 1,064 nm
could be used for tree species classification [40,52], but few studies of this type have been reported
in Japan. Consequently, based on the field data and other information, including orthophotos and
existing thematic maps, the extracted tree crowns in the study area were classified into four classes,
Pinus densiflora (Pd), Chamaecyparis obtusa (Co), Larix kaempferi (Lk), and broadleaved trees (Bl), by using
different combinations of the three bands of orthophoto with the intensity and slope maps: RGB; RGB
and intensity (RGBI); RGB and slope (RGBS); and RGB, intensity and slope (RGBIS). All classifications
were performed using the same training areas.

Moreover, several studies suggested that the object-based classification approach is better than the
pixel-based approach in classifying mixed forests [16,54,55]. To overcome the “mixed pixels” problem
of the pixel-based classification (i.e., some pixels within a tree crown may be classified into two or
more different classes), an object-based supervised classifier (called crown-based classification) was
designed for tree species classification in the ITC Suite [51] and used to generate thematic maps of the
tree species in this study. This crown-based classification was completed by the ITCSC (Individual
Tree Crown Supervised Classifier) function of the ITC Suite. The ITCSC classified the individual tree
crowns (ITCs) of the images into different species using a maximum-likelihood (ML) decision rule [51].
The classification was based on comparing the signature of each ITC, one by one, with the ITC-based
signatures of the various species. The species signatures (average spectral values in different bands)
were produced by the ITCSSG (Individual Tree Crown Species Signatures Generation) program using
the training crowns of different species.

Finally, when the tree top interpretation and supervised classification processes were completed,
all tree tops were annotated with a species attribute from the species thematic maps delineated by
the crown-based classification using an overlay by the extraction function in ArcGIS v10.0. The total
number of trees of different species in each compartment was counted using the summarize function.
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3. Results

In this study, two types of tree tops and tree crowns in the study area were delineated by the ITC
approach using the green band of the orthophoto and the DCHM data, respectively. Then, the two
types of tree crowns were classified into four classes, Pinus densiflora (Pd), Chamaecyparis obtusa (Co),
Larix kaempferi (Lk), and broadleaved trees (Bl), by a crown-based classification approach using different
combinations of the intensity and slope maps with the three bands of the orthophoto: RGB; RGBI;
RGBS; and RGBIS. Consequently, eight thematic maps of tree species were generated in this study.

3.1. Object-Based Supervised Classification of Tree Species

3.1.1. Classification of the Tree Crowns Delineated Using the Green Band

Based on the field data and other information, four object-based supervised classifications were
performed on the tree crowns detected using the green band of the orthophoto with RGB, RGBI, RGBS,
and RGBIS. As a result, crown-based thematic maps of tree species were generated, as shown in
Figure 4, by overlaying the true color image with a transparency of 50%.
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Figure 4. Classifications of tree crowns delineated using the green band of the orthophoto. (a) classified
with the RGB bands; (b) classified with the RGBI bands; (c) classified with the RGBS bands;
(d) classified with the RGBIS bands. Pd, Pinus densiflora; Co, Chamaecyparis obtusa; Lk, Larix kaempferi;
Bl, broadleaved trees.

In the classification process, 108 training areas were created for the four classes: Pd, 33; Co, 18;
Lk, 27; and Bl, 30, and these training samples covered an area of 3513 m2 (4.9% of the total area of the
test site). Using the mean digital number (DN, representing the reflectance of the objects to sunshine
or laser and the average slope of the tree crowns) of the test pixels of each class, a straight-line map
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was used to compare the spectral characteristics of the different classes (Figure 5). In this research, the
reflectance of the objects to sunshine or laser and the slope of the tree crowns were resampled to the
data type of unsigned 8-bit integers. Band DNs for the spectral values of the orthophoto were highest
for green and lowest for red for all classes. The mean DNs of the blue band were slightly lower than
those of the green band. In terms of different species, only a slight difference was found in the three
bands between the four classes. However, the figure shows that the reflectance band of the trees for
the laser scanning was a good parameter for species classification in the study area. The tree crowns of
Chamaecyparis obtusa and Pinus densiflora had the highest and lowest reflectance intensities, respectively.
In addition, although the DNs of the average slope differed markedly between broadleaved and
coniferous trees, only slight discrepancies were found in the conifers, such as Pinus densiflora and
Larix kaempferi, which was disadvantageous for classifying them.
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Figure 5. Comparison of the mean digital number (DN) values of different classes using a line chart.
Pd, Pinus densiflora; Co, Chamaecyparis obtusa; Lk, Larix kaempferi; Bl, broadleaved trees.

When the object-based classifications were completed, a total of 400 random sample trees were
used for the accuracy assessment. Four hundred sample points were generated in the crown areas by
the stratified random rule. Then, all sample trees were assigned their reference classes based on field
data and other additional information, including high-resolution airborne multispectral images and
existing thematic maps. Finally, an accuracy report was generated, as is displayed in Table 2. The results
indicate that the overall accuracies of the classifications using RGBI, RGBS and RGBIS bands, with
values of more than 76%, was higher than that using RGB bands, with a value of 70.8%. Within the tree
species, conifers were typically classified with higher user accuracy than the broadleaved trees in the
four classifications. With a range from 71.4% to 85.5%, the user accuracy of Pinus densiflora had a larger
change between different classifications compared to other species. Additionally, the broadleaved trees
were classified with an accuracy of less than 67%.

Table 2. Error matrix for the four classes classified using different bands.

Bands Class Name * Pd Co Lk Bl Classified
Totals

User
Accuracy

(%)

Overall
Accuracy

(%)

Kappa
Coefficient

RGB

Pd 95 18 19 1 133 71.4

70.8 0.60

Co 12 54 1 6 73 74.0

Lk 13 8 82 4 107 76.6

Bl 17 10 8 52 87 59.8

Total 137 90 110 63 400

Producer
Accuracy (%) 69.3 60.0 74.6 82.5
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Table 2. Cont.

Bands Class Name * Pd Co Lk Bl Classified
Totals

User
Accuracy

(%)

Overall
Accuracy

(%)

Kappa
Coefficient

RGBI

Pd 111 13 7 2 133 83.5

77.5 0.69

Co 10 61 0 5 76 80.3

Lk 19 0 86 2 107 80.4

Bl 7 16 9 52 84 61.9

Total 147 90 102 61 400

Producer
Accuracy (%) 75.5 67.8 84.3 85.3

RGBS

Pd 121 8 18 4 151 80.1

76.5 0.68

Co 13 63 1 7 84 75.0

Lk 12 3 72 3 90 80.0

Bl 5 9 11 50 75 66.7

Total 151 83 102 64 400

Producer
Accuracy (%) 80.1 75.9 70.6 78.1

RGBIS

Pd 112 13 4 2 131 85.5

79.8 0.72

Co 7 67 3 5 82 81.7

Lk 15 0 88 2 105 83.8

Bl 8 10 12 52 82 63.4

Total 142 90 107 61 400

Producer
Accuracy (%) 78.9 74.4 82.2 85.3

* Pd, Pinus densiflora; Co, Chamaecyparis obtusa; Lk, Larix kaempferi; Bl, broadleaved trees.

3.1.2. Classification of the Tree Crowns Delineated Using the Digital Canopy Height Model (DCHM)

Based on field data and other information, four object-based supervised classifications were
performed on the tree crowns detected using the DCHM data with RGB, RGBI, RGBS, and RGBIS.
Crown-based thematic maps of tree species were generated, as documented in Figure 6, by overlaying
the true color image with a transparency of 50%.
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Figure 6. Classifications of tree crowns delineated using the DCHM data. (a) classified with the RGB
bands; (b) classified with the RGBI bands; (c) classified with the RGBS bands; (d) classified with the
RGBIS bands. Pd, Pinus densiflora; Co, Chamaecyparis obtusa; Lk, Larix kaempferi; Bl, broadleaved trees.

When the object-based classifications were completed, a total of 400 random sample trees were
used for the accuracy assessment. Four hundred sample points were generated in the crown areas by
the stratified random rule. Then, all sample trees were assigned reference classes based on field data
and other additional information, including high-resolution airborne multispectral images and existing
thematic maps. Finally, an accuracy report was generated, as shown in Table 3. The confusion matrices
indicate that the classification using RGB had a lower overall accuracy, with a value of 73.5%, than the
other three classifications using the RGBI, RGBS and RGBIS bands. In terms of different tree species,
although the three conifers were classified with a higher user accuracy than the broadleaved trees
in the classification using RGB, the accuracy of the broadleaved species was nearly equal to or even
higher than that of Chamaecyparis obtusa in the other three classifications. Additionally, Larix kaempferi
had the highest classification accuracy among the four classes in the majority of the classifications.
However, the accuracy of Chamaecyparis obtusa was less than 80% in the classifications.

Table 3. Error matrix for the four classes classified using different bands.

Bands Class Name * Pd Co Lk Bl Classified
Totals

User
Accuracy

(%)

Overall
Accuracy

(%)

Kappa
Coefficient

RGB

Pd 99 15 11 4 129 76.7

73.5 0.64

Co 10 72 5 8 95 75.8

Lk 13 1 70 9 93 75.3

Bl 12 4 14 53 83 63.9

Total 134 92 100 74 400

Producer
Accuracy (%) 73.9 78.3 70.0 71.6
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Table 3. Cont.

Bands Class Name * Pd Co Lk Bl Classified
Totals

User
Accuracy

(%)

Overall
Accuracy

(%)

Kappa
Coefficient

RGBI

Pd 123 11 4 5 143 86.0

83.8 0.78

Co 9 74 5 6 94 78.7

Lk 2 1 88 7 98 89.8

Bl 3 8 4 50 65 76.9

Total 137 94 101 68 400

Producer
Accuracy (%) 89.8 78.7 87.1 73.5

RGBS

Pd 120 9 13 1 143 83.9

81.8 0.75

Co 11 71 4 4 90 78.9

Lk 8 1 79 4 92 85.9

Bl 5 4 9 57 75 76.0

Total 144 85 105 66 400

Producer
Accuracy (%) 83.3 83.5 75.2 86.4

RGBIS

Pd 121 11 3 5 140 86.4

85.3 0.80

Co 13 84 6 2 105 80.0

Lk 2 1 81 5 89 91.0

Bl 2 5 4 55 66 83.3

Total 138 101 94 67 400

Producer
Accuracy (%) 87.7 83.2 86.2 82.1

* Pd, Pinus densiflora; Co, Chamaecyparis obtusa; Lk, Larix kaempferi; Bl, broadleaved trees.

3.1.3. Comparison of Classifications of the Tree Crowns Detected Using Different Data

The user accuracies of different species for the classifications of tree crowns delineated and
classified using different remotely sensed datasets are summarized in Figure 7. In terms of the overall
and average accuracies, a discrepancy was found in the classifications of the tree crowns detected
by the orthophoto and DCHM data, which had overall accuracies ranging from 70.8% to 79.8% and
73.5% to 85.8%, respectively. The average accuracy for each classification had a similar trend line to the
overall accuracy. Regarding different tree species, the tree crowns of the four classes extracted using
the DCHM data were classified with higher accuracy than those obtained by using the orthoimagery.
For example, the crowns of Pinus densiflora delineated using the DCHM were classified with an
improvement ranging from 0.9% to 5.3% when compared to the classifications of the tree crowns
detected using the orthophoto. Additionally, the broadleaved trees were notably better classified by the
tree crowns delineated using the DCHM data, with the highest average improvement of 12.1% among
the four classes. By contrast, Chamaecyparis obtusa had the lowest average increment, with a value of
0.6%, because the accuracy of the tree crowns of Chamaecyparis obtusa detected using the DCHM data
was slightly less than that using the orthoimage in the RGBI and RGBIS classifications. In terms of
the combinations of different bands, the RGB classification had a lower accuracy than the other three
classifications for most species. Although the tree crowns of Chamaecyparis obtusa delineated using the
DCHM data were classified by the RGBIS with a relatively low accuracy of 80%, the broadleaved trees
were classified by RGBIS bands with the highest accuracy among the eight classifications. The tree
crowns obtained from the DCHM data had more stable classifications than those detected from the
orthoimagery because the tree crowns were more accurately extracted using the DCHM data than
using the orthophoto data.
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Figure 7. Line chart representing the user accuracies for the eight classifications of tree crowns
delineated and classified using different data. Pd, Pinus densiflora; Co, Chamaecyparis obtusa; Lk,
Larix kaempferi; Bl, broadleaved trees; Av, mean accuracy averaged for the four tree species in each
classification; Ov, overall accuracy in the classifications.

3.2. Counting Trees of Different Species in the Study Area

In this study, using an overlay from the extraction function in ArcGIS v10.0, all tree tops extracted
by the ITC method were annotated with species attributes from the two thematic maps of the tree
crowns generated by the orthophoto and DCHM data and classified by the crown-based approach
using the RGBIS combination, which had better results than the other three combinations of RGB,
RGBI and RGBS, as proven in the accuracy assessments. The total numbers of trees of different
species in each compartment and in the entire study area were counted using the summarize function
(Table 4). The number of overstory trees with a DBH larger than 25 cm recorded in the field data is
also listed in Table 4. The count indicates that the density of the forest in compartment 1 is mainly
dominated by Pinus densiflora, Larix kaempferi and broadleaved trees. However, Pinus densiflora is the
most dominant species in compartment 2. The forest in compartment 3 is dominated by Pinus densiflora
and Larix kaempferi. Compartment 4, which has the highest stem density and the most complex spatial
structure among the seven compartments, is mainly dominated by Pinus densiflora, Chamaecyparis obtusa
and Larix kaempferi, and the forests in compartments 5–7 are dominated by Pinus densiflora and
Chamaecyparis obtusa. The interpreted results of the most dominant species in the different compartments
are in accordance with the forest inventory data, except for broadleaved trees. The number of broadleaved
trees extracted from the orthoimages in many compartments was evidently more than that counted
from the field data. Moreover, many Chamaecyparis obtusa trees failed to be delineated in compartments
4 and 6.

In addition, the interpreted accuracies of the dominant tree species were calculated using
Equation (2). The results are shown in Figure 8. The dominant tree species in compartments 3 and 5,
which have relatively simple spatial structures compared to the other compartments, were detected
with a high level of accuracy. Conversely, some dominant trees, such as Chamaecyparis obtusa, in
compartments 4 and 6, where the forests had a high stem density and a complex structure of multiple
layers, were delineated with a relatively low accuracy of less than 60% because the probability of
overlap between crowns increases with the stem density. However, in compartment 7, although the
total number of the tree tops was extracted with an accuracy of 100% by using the green band of the
orthophoto data, Pinus densiflora was not interpreted well because the forest had the highest mixing
degree between the dominant trees, which was disadvantageous for classification. Additionally, as
one of the dominant species in compartments 1 and 2, the broadleaved trees were extracted with an
evidently lower accuracy using the orthoimage instead of the DCHM data because the broadleaved
trees had a dispersive crown, which easily led to one tree crown being detected as several crowns.
Consequently, the excessive number of broadleaved trees delineated from the orthoimagery led to
the extremely low interpreted accuracy at ´28.8% in the entire study area (Figure 8). Overall, the
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interpretation of the most dominant species using the DCHM data was better than that using the
orthophoto data.

Table 4. Count of the upper trees surveyed in field data and extracted from different remotely sensed
data by distinguishing species. Pd, Pinus densiflora; Co, Chamaecyparis obtusa; Lk, Larix kaempferi; Bl,
broadleaved trees.

Compartment Species Field
Data Ortho DCHM Compartment Species Field

Data Ortho DCHM

1

Pd 50 64 53

5

Pd 167 193 172
Co - 1 7 Co 235 197 181
Lk 49 79 70 Lk 3 10 2
Bl 64 111 51 Bl 18 53 20

Total 163 255 181 Total 423 453 375

2

Pd 246 246 218

6

Pd 143 220 177
Co 2 4 6 Co 190 89 111
Lk 28 39 33 Lk 18 47 20
Bl 41 68 44 Bl 8 37 11

Total 317 357 301 Total 359 393 319

3

Pd 182 194 175

7

Pd 51 87 66
Co 4 4 6 Co 207 160 157
Lk 169 167 154 Lk 1 1 -
Bl 5 15 11 Bl 7 18 10

Total 360 380 346 Total 266 266 233

4

Pd 263 282 233

All

Pd 1,138 1,286 1,090
Co 143 60 67 Co 785 488 535
Lk 88 113 82 Lk 357 456 349
Bl 24 60 23 Bl 170 389 186

Total 518 515 405 Total 2,450 2,619 2,160
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Figure 8. Comparison of the accuracies of the dominant tree species in each compartment and the
entire study area as interpreted using the orthophoto and DCHM datasets. Pd, Pinus densiflora; Co,
Chamaecyparis obtusa; Lk, Larix kaempferi; Bl, broadleaved trees; To, total accuracy of the interpreted tree
tops versus the surveyed trees.

3.3. Accuracy of Position Matching of Interpreted Trees with Surveyed Trees

In this study, matching analyses were used to estimate the errors of omission (the trees that were
not detected by remotely sensed data) and commission (the treetop candidates that could not be linked
to field trees). Three thematic maps with a resolution of 5 m (the average distance between tree tops)
were established by nearest neighborhood interpolation. One was created using the field data (FD),
and the other two maps used the two tree top datasets annotated with species attributes from the
two species maps of the tree crowns that were generated by the orthophoto (OP) and DCHM data
(DD), respectively. Then, two matching analyses were conducted between FD and OP and between
FD and DD, and the error matrices for the two matchings are listed in Table 5. The results indicate
that, between OP and FD, the matching of the four classes had a commission accuracy ranging from
58.3% to 84.1% while its omission accuracy ranged from 69.8% to 81.5%. A remarkable matching
discrepancy was found between the tree positions detected by the orthophoto and DCHM data and
those recorded in the field, which had overall matching accuracies of 75.6% and 85.7%, respectively.
In terms of the different tree species, the tree positions of the four classes extracted using the DCHM
data were matched to the field data with greater accuracy than those obtained using the orthoimagery.
The commission accuracy of the matching between DD and FD improved from 6.6% to 15.3% when
compared to the matching between OP and FD, and the omission accuracy was improved from 4.7%
to 13.8% by matching DD and FD. The findings from this study indicate that the positions of the trees
were more accurately delineated using the DCHM data than the orthophoto data.
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Table 5. Error matrices for the matching tests between interpreted and surveyed trees. Pd,
Pinus densiflora; Co, Chamaecyparis obtusa; Lk, Larix kaempferi; Bl, broadleaved trees.

RS Source Class Name
Field Data

Total
Commission

Accuracy
(%)

Overall
Accuracy

(%)Pd Co Lk Bl

Orthophoto

Pd 1,051 94 59 45 1,249 84.1

75.6
Co 63 439 53 36 591 74.3

Lk 108 24 421 27 580 72.6

Bl 68 72 57 275 472 58.3

Total 1,290 629 590 383 2,892

Omission
Accuracy (%) 81.5 69.8 71.4 71.8

DCHM

Pd 1,176 46 41 33 1,296 90.7

85.7
Co 35 526 39 36 636 82.7

Lk 37 22 482 21 562 85.8

Bl 42 35 28 293 398 73.6

Total 1,290 629 590 383 2,892

Omission
Accuracy (%) 91.2 83.6 81.7 76.5

4. Discussion

Obtaining spatially detailed forest information at the tree level over large areas is critical for
sustainable forest management [4,16]. This task has been enabled by the advent of airborne digital
sensors and the launch of commercial satellites that can obtain multispectral imageries with a high
resolution of 1 m or less in panchromatic mode [1,2,9–15]. However, it is difficult to detect the
three-dimensional attributes of forests, such as tree height and DBH, using only optical data [16,41].
Accordingly, the LiDAR technology has received increasing attention from researchers in the forest
measurement field [17,18,20–40]. However, it is difficult to classify the tree crowns delineated from
the mixed forests based purely on the point cloud data [39,40]. This study attempted to acquire forest
resource information at the individual tree level by combining the LiDAR point cloud with the true
color images obtained at the same time as the laser scanning data.

For a large forest composed of uneven-aged stands with different tree crown sizes, the
homogeneity function of the ITC Suite can be used to separate young tree areas from mature
forests [1,24]; the tops of small and large-sized trees can then be interpreted using filters with different
moving window sizes on small and large tree areas, respectively [16]. In this study, however, because
of the high canopy density, it is nearly impossible to interpret the trees in the understory using the
DCHM and true color data. Additionally, the forests in the study area are derived from the man-made
stands, and thus, most trees in the upper layer had a similar crown size. Consequently, a filter with
a fixed moving window of 5 ˆ 5 pixels was used on the tree tops in the present study, which, in
theory, should extract trees with a crown diameter of greater than 2.5 m [1,16,49,51]. Although some
authors indicated that it is possible to delineate the understory trees in some forests with a moderate
canopy density using the ALS data collected in different seasons [52], the point density reflected from
the understory trees in our study was sufficiently low that small trees were unable to be extracted
using only these points because the forests had a high canopy density, and the data were obtained
in the summer, in which most trees had the highest leaf area index (LAI). Therefore, it is essential to
interpret the forests by combining the data acquired in a leaf-on situation with those acquired in a
leaf-off situation in future studies. In addition, the advent of terrestrial laser scanning (TLS), which
has been successfully used to measure the tree size and volume in several boreal forests [39,56–61],
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provides a new approach to delineating small trees in the under layer. However, the usefulness of this
sensor for various types of vegetation remains to be verified, especially for the dense forests in Japan.

Because orthophoto data were always obtained simultaneously with the ALS data in the
measurements, this study aimed to test the possibility of classifying forests by combining the optical
bands and the features derived from ALS data. As a comparison, two types of tree crown were
delineated by the ITC approach using the DCHM data and the green band of the orthophoto,
respectively. When the tree crown delineations were completed, four object-based supervised
classifications were conducted for each type of tree crown using combinations of the different
features, including the reflectance of the optical bands and laser and the slope of the tree crowns.
The classification accuracy was improved in this study for all tree species with the use of the forest
reflectance and the slope of the tree crowns, which led to increased separability of the classes
(Figure 5). In the classifications of the tree crowns delineated by the green band and DCHM data, the
improvements of the overall accuracy ranged from 5.7% for the RGBS to 9.0% for the RGBIS and from
8.3% for the RGBS to 11.8% for the RGBIS when compared to the RGB, respectively (Tables 2 and 3).
This higher level of accuracy was obtained because the added features of laser intensity and slope
contribute to the classifications (Figure 5). The results suggest that the reflectance of the trees in the laser
scanning may be a valuable source of information for the tree species classification of Pinus densiflora,
Chamaecyparis obtusa and Larix kaempferi, which are the main tree species in Japan. However, the
usefulness of the added features in the classification should be further tested by application to other
forests during different seasons. In addition, we attempted to classify the forests using only the
variables derived from the LiDAR data: crown diameter, crown height, crown area and crown volume.
Several combinations were used for the classification without the orthophoto spectral bands, but the
results were poor, with an overall accuracy ranging from 34% to 50%. Therefore, these classifications
were not included in this study. The contribution of different features derived from LiDAR data
and multispectral image to species classification will be further discussed in the next study on the
comparison of individual tree delineations using different detection approaches.

Additionally, some authors classified the boreal forests using only the point cloud data obtained
from airborne laser scanning. For example, Yu et al. (2014) classified pine, spruce and birch in southern
Finland using 15 features extracted from the ALS data, resulting in an overall accuracy of 73.4% [40].
In Heinzel and Koch, an accuracy of 78% was achieved for the classification of four species (pine,
spruce, oak and beech) [62]. In Hollaus et al., three tree species (red beech, larch and spruce) were
classified with an overall accuracy at 75% [63]. Most of the previous studies that classified forests
based solely the features extracted from ALS data reported overall accuracies ranging from 57% to
83% [40,62–69]. All of these studies have demonstrated the usefulness of the ALS-derived features
in tree species classification. Consequently, further investigations are needed to study the impact of
combining optical bands with more ALS-based features in species classification.

Classification accuracy is not balanced between the tree species. Pinus densiflora and Larix kaempferi
were classified with a higher accuracy than the other species. However, the user accuracy for
broadleaved trees is relatively poor (i.e., less than 67%) using the tree crowns detected from the
orthophoto data in the classifications. The reason for this result is likely related to the difficulties
in the accurate delineation of broadleaved tree crowns because of the more complex crown shape
and structure. Due to the dispersive crown shape, the ITC algorithm tends to split large deciduous
trees into multiple crown parts when using the optical image with high resolution, which results
in one segment for each part. However, the classified accuracy of broadleaved trees is considerably
higher, with the best result of 83.3%, when using the tree crowns delineated from the DCHM data in
the classifications (Figure 7). Additionally, errors in the classification can be attributed to the lack of
near-infrared (NIR) information. Numerous studies suggested that NIR bands improved the accuracy
of tree species classification in different study areas [4,5,16]. In Katoh et al. [1], the broadleaved trees
were classified with an accuracy of 97% by the ITC approach using airborne multispectral images
with a resolution of 50 cm and four bands of blue, green, red and NIR in the same area as this study.
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Therefore, the contribution of NIR information, which can be obtained in the ALS measurements using
the colorIR mode, to the detection of broadleaved trees requires further study.

In terms of the distinguishing species for individual tree delineation, the trees were better extracted
in the compartments with a relatively simple stand structure compared to other compartments.
For example, Chamaecyparis obtusa was delineated with an accuracy of less than 60% in compartments
4 and 6 because the forests had a high stem density and a complex structure of multiple layers, which
increases the probability of overlap between crowns. Although the total number of tree tops was
extracted with a high accuracy in compartment 7, Pinus densiflora was interpreted at less than 30%
using the tree crowns detected from the green band of the orthophoto data because the forest had the
highest degree of mixing, which was disadvantageous for classification. Additionally, the broadleaved
trees were detected with low accuracy using the orthoimage. This result can be attributed to the
dispersive crowns of broadleaved trees and the overly high resolution of the orthophotos, with a
value of 25 cm in the original data, which easily led to one tree crown being split into several crowns.
The above reasoning can also explain the better delineation of the most dominant species using the
DCHM data compared to using the orthophoto data in the study area (Figure 8). Moreover, the DBHs
of individual trees can be accurately measured by regression models using DBH as the dependent
variable and tree height as the independent variable and combining the location information of the
extracted tree tops. Consequently, the present study recommends delineating tree crowns using DCHM
data instead of optical data. In addition, several authors delineated individual trees in boreal forests
with high accuracy using ALS data by the individual tree detection (ITD) algorithm [34,37,40,70–72].
Although our study achieved comparable tree detection results, further research is required to study
the influence of different approaches on tree delineation [73]. Further improvements are possible
for individual tree detection using 3D segmentation techniques that utilize more spatial information
provided by the ALS data [40].

In this study, field data from April 2005 to June 2007 were used to test the interpreted accuracy,
whereas the ALS data were obtained in June 2013. Although a slight discrepancy was found in the
accuracies calculated using the inventory data surveyed in 2007 and 2015 for compartments 4 and 6,
the detection results for other compartments must be tested using recent field data that will be
collected in 2016. Additionally, the surveyed trees with a DBH larger than 25 cm were selected as the
upper trees of the study area and used to test the accuracy of the interpreted tree top distinguishing
species. In fact, a notable difference in the stand structure was found between some compartments.
Accordingly, the selection method of upper trees for different forests should be explored in future
studies. Each compartment was selected as the unit of the interpreted accuracy calculation, which
likely resulted in the improvement of the tree detection results of some species because the confusion
of misclassified species may offset their number in the delineation with each other.

5. Conclusions

Accurate tree delineation and species classification are critical for the interpretation of the
individual-based volume and biomass of forests. In this study, we assessed the utility of ALS data for
individual tree detection and species classification in a mixed forest with a high canopy density in
Japan. For comparison, the two types of tree tops and tree crowns in the study area were delineated
by the ITC approach using the green band of the orthophoto and the DCHM data derived from the
airborne laser scanning. Then, both types of tree crown were classified into four classes, Pinus densiflora
(Pd), Chamaecyparis obtusa (Co), Larix kaempferi (Lk), and broadleaved trees (Bl), by an object-based
classification approach using the different combinations of the laser intensity and slope maps with
the three bands of the orthophoto: RGB, RGBI, RGBS, and RGBIS. The results of our study suggest
that the combination of RGBIS yielded a higher classification accuracy than other combinations.
The added features of laser intensity and slope derived from ALS data contributed to the classifications.
The reflectance of the trees on the laser scanning may be a valuable source of information for the tree
species classification of Pinus densiflora, Chamaecyparis obtusa and Larix kaempferi, which are the main
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tree species in Japan. However, its usefulness must be verified in future studies by application in
other forests. The exploration of other ALS-based features, such as the mean height and diameter
of tree crowns, is recommended for future research related to tree species classification. In addition,
the findings from this study demonstrate the advantage using DCHM data instead of optical data in
delineating tree crowns. Further improvements can be achieved for individual tree detection using
3D segmentation techniques that can utilize more spatial information provided by the ALS data.
Consequently, additional research is required for detecting individual trees in the study area using
other delineation algorithms, such as the ITD approach.
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