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Abstract: The goal of sparse linear hyperspectral unmixing is to determine a scanty subset of spectral
signatures of materials contained in each mixed pixel and to estimate their fractional abundances.
This turns into an `0-norm minimization, which is an NP-hard problem. In this paper, we propose a
new iterative method, which starts as an `1-norm optimization that is convex, has a unique solution,
converges quickly and iteratively tends to be an `0-norm problem. More specifically, we employ the
arctan function with the parameter σ ≥ 0 in our optimization. This function is Lipschitz continuous
and approximates `1-norm and `0-norm for small and large values of σ, respectively. We prove that
the set of local optima of our problem is continuous versus σ. Thus, by a gradual increase of σ in each
iteration, we may avoid being trapped in a suboptimal solution. We propose to use the alternating
direction method of multipliers (ADMM) for our minimization problem iteratively while increasing
σ exponentially. Our evaluations reveal the superiorities and shortcomings of the proposed method
compared to several state-of-the-art methods. We consider such evaluations in different experiments
over both synthetic and real hyperspectral data, and the results of our proposed methods reveal
the sparsest estimated abundances compared to other competitive algorithms for the subimage of
AVIRIS cuprite data.

Keywords: sparse spectral unmixing; hyperspectral imaging; linear mixing model; spectral library;
smoothed `0-norm

1. Introduction

Hyperspectral remote sensing has a wide range of applications, from food quality inspection
to military functions [1–6]. The hyperspectral imaging data are collected by means of hyperspectral
imaging sensors and contain two-dimensional spatial images over many contiguous bands of high
spectral resolution [3,4]. Along with the observed pure pixels, the mixed pixels can occur because of
the relatively low spatial resolution of the sensor flying at high altitudes, as well as the combination
of distinct materials form intimate mixtures. Thus, spectral unmixing (SU) is required to characterize
the measured pixels recorded by remote sensors. Following the unmixing process, we can consider
two types of mixing models, including the linear mixing model (LMM) and non-linear mixing.
Although the linear unmixing methods for the former models are the most common techniques
in hyperspectral unmixing methods, the latter model also causes one to investigate an alternative
unmixing procedure to overcome the inherent restrictions of the linear model, called nonlinear
SU. These model indeed may happen in some applicable scenarios in which multiple scattering
is emitted from different materials. In some environments, such as urban scenes [7], vegetation
areas [8] and those containing specific spectral signatures, such as soil, sand and trees [9,10], we
have to use the nonlinear mixing model. However, the linear SU methods are being scrutinized by
researchers and scientists extensively because of their capabilities in many applications [4,5,11–13],
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e.g., minerals [4,14]. In this paper, we focus on the linear SU, which is a method of the separation of
the mixed pixel spectrum into a set of the spectral signatures of the materials called endmembers, as
well as their corresponding contributions in each mixed pixel called abundances in a linear fashion.

Since the number of endmembers/materials present at each mixed pixel is normally scanty
compared to the number of total endmembers in most applications, we can consider the problem
of SU as a sparse unmixing problem [15–23]. Mathematically, the corresponding sparse problem
is an `0-norm problem and is an NP-hard problem due to the required exhaustive combinatorial
search [24,25]. Indeed, the fractions of endmembers in each mixed pixel can be determined by solving
a minimization problem containing an objective function that counts the nonzero components of the
vector of fractional abundances of endmembers under a reasonable error coming from the modelling
type, as well as measurement errors. In a practical scenario, two more constraints can be imposed
on this problem because of the physical considerations, which are (1) the sum of the fractional
abundances is one and (2) they are nonnegative.

In recent years, several approximation methods have been proposed for the `0-norm
minimization problem notwithstanding various unmixing methods, which employed `1-norm
instead of `0-norm (e.g., [17,19,22,26]). These may include iterative reweighted schemes (e.g., [27,28]),
greedy algorithms [29,30], Bayesian learning algorithms [18], `q regularization [31] and compressive
sensing schemes [21,32]. Each of these methods has specific characteristics, e.g., the method proposed
in [18] exploits Bayesian learning to control the parameters involved. Some algorithms have used
better approximations of the `0-norm, e.g., the `p-norm is approximated as a weighted l2-norm in [33].
Although these methods improve the sparsity, the `p-norm function is not Lipschitz continuous
for p < 1. As a result, these methods suffer from numerical problems for smaller values of
p. Thus, an attractive solution is to employ Lipschitz continuous approximations, such as the
exponential function, the logarithm function or sigmoid functions, e.g., [20,23,34]. The arctan function
is also used in different literature works for sparse regularization, such as approximating the sign
function appearing in the derivative of the `1-norm term in [35], introducing a penalty function for
the sparse signal estimation by the maximally-sparse convex approach in [36] or approximating the
`0-norm term through a weighted `1-norm term in [23].

In this paper, we propose a new algorithm utilizing an arctan function, which allows us to start
our search with the `1-norm problem, which is convex and initially guarantees fast convergence
to the unique optimal solution. This method allows us to iteratively update our problem to better
approximate the `1-norm problem and provides an enhanced separation of the zero components.
The proposed arctan sum is a smooth approximation of the `0-norm and `1-norm as a function
of σ. We gradually increase the parameter σ in order to allow the convergence and tracking of
the best local optimal solution and iteratively find a better sparse solution. The arctan function is
Lipschitz continuous; thus, the proposed method does not have additional considerations to avoid
numerical problems, e.g., [25,37,38]. Moreover, our proposed algorithm improves the sparsity as σ

varies from zero to ∞, whereas in [20,23], the value of σ is constant. We use the alternating direction
method of multipliers (ADMM) to minimize the resulting objective function at each iteration [39,40].
We prove that the set of local optima of our objective function is continuous with the Hausdorff metric
versus σ. This implies that iterative minimization along with a gradual increase of σ guarantees the
convergence to the optimal solution. Finding the appropriate increasing sequence for σ is an open
problem to guarantee this convergence and to reduce the number of iterations. Thus, we simply
propose to increase σ exponentially. We compare our proposed method to several state-of-the-art
methods [17,18,26,33] over both the synthetic data and real hyperspectral data. Our results show
that our method results in a higher reconstruction signal-to-noise ratio (RSNR) for the fractional
abundances than some state-of-the-art methods and outperforms them in the sense of the probability
of success (PoS), except for the SUnSAL (sparse unmixing by variable splitting and augmented
Lagrangian) method [17,26].
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The remainder of the paper is organized as follows. The sparse spectral unmixing is formulated
in Section 2. The arctan function is proposed in Section 3, leading to our unmixing algorithm.
The proposed method is compared to several state-of-the-art methods via simulations in Section 4.
Finally, we conclude the paper in Section 5.

2. Sparse Spectral Unmixing

In this section, after reviewing the linear mixing model (LMM), which is applicable for many
scenarios for the hyperspectral unmixing, we briefly provide the sparse hyperspectral unmixing
through the `0-norm problem.

In the LMM, the measured spectra for the pixels of the scene, which are composed of the
linear combination of the spectral signatures scattered from the materials and their fractions, can
be formulated by:

y = Φx + n, (1)

where y ∈ RL represents the measured mixed pixel, Φ ∈ RL×q
+ is the spectral signatures’ library

containing q pure spectral signatures and L spectral bands, x ∈ Rq
+ is the corresponding fractions

of abundances for each endmember, R+ is the set of non-negative real numbers and n ∈ RL is an
additive noise vector. There are two constraints for the fractional abundance vector x in the LMM
as the abundance nonnegativity constraint (ANC), 0 ≤ xi ≤ 1, i = 1, 2, · · · , q, and abundance
sum-to-one constraint (ASC), 1Tx = ∑

q
i=1 xi = 1, where 1T is the transposed column vector of

ones. It should be noted that the ASC is not explicitly imposed in the problem for some scenarios,
since it is prone to strong criticism, e.g., see [22,35,41] and the references therein. However, these
constraints provide an enhanced and reliable result for the estimated fractional abundances in the
linear spectral mixture analysis [42], and we consider both constraints in our formulation, as many
unmixing methods include the state-of-the-art methods in this manuscript consider these constraints,
as well.

In a sparse linear hyperspectral unmixing process, it is assumed that the spectral signatures of
endmembers are chosen from a large number of spectral samples of the spectral library available a
priori, e.g., [4,17]. Besides, one can assume that the number of spectral signatures contributed in the
measured hyperspectral data cube is much smaller than the dimension of the spectral library (e.g.,
typically less than six [4,5]). Thus, we can consider the problem of SU as a sparse unmixing problem
to determine the fractional abundance vector x as the following constraint `0-norm problem:

min
x∈S
||x||0 subject to ||y−Φx||22 ≤ ε, (2)

where ||x||0 shows its nonzero components, ε is a small positive value and the polytope S, which is a
q− 1 standard simplex, contains both ANC and ASC constraints.

Finding the optimal solution of Equation (2) is an NP-hard [43], i.e., various subsets of the
endmembers that are possibly present must be verified for each mixed pixel from a given spectral
library. As a remedy, several efficient linear sparse techniques are proposed for the unmixing process,
e.g., [4,5,17,18,26]. Minimizing the `1-norm as approximation instead of the `0-norm is one of the
earliest methods proposed to avoid an exhaustive search for Equation (2) (e.g., see [44,45] and the
references therein; see also [17,22,26,35,41,46,47] for unmixing techniques), as follows:

min
x∈S
||Wx||1 subject to ||y−Φx||22 ≤ ε, (3)

where ||Wx||1 = ∑
q
i=1 wi|xi| is a weighted `1-norm of x, W is a diagonal matrix and wi’s are its

diagonal entries. In [17,22,26,41], the above problem is considered using W = I. Alternative
weighting matrices are employed in [46,47].

Many researchers have proposed the use of the `p-norm for p < 1 as a better approximation
for the `0-norm, e.g., [33,38,48,49]. Smaller values of p result in better approximation; however, they
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result in an increase in the number of local optima, which either trap the algorithms in a suboptimal
solution or translate into increased computational complexity. An alternative method is to iteratively
reduce p from one to zero in order to take advantage of the unique optimal solution for p = 1 and
then track the optimal solution for p < 1 as p is reducing [38]. The existing methods using the
`p-norm have a major drawback since for p < 1, the `p-norm is not a Lipschitz continuous function.
In fact, these methods must introduce an extra parameter to make it Lipschitz continuous, which
leads to more approximations. In this paper, we propose to employ the arctan function as a robust
approximation that is Lipschitz continuous. This method allows an accurate approximation of the
problem starting with the `1-norm and iteratively converging to the `0-norm.

To the best of our knowledge, two kinds of smoothing `0-norm minimization problems were
used for the spectral unmixing application. An iterative weighted algorithm based on the logarithm
smoothed function was proposed in [20]. Later, another method was proposed in [23] that utilized the
arctan function for approximating the `0-norm term. In these methods, a constant parameter σ allows
one to control the sparsity of the solution. In [23], a fixed arctan function is used to approximate the
`0-norm without any guarantee if an enhanced solution can be tracked. However in this paper, we
propose to iteratively enhance the employed approximation function in order to avoid the algorithm
being trapped in local minima. In contrast to [23], the approximation error of the `0-norm tends to
zero iteratively. This arctan approximation initially equals the `1-norm and modifies it to the `0-norm
iteratively, discussed in the next section. To show that the set of optimal candidate solutions is a
continuous function in terms of σ, we prove Theorem 1, where it gives this insight to move from a
unique solution at the starting point and iteratively directs to the closest solution to the `0-norm.

3. Our Proposed Unmixing Method: Arctan Approximation of the `1- and `0-Norms

We propose the following function to approximate the `1 or `0-norms

F(σ, x) = g(σ)
q

∑
i=1

arctan(σxi), (4)

where σ > 0 is a tunable parameter and 0 ≤ xi ≤ 1. We find an appropriate function for g(σ),
such that F(σ, x) converges to the `1 and `0-norms, respectively, as σ tends to zero and ∞. The basic
idea behind this concept is to start at σ = 0 for which our problem becomes the `1-norm problem in
Equation (3). Thus, the problem becomes a convex optimization for σ = 0 that is known to be a good
approximation of Equation (2) [50] . By iteratively increasing σ, the proposed problem-minimizing
Equation (4) tends to the problem in Equation (2).

Remark 1. We shall choose g(σ), such that the following conditions are satisfied:

(i) F(σ, x) tends to ||x||1 as σ tends to zero.
(ii) F(σ, x) tends to ||x||0 as σ tends to ∞.

There are many such functions that satisfy the above conditions, such as follows:

g1(σ) =
2
π

+
1
σ

, (5)

g2(σ) =
1

arctan(σ)
, (6)

where σ > 0.
Figure 1 shows the curves of functions arctan(σx)

arctan(σ) and xp for x ∈ [0, 1] and several different values
of σ and p. We see that for p = 1 and σ→ 0, these functions become linear, and both yield the `1-norm.
As p → 0 and σ → ∞, these functions tend to the unit step function and both yield the `0-norm.
For values of p between one and zero and σ between zero and ∞, we observe that these curves
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are similar and that they can approximate each other. However, the important difference between
these functions is in their derivatives for small values of x around zero; in contrast to arctan(σx)

arctan(σ) , the
derivatives of xp are not bounded around x = 0. These unbounded derivatives cause numerical
instabilities in iterative algorithms.
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Figure 1. Comparison of arctan(σx)/ arctan(σ) with xp for different values of σ and p.

The approximation of the `0-norm problem using the function F(σ, x) for the constrained
`0-norm problem can be considered as follows:

min
x∈S

F(σ, x) subject to ||y−Φx||22 ≤ ε, (7)

as σ increases. The unconstrained version of Equation (7) using the Lagrangian method can be
presented by:

min
x∈S

f (x, σ), (8)

f (x, σ) =
1
2
||y−Φx||22 + λg(σ)

q

∑
i=1

arctan(σxi), (9)

where there exists some λ > 0, such that Equations (7) and (8) are equivalent.
Now, we prove the continuity of the set of candidate local minima of Equation (8) with respect to

the parameter σ to guarantee that our proposed method reaches the possible sparse solution (i.e. if it
exists) while σ is varying. The motivation behind Theorem 1 is to give insight to the solution obtained
using the previous value of σ as a good initialization for the next iteration with the larger value of σ.

Using the definition of Hausdorff distance mentioned in Appendix A, the following theorem
proves the desired continuity of the set of all candidate local minima.

Theorem 1. Let Xσ ⊂ X be the set of all solutions of:

∇x f (x, σ) = λv(x, σ) + ΦTΦx−ΦTy = 0, (10)

where v(x, σ) = [ σg(σ)
1+σ2x2

1
, ..., σg(σ)

1+σ2x2
q
]T . Then, Xσ is a continuous function of σ ∈ [0, ∞).

Proof. See Appendix A.

For simplicity, the above theorem is written for the simplified case where S is relaxed into Rq.
However, the proof in Appendix A includes the ANC, as well as the ASC. For σ → 0, the problem
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Equation (8) is indeed a kind of `1-norm problem, which is convex, and thus, Xσ has a unique solution
provided that Φ has the restricted isometry property [37,51]. The continuity of Xσ versus σ implies
that there is a neighbourhood around σ = 0 for which Xσ still has a unique member. Thus, we could
increase σ within this neighbourhood. As σ further increases, the number of local minima (i.e., |Xσ|)
may increase by splitting the members, i.e., bifurcation might happen. Our algorithm tracks only
one member of Xσ as the solution, which has a lower value for f (x, σ). As σ increases, we anticipate
obtaining a sparser solution. Appropriate increment values for the sequence of σ allow one to track
the best local optima. Aggressive increasing of σ in each iteration may result in missing the tracking of
the best local optima, which translates into some performance loss. On the other hand, conservatively
increasing σ results in additional computational cost. Optimal selection of the increasing sequence of
values for σ is the focus of our future research and remains an open challenging problem, since this
sequence must avoid missing the best minima in each iteration. In this paper, we propose to update
σ iteratively as follows:

σ(j+1) = σ(j) exp(α), j = 1, . . . , Imax (11)

where σ(j) is exponentially increasing versus the iteration index j, Imax is the maximum number of
iterations, σ(1) is a small initial value and α is the increasing rate.

The values for σ(1) and α are selected via trial and error using extensive simulations. To choose
the initial value for σ(1), we first set the value of α equal to zero. Then, we gradually increase the
value of σ(1) from zero up to the largest value, such that the behaviour of the algorithm remains the
same as for σ = 0 (the `1-norm problem). Indeed, we propose to choose σ(1) as the largest value for
which the problem behaves similarly to the `1-norm problem in terms of their RSNR, as defined in
Equation (22).

The problem in Equation (8) is an approximation of the original `0-norm problem under the
ANC and ASC constraints, i.e., x ∈ S. The unconstrained Lagrangian of Equation (8) can be also
rewritten as:

min
x

1
2
||y−Φx||22 + λg(σ)

q

∑
i=1

arctan(σxi)

+ı{1}(1
Tx) + ıRq

+
(x), (12)

where 1 is the column vector of ones and ıQ(x) is the indicator function, either zero or ∞ if x ∈ Q or
x 6∈ Q, respectively.

We use the ADMM method [39,40] to solve Equation (12). In general, the ADMM aims to solve
the following problem:

min
x∈Rq ,z∈Rm

f1(x) + f2(z) subject to Axx + Bzz = c. (13)

where Ax ∈ RL×q, Bz ∈ RL×m and c ∈ RL are given matrices, and the functions f1 and f2 are convex.
The ADDM splits the variables into two segments x and z, such that the objective function is separable
as in Equation (13) and defines the augmented Lagrangian multipliers as follows:

Lµ(x, z, u) = f1(x) + f2(z) + uT(Axx + Bzz− c) +
µ

2
||Axx + Bzz− c||22. (14)

The ADMM minimizes Lµ(x, z, u) iteratively as in Algorithm 1.
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Algorithm 1 The ADMM algorithm.

Set j = 1, choose µ > 0, z(1) and u(1).
repeat

1. x(j+1) ∈ arg min
x

Lµ(x, z(j), u(j))

2. z(j+1) ∈ arg min
z

Lµ(x(j+1), z, u(j))

3. u(j+1) ← u(j) + µ(Axx(j+1) + Bzz(j+1) − c)
4. j← j + 1.

until stopping criterion is satisfied.

Now, we apply the ADMM to solve Equation (12) as follows. By constructing the augmented
Lagrangian multipliers and assigning f1(x) = 1

2 ||y−Φx||22 + ı{1}(1Tx) , the primary minimization
problem is:

arg min
x

1
2
||y−Φx||22 + ı{1}(1

Tx)

+
µ

2
||x− z(j) − u(j)||22. (15)

The solution of the above is updated by:

x(j+1) ← A−1B−A−11(1TA−11)−1(1TA−1B− 1), (16a)

where A and B are first calculated as follows:

A← ΦTΦ + µI, (16b)

B← ΦTy + µ(z(j) − u(j)), (16c)

and z(j) represents the value of vector z at the j-th iteration.
By assigning the remaining terms of Equation (12) to f2(z), i.e., λg(σ)∑

q
i=1 arctan(σzi) + ıRq

+
(z) ,

the second minimization problem is as follows:

arg min
z

λg(σ)
q

∑
i=1

arctan(σzi) + ıRq
+
(z)

+
µ

2
||x(j+1) − z− u(j)||22. (17)

To find the updating equation for z, we take the derivative of Equation (17) with respect to z and
set it to zero, which leads to following equations:

zi = x(j+1)
i − u(j)

i −
λσg(σ)

µ(1 + σ2z2
i )

, (18)

where z = [z1, · · · zq]T . We are interested in the positive root of these polynomial equations
in Equation (18) of degree three, which can be computed numerically. However, to reduce the
computational cost, we propose to approximate the last term, λσg(σ)

µ(1+σ2z2
i )

, with its value from the

previous iteration, which leads to the following update equation:

z(j+1) ← (x(j+1) − u(j) − λσg(σ)
µ(1 + σ2z(j)2)

)+ (19)
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where a+ = max(a, 0) and z(j)2 denotes the vector of the squared of elements of z(j), and the division
is an element-wise operation, i.e., the division of elements of two vectors or a scalar divided by
elements of a vector.

To prove the convergence of Equation (19), we define the function θ(z) = x(j+1)
i − u(j)

i −
λσg(σ)

µ(1+σ2z2)
.

It is easy to show that θ(z) is a contraction mapping for z > 0 and λσ2g(σ) < 2µ. Thus, by virtue
of the fixed point theorem for contraction mapping functions, the convergence of z(j+1)

i = θ(z(j)
i ) to

the optimal solution is guaranteed under the sufficient (not necessary) condition λσ2g(σ) < 2µ. This
sufficient condition is not imposed in our simulation.

Now, the pseudocode of the proposed algorithm can be considered as follows.

Algorithm 2 Pseudocode of the proposed method.

Initialize j = 1, and choose z(1), u(1), µ > 0, λ > 0.

while j < Imax and
(

min
{
||x(j) − z(j)||2, µ||z(j) − z(10b j−1

10 c)||2
}
> 10−4

)
do

1. Update x(j+1) using Equation (16)
2. Update z(j+1) using Equation (19).
3. Update the value of σ using Equation (11)
4. u(j+1) ← u(j) − x(j+1) + z(j+1)

5. j← j + 1
end

3.1. Updating the Regularized Parameter λ

The Lagrangian parameter λ weights the sparsity term F(σ, x) in combination with the squared
errors ||y−Φx||22 produced by the estimated fractional abundances. The expression in Equation (9)
or Equation (12) reveals that the larger values of the Lagrange multiplier lead to the sparser solutions.
Moreover, the smaller λ leads to the smaller squared error. Hence, the parameter λ must be chosen to
trade-off between the sparsity and the smaller squared error.

In our evaluations, we have first simulated the algorithms using several constant values for λ

and chosen the value of λ, which leads to the highest RSNR defined in Equation (22). Hereafter,
we refer to the proposed algorithm using a constant λ and Equation (19) as the smoothing arctan
(SA1) algorithm.

The drawback of using a constant value for λ is that it requires a priori knowledge or simulations
to adjust λ for each environment and signal-to-noise ratio. As an alternative, following the
expectation-maximization (EM) approach in [52], we propose to update λ as follows:

λ← 1
L
||y−Φx||22 +

λ

L ∑L
k=1(

d2
k

λ + d2
k
) (20)

where Φx = [d1, · · · , dL]
T . Hereafter, we refer to this unmixing method as SA2.

We have examined three other existing methods for updating λ, which have been proposed
for other similar optimization problems, i.e., the L-curve method [53], the normalized cumulative
periodogram (NCP) method [54] and the generalized cross-validation (GCV) method [55].
Our performance evaluations of our proposed algorithm revealed that the GCV updating rules for
λ result in the best performance amongst these methods in terms of RSNR. Hereafter, we refer to this
combination as SA3.

3.2. The Convergence

The ADMM is a powerful recursive numerical algorithm for various optimization problems [40].
In this paper, we employ this method for solving the minimization problem in Equation (8). If the
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conditions of Theorem 1 of [39] are met, the convergence of the ADMM is guaranteed. However,
f (x, σ) in the objective function of Equation (8) is not convex for all σ, and for these non-convex
problems, the ADMM may converge to suboptimal/non-optimal solutions depending on the initial
values ([40], page 73). Note that the primary minimization problem in Equation (15) is always convex
and, hence, leads to a converging solution to its optimum. In contrast, the secondary minimization
problem in Equation (17) is not convex for all σ. As we discussed earlier, it is easy to show that this
term is convex for some small values of σ and is not for large values.

The problem Equation (17) is convex if its Hessian is non-negative, i.e., µI− 2λg(σ)diag[ σ3z1
(1+σ2z2

1)
2

, · · · , σ3zq

(1+σ2z2
q)2 ] > 0. This means that for Equation (17) to be convex, it is sufficient that (1 + σ2z2

i )
2 ≥

2 λ
µ σ3g(σ)zi for all i, which guaranties the convergence of the proposed algorithm. Since zi ∈ [0, 1], the

condition 2 λ
µ σ3g(σ) ≤ infz∈[0,1]

(1+σ2z2)2

z is sufficient for Equation (17) to be convex and guarantees
the convergence of the proposed algorithm to its optimal solution.

The upper bound for which σ leads to the convergence of our algorithm can be obtained by
finding the maximum value of the RHS of the sufficient condition. Hence, it can be simplified to

max( 9
16
√

3
σ2g(σ), σ3g(σ)

(1+σ2)2 ) ≤ 0.5 µ
λ . Thus, given µ

λ , this condition easily gives us the largest value of σ

for which our algorithm converges to its unique optimal solution. As the value of σ increases beyond
this condition, the objective function in Equation (8) will have multiple local optima. Our numerical
method attempts to track the best one on the basis that the set of local optima is continuous versus σ.

Within initial iterations, (z, x) will be around the unique optimal solution. We expect z to be
sparse, i.e., most of its elements are close to zero. Thus, the corresponding diagonal elements of

the Hessian matrix, i.e., µ − 2λg(σ) σ3zi
(1+σ2z2

i )
2 , will be close to µ, which is non-negative. In the next

iterations, we gradually increase σ allowing Equation (17) to become non-convex and locally track a
sparser solution as σ increases.

4. Experimental Results and Analysis

Here, we first evaluate our proposed algorithms SA1, SA2 and SA3, via different simulations.
For our experiments, we take advantage of the U.S. Geological Survey (USGS) library [56]
having 224 spectral bands in the interval 0.4 to 2.5 µm. For convenience, in simulations
following [17,18,33,41], we choose a subset of 240 spectral signatures of minerals from the original
spectral signatures similar to [17], i.e., we discard the vectors of spectral signatures of materials that
the angle between all remaining pairs is greater than 4.44◦. This selection allows us to compare the
results to [17,18,33,41]. This library has similar properties with the original one, i.e., it has a very
close mutual coherence value to the original library, which contains 498 spectral signatures of the
endmembers. The mutual coherence (MC) is defined by:

MC(Φ) = max
1≤i,j≤q,i 6=j

|φT
i φj|

||φi||2||φj||2
, (21)

where φi is the i-th column of Φ. We have also generated two additional libraries based on the uniform
and Gaussian distributions. The examined libraries are:

1. ΦOriginal ∈ R224×498 is obtained from the USGS library [56] by selecting the spectral library,
which contains 498 spectral signatures of minerals with 224 spectral bands with the MC of 0.999
in the same way as in [17].

2. ΦPrune ∈ R224×240 is a selected subset of ΦOriginal, such that the angle between its columns is
larger than 4.44◦, and its MC is 0.996.

3. ΦUnif ∈ R224×240 is randomly generated with i.i.d. components uniformly distributed in the
interval [0,1], and its MC is 0.823.
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4. ΦGauss ∈ R224×240 is randomly generated with i.i.d. zero-mean Gaussian components with the
variance of one, and its MC is 0.278.

We compare our proposed methods SA1, SA2 and SA3 to several existing state-of-the-art
methods, including the nonnegative constrained least square (NCLS) [17], the SUnSAL
algorithm [17,26], the novel hierarchical Bayesian approach (BiICE (Bayesian inference iterative
conditional expectations) algorithm [18]) and the method based on the `p− `2 minimization problem
proposed in [33] so-called CZ method.

It should be noted that we report the experimental results only for g(σ) = g2(σ). In fact, one
approach is to let the ADMM converge for a given σ and, upon convergence, update σ. However,
our experiments reveal that gradual updating of σ in Step 3 of Algorithm 2 during the iteration
of the ADMM leads to a significantly faster convergence. The expressions of the algorithm using
Equation (5) or Equation (6) can be derived in a similar way, and our extensive simulation results
show that using Equation (6) for g(σ), the algorithm slightly outperforms the one using Equation (5).
Thus, the experimental results are given for g(σ) = g2(σ). Finally, we must mention that we initialize
x(1) = z(1) = [ 1

q , · · · , 1
q ]

T and u(1) = [0, · · · , 0]T . This uniform initialization gives equal chance to all
elements of the primary and secondary minimization problems to converge their optimal values.

4.1. Experiments with Synthetic Data

In the first experiment, we generate the fractional abundances for vector x randomly with the
Dirichlet distribution [57,58] by generating independent and uniformly-distributed random variables
and dividing their logarithms by the minus of sum of their logarithms. These vectors have different
sparsity levels ranging from one to 10 that are compatible in practice for the mixed pixels, e.g., [5].
We generate 2500 data randomly for each sparsity level between one and 10. For each data sample,
we first randomly select the location of nonzero abundances and generate the nonzero abundances
following the Dirichlet distribution mentioned above. Then, we add the white Gaussian noise
(AWGN) at different signal-to-noise ratios (SNRs), 15 dB (low SNR), 30 dB (medium SNR) and 50 dB
(high SNR).

We generate 100 randomly-fractional abundances with the Dirichlet distribution for different
types of libraries, while the sparsity levels is set to four. We should mention that the values of
fractional abundances are varied during this experiment because of the consistency of the results
for the experiment. The SNR is also set to 30 dB.

We compare the performance of these unmixing methods using two criteria, the RSNR and the
probability of success (PoS) defined by:

RSNR = 10 log10

( E[||x||22]
E[||x− x̂||22]

)
in dB, (22)

PoS = Pr
( ||x− x̂||2
||x||2

≤ ξ
)

, (23)

where ξ is a constant threshold, x and x̂ are the fractional abundance vector and the reconstructed
fractional abundance vector obtained from different methods, respectively [17,19].

In our experiments, we select the threshold value ξ = 0.316 following the experimental approach
in [17,19]. We have chosen the parameters of these state-of-the-art methods either as they are reported
in their proposed literature works or have adjusted them within the source code provided by the
authors by trial and error for the best performance as follows:

• SUnSAL [17,26]: maximum iteration = 200, λ = 5× 10−2 for lower SNRs and λ = 10−4 for higher
SNRs.

• NCLS: only ANC is applied in the SUnSAL method, and set λ = 0 in [17].
• BiICE [18]: MaxIter = 50 and aVita = bVita = aλ = bλ = 10−6.
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• CZ: p = 0.2 and log10 λ = 0.0008 SNR2 − 0.1144 SNR− 0.9983.
• SA1, SA2, SA3: Imax = 100, σ(1) = 0.1, α = 0.07,
• SA1: λ = 10−2.

Figure 2 shows the RSNR values and the corresponding PoS values for these methods versus
different sparsity levels. Our proposed methods outperform the other state-of-the-art methods
specifically for very sparse conditions in terms of RSNR values. Moreover, the PoS values of our
proposed methods are superior to other methods, except for the SUnSAL algorithm. Besides, the
results reveal that our third proposed method gives the best performance amongst our three methods
for both RSNR and PoS values. Moreover, it is obvious that the values of RSNR and PoS are decreasing
and increasing by raising the number of nonzero components and SNRs, respectively.
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Figure 2. The comparison of RSNR values and their corresponding probability of success (PoS)
between our proposed methods and the other state-of-the-art methods with respect to different
sparsity levels using ΦPrune. (a) SNR = 15 dB; (b) SNR = 30 dB; (c) SNR = 50 dB.

In the second experiment, we evaluate the impact of the SNR on the reconstruction quality of
these methods for three sparsity levels, non-mixed (pure) pixels, for pixels with three and five nonzero
elements, as illustrated in Figure 3. Again, we produce the fractional abundances based on the
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Dirichlet distribution for different ranges of SNRs from 10 dB to 50 dB. Similar to the first experiment,
we only set the sparsity level to the desired values and their locations are chosen randomly. Then,
we generate 2500 sample data and add the AWGN noise. For the pure pixel, our second proposed
method outperforms the other state-of-the-art methods, as well as two other methods in terms of
reconstruction errors. For the mixed pixels, SA1 and SA2 have the highest RSNRs from the low SNR
(e.g., 10 dB) to the medium SNR (e.g., 30 dB). However, SA3 outperforms the other methods for an
SNR greater than 30 dB. Furthermore, we have similar performances for the PoS exclusive of the
SUnSAL method. Note that we may enhance the PoS curves by increasing the threshold ξ.
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Figure 3. The RSNR values obtained by different sparse unmixing methods versus SNRs for the
simulated data. (a) Sparsity level = 1; (b) sparsity level = 3; (c) sparsity level = 5.

In the third experiment, we investigate the effect of the mutual coherence of the employed library
(e.g., the type of library), as well as the number of available spectral signatures of endmembers
(e.g., the size of the library) for the unmixing methods. Similar to the previous experiments, we
generate 1000 randomly-fractional abundances with the Dirichlet distribution for different types of
libraries, while the sparsity levels is set to four. The locations of these four abundances are selected at
random. The SNR is also set to a medium value of 30 dB following [17]. Then, we compute the RSNR
and the corresponding PoS values for different unmixing methods. Figure 4 depicts these results.
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They reveal that our proposed methods outperform the other state-of-the-art methods for different
types of libraries in the sense of RSNRs. Indeed, all of three proposed methods outperform the other
state-of-the-art methods; specifically, our third proposed method, i.e., SA3, has the best performance
for the recovered fractional abundances compared to the other methods. For the PoS values, we
have the same trend, except for the SUnSAL method. It is obvious that the library with the lower
MC values results in the higher RSNR values. Moreover, we can observe that our second proposed
method has better reconstruction error in comparison to the other state-of-the-art methods while the
noise is coloured. It also has very similar performance of the success for reconstruction with the
SUnSAL algorithm in this experiment. Finally, the last bar chart shows that the values of RSNR and
PoS for all unmixing methods have higher values by assuming the coloured noise compared to the
white Gaussian noise over ΦPrune.
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(b)

Figure 4. The impact of library properties and coloured noise over (a) RSNR and (b) PoS values
obtained by different sparse unmixing methods when ||x||0 = 4 and SNR = 30dB.

To evaluate the impact of the noise type on these methods, we generated a coloured noise
following [17]. In this experiment, the coloured noise is the output of a low pass filtering with a
cut-off frequency of 5π

L where the input is generated as an independent and identically distributed
(i.i.d.) Gaussian noise. We observe that the unmixing performance is improved as the noise becomes
coloured, i.e., in Figure 4, the performance using the library ΦPrune is superior in the case of coloured
noise compared to the case of white noise.

4.2. Computational Complexity

Our proposed method uses the ADMM method and has the same order of computational
complexity as the methods in [17,19,22,23,26,40,46]. Table 1 compares the running time of these
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algorithms in seconds per pixel, which is commonly used [17,22,26] as a measure of the computational
efficiency of these algorithms.

Table 1. The processing time of different algorithms per pixel (in seconds) using 4 different libraries
and an i7-2600-3.5-GHz Intel Core processor with 8 GB of RAM memory.

Method ΦOriginal ΦPrune ΦUnif ΦGauss

NCLS [17] 0.39 0.062 0.091 0.094
SUnSAL [17,26] 0.44 0.066 0.11 0.10

BiICE [18] 60.48 4.53 5.06 4.61
CZ [33] 34.12 6.91 8.32 8.98

SA1 3.59 0.54 0.59 0.55
SA2 4.19 0.81 0.88 0.83
SA3 5.24 1.77 1.86 1.81

We implemented the NCLS in our simulation following [17], which has a similar running time
as the SUnSAL. The comparison shows that our proposed method is faster than other state-of-the-art
methods, except SUnSAL. Besides, the size of the library has a significant impact on the running time.

4.3. Experiments with Real Hyperspectral Data

For the real data experiments, we utilize a subimage of the hyperspectral data set of the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) cuprite mining in Nevada. It should be noted that a
mineral map of the AVIRIS cuprite mining image in Nevada can be found online at http://speclab.
cr.usgs.gov/cuprite95.tgif.2.2um_map.gif. and it was produced by the Tricorder 3.3 software product
in 1995 by USGS.

Indeed, this hyperspectral data cube is very common in different literature works for the
evaluation of unmixing methods [17,20,33]. This scene contains 224 spectral bands ranging from
0.400 µm to 2.5 µm. However, we remove the spectral Sub-bands 1 to 2, 105 to 115, 150 to 170 and 223
to 224 due to the water-vapour absorption, as well as low SNRs in the mentioned sub-bands. Thus, we
applied all unmixing methods over the rest of the 188 spectral bands of the hyperspectral data scene.
To have a better impression for the AVIRIS cuprite hyperspectral data used in our experiments, we
show two samples of the sub-bands of the scene in Figure 5.
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Figure 5. Bands 5 (a) and 40 (b) of the subimage of AVIRIS cuprite Nevada dataset.

Figure 6 illustrates six samples of the estimated fractional abundances by different unmixing
methods. We exploited the pruned hyperspectral library (i.e., ΦPrune) for the unmixing process and

http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif.
http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif.
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used the same parameter setting described in Section 4.1. Indeed, we can produce a visual description
of the fractional abundances in regards to each individual pixel by means of unmixing methods.
At the point of visual comparison, the darker pixels exhibit a smaller proportion of the corresponding
spectral signatures of the endmembers. Conversely, the higher contribution of the endmember in the
specific pixel can be presented by a lighter pixel. Eventually, we can infer that our proposed unmixing
methods can share a high degree of similarity to the SUnSAL algorithm in which its performance was
evaluated in [22] compared to the Tricorder maps.
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Figure 6. Estimated abundance fraction maps for the subimage of AVIRIS cuprite using different
unmixing methods.
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For each of these methods, we concatenated the output abundances fractions of all pixels
(four abundances are shown in Figure 6) into one vector. Using these experimental output vectors
for AVIRIS cuprite mining in Nevada, Figure 7 shows the estimated cumulative distribution function
(CDF) of the estimated fractional abundances of different methods in order to compare the sparsity
of the output of those methods. Figure 7 reveals that the outputs of SA3, SA1 and SA2 have the
highest sparsity, respectively, among the considered methods. More specifically, 3%, 1% and 0.3% of
the estimated fractional abundances are non-zero, respectively, using SA3, SA1 and SA2; whereas,
about 7.9%, 7.6%, 4.7% and 3.2% of them are more than 10−3, respectively, for SUnSAL, NCLS, BiICE
and CZ.

Figure 7. The estimated CDF of the fractional abundances of different methods over AVIRIS cuprite
mining in Nevada.

5. Conclusions

In this paper, we have considered the linear sparse spectral unmixing with an iterative
approximation of the `0-norm problem through an arctan function. Our approximation starts with the
`1-norm problem, which is convex and has a unique optimal solution. As the algorithm converges to
its initial optimal solution, we iteratively update our approximation toward the `0-norm problem.
The superiority of this method is because our objective function is initially convex and initially
converges to the optimal solution of the `0-norm problem. By updating this function iteratively, we
iteratively make accurate approximation of the `0-norm minimization. The proposed approximation
is controlled by updating parameter σ. Furthermore, we have proven that the set of local optima of
our objective function is a continuous set versus σ with the Hausdorff distance metric. This means
that the gradual increase of σ along with iterative minimization of the proposed objective function
leads to the optimal solution. By virtue of this theorem, the algorithm tracks the local optima of
the current approximation and most local minima of the `0-norm problem. This is affirmed by our
experiments that the number of non-zero elements of the solution using our method is significantly
less than that of existing methods while the RSNR is improved. We must note that finding an optimal
increasing sequence for σ is still an open problem, as a more conservative increasing sequence results
in more computational cost, and an aggressive increasing sequence leads to a suboptimal solution.
Moreover, we evaluated the role of Lagrangian multiplier λ and investigated two update rules for
λ. We applied the ADMM method to solve the minimization problem. We compared our proposed
methods to several state-of-the-art methods using a simulated dataset, as well as the cuprite AVIRIS
data cube. Our results illustrate that the proposed method outperforms these methods in terms of
the achieved RSNR and, in terms of PoS, outperforms all of them, except the SUnSAL method for the
synthetic data. For the subimage of cuprite AVIRIS, 3%, 1% and 0.3% of estimated abundances are
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non-zero using our proposed methods, whereas about 7.9%, 7.6%, 4.7% and 3.2% of them are more
than 10−3 using other competitive algorithms.
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Appendix A. Proof of the Theorem 1

Proof.

Definition 1. [Hausdorff distance [59,60]] Let X be the set of all finite subsets of Rn; then, (X , d) is a metric
space where the Hausdorff distance d(A, B) of two sets of A and B belonging to X is defined by:

d(A, B) = max{sup
x∈A

inf
y∈B
||x− y||∞, sup

y∈B
inf
x∈A
||x− y||∞},

where ||z||∞ = max
i∈{1,2,..,n}

|zi|.
We shall show that, for any ε > 0, there exists a δ > 0, such that |σ− σ̂| < δ yields d(Xσ, Xσ̂) < ε,

where Xσ and Xσ̂ are the set of solutions for∇x f (x, σ) = 0 and∇x f (x, σ̂) = 0, respectively. We prove
this by contradiction. Hence, we assume that the function is not continuous, i.e., there is a ε > 0, such
that for any δ > 0, there always exist some σ, σ̂ > 0 with |σ− σ̂| < δ and d(Xσ, Xσ̂) > ε. Then, we
draw a contradiction.

From d(Xσ, Xσ̂) > ε, we conclude that either:

sup
xσ∈Xσ

inf
x∈Xσ̂

||xσ − x||∞ > ε, (24)

or:

sup
xσ̂∈Xσ̂

inf
x∈Xσ

||x− xσ̂||∞ > ε. (25)

Since the set of solutions Xσ and Xσ̂ are closed sets, d(Xσ, Xσ̂) > ε yields that there must exist
a xσ̂ ∈ Xσ̂, such that ||xσ − xσ̂||∞ > ε for any xσ ∈ Xσ, or there must exist a xσ ∈ Xσ, such that
||xσ − xσ̂||∞ > ε for any xσ̂ ∈ Xσ̂. Moreover, the solutions xσ ∈ Xσ and xσ̂ ∈ Xσ̂ must satisfy the
following equations:

λv(xσ, σ) + ΦTΦxσ −ΦTy = 0, (26)

λv(xσ̂, σ̂) + ΦTΦxσ̂ −ΦTy = 0. (27)

By defining h(x) = ΦTΦx + λv(xσ, σ), we have:

h(xσ)− h(xσ̂) = ΦTΦ(xσ − xσ̂) +

λ(v(xσ, σ)− v(xσ̂, σ)). (28)

Now, by subtracting Equation (28) from Equation (26), adding Equation (27) and taking the
infinity norm of the result, we obtain:
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||h(xσ)− h(xσ̂)||∞ = ||λ(v(xσ̂, σ̂)− v(xσ̂, σ))||∞. (29)

Since h(x) and h−1(x) are continuous in terms of x for fixed σ, from ||xσ− xσ̂||∞ > ε, we conclude
that there exist η(ε), such that ||h(xσ)− h(xσ̂)||∞ > η(ε), i.e., the LHS of Equation (29) must be greater
than η(ε). This is a contradiction with the RHS of Equation (29), which tends to zero as σ tends to σ̂,
since v(xσ, σ) is a continuous function with respect to σ for the fixed value of x.

To prove the continuity of the solutions under the ASC, we have to add an additional Lagrangian
term using the indicator functions in Equations (26) and (27) that are eliminated after subtraction in
Equation (29). The proof under the nonnegativity constraints is also similar, since representing the
ANC via indicator functions involves one additional Lagrangian term for each element of x in both
Equations (26) and (27). These additional terms are also omitted after subtraction in Equation (29).
Thus, the proof of the continuity over the boundary of S is completed.
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