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Abstract: Satellites always sample the Earth-atmosphere system in a finite temporal resolution.
This study investigates the effect of sampling frequency on the satellite-derived Earth radiation
budget, with the Deep Space Climate Observatory (DSCOVR) as an example. The output from
NASA’s Goddard Earth Observing System Version 5 (GEOS-5) Nature Run is used as the truth.
The Nature Run is a high spatial and temporal resolution atmospheric simulation spanning a
two-year period. The effect of temporal resolution on potential DSCOVR observations is assessed
by sampling the full Nature Run data with 1-h to 24-h frequencies. The uncertainty associated with
a given sampling frequency is measured by computing means over daily, monthly, seasonal and
annual intervals and determining the spread across different possible starting points. The skill with
which a particular sampling frequency captures the structure of the full time series is measured
using correlations and normalized errors. Results show that higher sampling frequency gives more
information and less uncertainty in the derived radiation budget. A sampling frequency coarser
than every 4 h results in significant error. Correlations between true and sampled time series also
decrease more rapidly for a sampling frequency less than 4 h.

Keywords: radiation budget; satellite sampling frequency; DSCOVR; EPIC; time series; Arctic;
climate change; GEOS-5; Nature Run

1. Introduction

Satellite remote sensing remains the only feasible way of observing the Earth on a global
scale. Geophysical parameters retrieved from satellite observations have been playing a critical
role in studying the Earth-atmosphere system. The Deep Space Climate Observatory (DSCOVR) is
particularly well suited for providing such observations. Orbiting around the Sun-Earth L1 Lagrange
point, a location where gravitational and centrifugal forces are in balance for an orbital period equal to
Earth’s, the DSCOVR satellite always stays near the Sun-Earth line. In this position, which lies around
1.5 million km away from the Earth, DSCOVR can view the entire daytime hemisphere continuously.
DSCOVR is equipped with two Earth-observing instruments: the National Institute of Standards
and Technology Advanced Radiometer (NISTAR) and the Earth Polychromatic Imaging Camera
(EPIC) [1]. NISTAR views the Earth as one pixel and provides broadband radiation information
about the Earth and its atmosphere. EPIC images the Earth with 10 spectral channels ranging from
the ultraviolet to the near infrared with it 2048 by 2048 CCD array. Combined information from the
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two instruments will be used to derive the Earth’s radiation budget, as well as ozone, cloud, aerosol
and vegetation properties.

DSCOVR, like any other satellite, can only provide observations with a finite temporal
resolution. As a result, the information derived from these observations is a subsample of the true
system. In general, subsampling will affect the accuracy of the retrieved results [2,3]. For this study,
the focus is on clouds and radiation budget. The specific questions to be addressed include: how
does subsampling affect the mean, and how close is the sampled time series to the truth? This paper
presents the analysis of the temporal sampling effect on Earth’s radiation budget; analysis with cloud
cover will be presented in Part 2.

To truly study the effect of temporal sampling frequency, a truth dataset with an infinitesimal
sampling rate would be required in order to capture the constantly changing scene underneath the
spacecraft, yet this is not practical. Instead, the output from a global atmospheric model is used.
This provides the best substitute for a continuous dataset. NASA produces operational weather
forecasts using the Goddard Earth Observing System Version 5 (GEOS-5). Recently, a very high
spatial and temporal resolution version of GEOS-5 was run in a free-running climate-like simulation.
In this so-called Nature Run mode, a convection resolving horizontal resolution was used with a
model time step of a few minutes; the total integration time is just over two years. Much effort has
gone into validating the Nature Run [4], and it has been shown to have very realistic atmospheric
structures and radiation budget. Having such a fine resolution and consistency over a long period of
time makes the Nature Run data well suited for analyzing sampling frequency. A general circulation
model as a proxy for real data has been used in this context before, e.g., [5].

The Nature Run provides the outgoing radiation from Earth in terms of shortwave and longwave
radiation. Since DSCOVR constantly views the entire sunlit side of the Earth, all of the calculations
and investigations performed in this study are on the daytime half of the Earth. The total outgoing
radiation on the sunlit side of the Earth is a function of the amount of incoming radiation, which
depends on the location on Earth and the time of year. Figure 1a shows the number of hours of
sunlight for all latitudes, calculated with a method described in [6]. Figure 1b shows the number of
hours of sunlight per day throughout the year for four cities. The day length is the time duration for
which these locations will be visible from the perspective of DSCOVR; hence, for a given sampling
rate, the day length determines the number of images that DSCOVR can take over a given region.
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Figure 1. (a) Contour plot showing the number of hours of sunlight per day for all latitudes
throughout the year; (b) hours of sunlight throughout the year for four cities.

Studies have shown that over the past decade, the Earth’s energy imbalance has ranged between
about 0.5 and 1 Wm−2 [7–9]. This level of accuracy is not available from direct satellite measurement
at the current time. However, instruments, such as Clouds and the Earth’s Radiant Energy System
(CERES), provide reliable enough observations to determine the changes in the net radiation [10,11].
Observations from DSCOVR will also play an important role in tracking energy imbalance. A goal
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of this work is to analyze whether a particular sampling frequency of the outgoing radiation of the
sunlit side of the Earth will provide an accurate measure over shorter, as well as longer time scales.

The analysis can also be used to optimize the observation rate so that an efficient sampling
frequency can be chosen without introducing unnecessary error. Analysis of the time series is an
important component of satellite product design, as the need for efficiency is balanced with the
need for accurate observations and products. Fortunately, DSCOVR has a wide field of view, and
the interest is only on the area that it observes. Often, products rely on multiple sensors viewing
smaller areas from different satellites with different orbits and sampling rates. This can make the
process rather complicated and the errors more significant. For the CERES mission, for example,
interpolation techniques have been developed to optimize the sampling of the atmosphere [12].
Some other examples of the complexity involved with optimizing the time stepping are in [13,14].
In the former, a fit function is designed to generate accurate daily means of tropical ice, water and
cloudiness. In the latter, a method is presented for estimating the sampling errors in monthly means
of the cloud fraction as measured by SEVERI (Spinning-Enhanced Visible and Infrared Imager).

It should be noted that this study only investigates the effect of sampling rate. Other factors, such
as instrument calibration, retrieval algorithms, etc., which can also impact the quality of the satellite
retrievals, are not considered.

Even though the questions addressed in this study concern the effect of subsampling on
DSCOVR-derived information, the results are helpful to satellite remote sensing in general.
The remainder of the paper is organized as follows: Section 2 provides a description of the Nature
Run dataset and a discussion of the methodology used to analyze the time series. Section 3 shows
all of the results for different sampling frequencies and discusses the implications for the instrument.
Section 4 provides some concluding remarks.

2. Data and Methodology

In this section, the Nature Run dataset is discussed, and the methodology for analyzing the
subsampled time series is introduced.

2.1. The Nature Run

The Nature Run integration begins in May 2005 and runs for just over two years to June 2007.
For the purposes of this study, the period from 1 June 2005 to 1 June 2007 is used. The horizontal
resolution of the model is approximately 7 km, and 72 model levels up to 0.01 hPa are used. The time
step is 5 min, and radiation fluxes are recomputed every 30 min.

The Nature Run was initialized from a realistic atmospheric state and is constrained by realistic
boundary conditions throughout the integration. However, since the model runs freely, it diverges
from the true atmospheric state within a few days. Nevertheless, validation of the model output has
shown the Nature Run to maintain a very realistic atmospheric state throughout the integration [4].
For example, it has tropical storms of an appropriate strength and frequency, approximately correct
overall cloud cover and a correctly-varying overall radiation budget.

Figure 2 contrasts the outgoing top-of-atmosphere radiation produced by the Nature Run with
that produced by an operational version of GEOS-5. The time shown is 25 September 2006 at
1200 UTC, around 15 months into the Nature Run integration. At this time of the year and day, the
Sun is approximately located above the Equator and the Greenwich Meridian. The figure shows the
perspective from the L1 Lagrange point. The operational quantities are taken from the beginning
of an operational forecast and, so, are effectively the outgoing radiation produced from the data
assimilation system. This makes for a field very close to reality, since around 5 million observations
are assimilated at each cycle. A comparison between the operational version of GEOS-5 and CERES
observations for the top of atmosphere radiation budgets has demonstrated the realism of the system,
e.g., [15,16].



Remote Sens. 2016, 8, 98 4 of 17

(a) Outgoing shortwave rad (Wm−2) (c) Outgoing longwave rad (Wm−2) (e) Outgoing total rad (Wm−2)

 
(b) Outgoing shortwave rad (Wm−2)

 

0 200 400 600 800

 
(d) Outgoing longwave rad (Wm−2)

 

0 100 200 300

 
(f) Outgoing total rad (Wm−2)

 

0 200 400 600 800 1000

Figure 2. Outgoing shortwave radiation for (a) the operational run and (b) the Nature Run; outgoing
longwave radiation for (c) the operational run and (d) the Nature Run; outgoing total radiation for
(e) the operational run and (f) the Nature Run; all panels are valid at 1200 UTC on 25 September 2006
and from the perspective of the L1 Lagrange point at this time.

It is clear from Figure 2 that the Nature Run produces very realistic looking fields. Although
different from reality, the areas of the largest outgoing radiation are located in qualitatively the same
locations, and the scale of the structures is similar.

Figure 2a,b shows the outgoing shortwave radiation. Areas of the largest outgoing shortwave
radiation are where clouds are located and sunlight is being reflected back into space. This is evident
in the tropics, where there are cumulus towers, and in the Southern Hemisphere, where extra-tropical
storms propagate around the southern oceans. The relatively high reflectivity of the Saharan and
Arabian deserts is evident. A smaller amount of shortwave radiation is reflected by the oceans, due
to the low surface albedo. In Figure 2c,d, which shows the outgoing longwave radiation, it is evident
that the dominant source is the oceans and the desert. This is due to the higher temperature associated
with these regions. In general, clouds reflect more solar radiation than the surface, due to the higher
albedo. In contrast, they emit less longwave radiation because of their usually cooler temperatures.
Horizontal gradients of outgoing longwave radiation are typically smaller than they are for outgoing
shortwave radiation. The range of values for longwave vary by approximately 200 Wm−2, compared
to around 850 Wm−2 for shortwave. Albedo can vary significantly at relatively short horizontal scales,
resulting in larger differences in outgoing shortwave radiation across small distances.

The focus of this study is on capturing temporal variations of the Earth’s radiation budget over
the sunlit hemisphere. It would be useful to compare the temporal variations of this measure in
the Nature Run with those from observations. This can be problematic, since a specific location
can have quite sparse temporal resolution, and gap filling typically involves error introducing
interpolation [12]. Instead of comparing to observations directly, the Nature Run temporal evolution
is again compared to the GEOS-5 operational system. Outgoing radiation is given every 30 min, and
forecasts are a maximum of 6 h, the interval at which data assimilation is performed.

Figure 3 compares the time series of outgoing shortwave and longwave radiation from the
Nature Run and the operational system for the month of September 2006. Each data point in the time
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series in the figure is calculated by spatially averaging the outgoing radiation across the sunlit side of
Earth. Data are output on a latitude-longitude grid, so a cosine of latitude area weighting is applied in
the spatial averaging. A particular grid point is considered sunlit when the incoming sunlight covers
more than half of the grid area. The figure demonstrates that the typical diurnal cycle is captured well
by the Nature Run. For outgoing longwave radiation, the amplitude and frequency is very similar to
reality, even though the atmospheric state is different. For outgoing shortwave radiation, the structure
of the time series has larger differences, due to the dependency on clouds and specific weather, which
will be different in the Nature Run. The average outgoing shortwave radiation in the Nature Run for
this period is slightly higher due to slightly more cloud cover. Despite the differences, however, it
is clear that the kinds of scales seen for the realistic system are seen in the Nature Run and that they
behave similarly.
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Figure 3. Comparison of longwave and shortwave outgoing radiation for the Nature Run and
operational GEOS-5. The time series shows the month of September 2006.

For the Nature Run to be useful for simulating DSCOVR observations requires it to have realistic
spatial and temporal scales in the outgoing radiation fields. The comparison with the operational
system, which is very close to reality, shows this to be the case for the scales captured by that system.

Figure 4 shows the time series of outgoing longwave and shortwave radiation across the entire
Nature Run period. Similar to Figure 2, Figure 4 demonstrates that the shortwave radiation has larger
variation compared to the longwave. When averaged over the sunlit half of the Earth, longwave
radiation is larger than its shortwave counterpart. Slight peaks occur in outgoing longwave in
the late Northern Hemisphere summer, due to the greater land mass of the Northern Hemisphere
being orientated slightly more towards the Sun. The outgoing shortwave radiation has a much
larger amplitude in both the annual and daily cycles. The peak of the annual cycle occurs in the
Southern Hemisphere summer. This is due to the relatively large and highly reflective surface of
Antarctica coming into view of the Sun, as well as cloud tops of the Southern Hemisphere storm
track. The greater daily variations in the outgoing shortwave radiation are in part due to the contrast
between land and ocean. Generally, when the sunlit side of the Earth is the Pacific Ocean, outgoing
shortwave radiation will be less than when a large landmass dominates the sunlit side.
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Figure 4. Time series of outgoing longwave and shortwave radiation produced by the GEOS-5 Nature
Run. The time series covers a two-year period from 1 June 2005 to 1 June 2007.

2.2. Methodology

The original Nature Run time series provides a suitable substitute of the truth, and a
subsampling of the time series with a specific frequency mimics the observations of DSCOVR, or some
other satellite. Here, observations from DSCOVR are simulated by taking the outgoing radiation on
the sunlit side of the Earth, as shown in Figure 4.

The Nature Run outputs the radiation fields every 30 min; let t be the original truth time series
of the outgoing radiation (shortwave, longwave or total) from the sunlit side of the Earth, then:

t = {t1, t2, ...} (1)

where subscripts denote output times.
For a particular sampling frequency, a subsample can be constructed by choosing a specific

starting point. There are 2n potential starting points, where n is sampling frequency in hours; hence,
2n time series can be constructed for a sampling frequency of every n hours. Let rn,j be the subsample
time series corresponding to the j-th starting point, where j = 1, ..., 2n, then:

rn,j =
{

rn,j,1, rn,j,2, ...
}

(2)

To further clarify how the subsampled time series are constructed, Figure 5a shows examples
with the total outgoing radiation time series, for the time period 20 June 2006 at 0000 UTC to 23 June
2006 at 0000 UTC. The different curves show the original Nature Run time series and subsamples
obtained for this period with different sampling frequencies, but the same starting point. The effect
of the subsampling can be clearly seen from Figure 5a. As the sampling frequency becomes coarser
and coarser, more and more details of the original time series are lost. To quantify the effect of the
subsampling, a suite of of metrics is adopted. These metrics, which are described in detail in the
following sections, include the uncertainties in the mean, the absolute error in the subsamples, the
correlation between the subsamples and the original time series and normalized errors.

The original Nature Run time series in Figure 5a also serves to demonstrate how the outgoing
radiation can vary on daily time scales. At this time of year, there is generally a sudden increase in
outgoing radiation with a peak at around 0600 to 0900 UTC. After the peak occurs, outgoing radiation
tails off to a daily low at around 0000 UTC. The lowest values generally coincide with the Sun being
over the Pacific Ocean. The sudden increase is then due to the large land masses of Asia coming into
view. The peak values occur when mostly land is in view of the Sun, and the tail-off occurs as the
Atlantic Ocean comes into view. Smaller local maximums occur due to the North American continent.
Differences from day to day result from different weather patterns and cloud locations.
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Figure 5. (a) Nature Run time series of total outgoing radiation for a three-day period in June 2006.
Colored curves show single realizations from the various sampling intervals for the same period;
(b) The daily means for just 20 June 2006 for all of the realizations from the various sampling intervals.

2.2.1. Uncertainties in the Mean

The daily, monthly, seasonal and annual means of outgoing radiation are critical parameters in
climate studies. As mentioned above, for each given subsampling frequency, multiple time series
can be constructed. Different subsamples will give different means; the variability of these means
can be used as the metric to show the uncertainty in subsampling. Figure 5b gives an example of
this metric. Here, the daily means rn,j, for every sampling frequency and starting point, are plotted
against sample frequency. The interval for which means are calculated is 20 June 2006 at 0000 UTC to
21 June 2006 at 0000 UTC. When the sampling frequency is between 1 and 4 h, the daily mean spread
is quite small. When the sampling frequency is 24 h only, one location is effectively sampled each day,
and the spread is large.

To generalize for a specific interval, be it a day, a month, a season or a year, the uncertainty of the
mean can be measured with the standard deviation of the difference between full and subsampled
time series over all possible subsamples. Let rn,j be the interval mean for the j-th subsample and t be
the mean of the original time series (“the truth”). Note rn,j and t are also time series, but with each
point in the series being for each interval. The standard deviation of the difference between full and
subsampled time series interval means can be calculated as,

σr,n =

√√√√ 1
2n

2n

∑
j=1

rn,j
2 −

(
1

2n

2n

∑
j=1

rn,j

)2

(3)

Note that rn,j is a subsample of t, so when averaged over different starting points j, it is just an
average of the entire truth time series. Therefore, Equation (3) reduces to,

σr,n =

√√√√ 1
2n

2n

∑
j=1

rn,j
2 − t2 (4)

The average standard deviation of the difference between full and subsampled time series over
the entire Nature Run time period provides a measure of the overall uncertainty:

σr,n =
1
m

m

∑
k=1

[σr,n]k (5)

where m is the number of possible intervals. For the Nature Run period, there are 720 days, 24 months,
8 seasons or 2 years, so m = 720 if considering daily means.
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2.2.2. Absolute Error in the Mean

Instead of computing the daily, monthly, seasonal and annual means, the error compared to the
true mean for that interval can be used. For a given sampling frequency of every n hours, the absolute
error time series can be written as:

δr,n =
1

2n

2n

∑
j=1

∣∣rn,j − t
∣∣ (6)

The average absolute error over the entire Nature Run for a given sampling frequency is,

δr,n =
1
m

m

∑
k=1

[δr,n]k (7)

where m is the number of possible intervals. For example, m = 24 if considering monthly means.

2.2.3. Correlation

One drawback of examining the data only with the interval mean is that it does little to compare
the structure of the time series. It is likely that peaks and sudden changes in the time series are aliased,
and the computation of the mean does not always provide a measure of this. Indeed, the error in the
mean could be zero, even when large aliasing occurs.

A challenge with the comparison of the original and subsampled time series being made here is
that the data are sampled at different rates, and the time series is generally not periodic. This prevents
the use of techniques that could be useful, such as looking at Fourier coefficients and comparing
a power spectrum. One way that the structure of the original and subsampled time series can
be compared though is by measuring the correlation coefficient between them. Computing the
correlation coefficient between two time series provides a quantitative sense of how similar the two
series are. If a particular subsampled time series accurately represented the interval mean by chance,
without having very similar overall structure, it would be revealed by a low correlation coefficient.

Since the sampling frequency is different, each subsampled time series is linearly interpolated
back to the same sample locations as the original time series to facilitate computing correlation
coefficients. The correlation coefficient:

Rn,j = corr
(

pn,j, t
)

(8)

where pn,j is the linearly-interpolated time series, is computed for each possible starting point.
As above, a mean value is computed across all starting points within a particular frequency, denoted
Rn. In addition to that, the standard deviation of the correlation coefficients across all starting points
is computed, σR,n.

2.2.4. Error Norms

Using the linearly-interpolated time series, it is also possible to compute normalized errors.
The error is computed at all original sample points using three normalized measures,

l1 =
1
N

N

∑
i=1
|εi|, l2 =

(
1
N

N

∑
i=1
|εi|2

) 1
2

and l∞ = max (|εi|) (9)

where ε is the difference between the linearly-interpolated subsampled time series and the original
Nature Run time series and N is the number of samples in the interval.

Like for the correlation coefficients, measuring the error in these ways provides insight into
the amount of aliasing that occurs and how much error could be present at any given instant, on
average. The l1 measures the average difference between the subsampled time series and the truth at
all locations; hence, the l1 error can be large, even if the error in the mean is not.
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3. Results

In this section, the time series of outgoing radiation produced by the Nature Run is subsampled
and analyzed with the above metrics.

Figure 6a shows the daily mean t and mean plus and minus one standard deviation of the
difference between full and subsampled time series t ± σr,n for the 720 days of the Nature Run.
The figure shows the results for the total outgoing radiation, i.e., the sum of the shortwave and
longwave. The three panels show the results for the n = 4-, 8- and 12-h sampling frequency; other
sampling frequencies are omitted from these plots. Figure 6b shows the monthly mean and standard
deviation of the difference between full and subsampled time series; Figure 6c shows the seasonal
values; and Figure 6d shows the annual values. Note that vertical scaling is kept fixed within each of
the three sub-panels, but is not fixed for the entire figure.
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Figure 6. The blue curves/points show t for the (a) daily; (b) monthly; (c) seasonal and (d) annual
intervals. The red curves/points show t± σr,n. Within each panel, the three sub-panels show, from
top to bottom, a 4-, 8- and 12-h sampling frequency. The vertical scale is fixed within each set of
three panels.
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The results in Figure 6 show that when a 4-h sampling is used, the standard deviation of the
difference between full and subsampled time series is relatively small compared to overall variations
of the mean across all time scales. For the daily mean, the standard deviations do not exceed
1.19 Wm−2; given that daily means are of the order of 450 Wm−2 and vary by around 5 Wm−2 in
a day, this would likely be a reasonable variation to encounter in observations. As expected, for 8-
and 12-h sampling frequencies, the uncertainty increases. In the daily means, the spread is much
more evident, and even for the long time scale annual mean, there is significantly more spread with
an 8-h sampling frequency than with 4 h.

The interval means are largest in and around December, as seen in Figure 4. The spread for
daily means appears fairly consistent throughout the year. From the monthly and seasonal means,
it can be seen that the time of year with the least spread is around October and April. The standard
deviation of the difference between full and subsampled time series on the monthly and seasonal
means of this period is smallest and is similar for both occurrences of these periods in the Nature
Run. The two annual means are similar, 456.04 Wm−2 and 455.43 Wm−2. The annual mean spread is
around ten-times larger when the sampling frequency is halved from every 4 h to every 8 h.

The findings are generalized by computing σr,n for shortwave, longwave and total radiation
separately; these results are shown in Figure 7. Each curve shows the average standard deviation of
the difference between full and subsampled time series, i.e., a data point in Figure 7 corresponds to the
mean of the standard deviations represented by an entire red curve or set of red points in Figure 6.
Note that more sample frequencies are shown in Figure 7 than in Figure 6. Standard deviations
of the difference between full and subsampled time series are larger for shortwave radiation than
for longwave radiation, due to the smaller spatial and temporal scales associated with shortwave
radiation. The magnitudes of the standard deviations of the difference between full and subsampled
time series for the total radiation are dominated by the shortwave. These results suggest a reduced
frequency would likely be acceptable if only longwave radiation were of interest.
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Figure 7. The mean of the standard deviations of the difference between full and subsampled time
series σr,n for (a) shortwave; (b) longwave and (c) total radiation.

As anticipated, the uncertainty increases as the sample interval does. For a sampling interval of
1 h, the standard deviation of the difference between full and subsampled time series is negligible for
all but the daily means. There are two general regimes when computing the daily mean, a sampling
frequency of 4 h and above and below four hours. For example when decreasing the frequency from
1 h to 2 h or 2 h to 4 h, the standard deviation of the difference between full and subsampled time
series increases by around 63% for shortwave radiation. Conversely, when decreasing frequency from
4 h to 8 h, the standard deviation of the difference between full and subsampled time series increases
by 430% for shortwave radiation. Between 8 h and 12h and 24 h, a similar rate of increase in average
standard deviation is seen. For longwave radiation, the increase in average standard deviation of the
difference between full and subsampled time series is more gradual between 1 and 12 h and changes
little between 8 and 12 h. Sampling the Earth every 12 h results in only one observation per day for
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any given location. It should be noted that the standard deviation of the annual mean for the 8-h
subsample is comparable to the Earth’s energy imbalance [7–9]; hence, a sample frequency of every
8 h or coarser is not suitable for radiation budget studies.
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Figure 8. As for Figure 6, (a) daily; (b) monthly; (c) seasonal and (d) annual intervals, but showing
just δr,n.

Figure 8, constructed like Figure 6, shows the absolute errors in the interval mean, δr,n.
When using a sampling frequency of 4 h, the absolute errors in the interval mean are relatively small,
generally between 0.1 Wm−2 and 0.5 Wm−2 for the daily mean and even smaller for the monthly,
seasonal and annual intervals. For the 8-h sampling frequency, the errors for the daily interval
increase to between 1 Wm−2 and 2 Wm−2, and for the monthly, seasonal and annual intervals are
around 1 Wm−2. When using the 12-h sampling frequency, absolute errors for the daily interval can
be larger than 4 Wm−2. For monthly, seasonal and annual intervals, the errors range from 1 Wm−2 to
2 Wm−2, but have much more variation between periods than for 4- and 8-h frequencies. Examining
the standard deviation of the difference between full and subsampled time series in Figure 6, it is
difficult to determine if there are annual variations in spread. As is evident comparing sampling
frequencies of 8 and 12 h in Panels (b), (c) and (d) between Figure 8 and Figure 6, the largest spread
occurs when the absolute errors are also large. Therefore, looking at the absolute error helps reveal
any annual cycles that occur in both errors and spread. For the absolute errors in the daily mean,
there are slightly larger errors in the summer months when using a 4-h sample frequency. For the
lower frequency sampling, no annual signal is evident for the daily interval. For absolute errors in
the monthly mean, there is a slight summer increase for the 4-h sampling frequency. For 8 and 12 h,
it is harder to determine if any significant cycle occurs, though errors do seem slightly smaller in the
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autumn months. For the seasonal and annual intervals, there are insufficient samples to determine
any pattern.

As above, the results are generalized by taking the average over all intervals to give δr,n, shown
in Figure 9. By definition, the mean standard deviation of the difference between full and subsampled
time series and the mean absolute error are correlated; hence, the results in Figure 9 have the
same characteristics as were shown in Figure 7. However, since they are showing the properties
of subsamples from different perspectives, both are provided. Again, the overall findings are that
errors start to increase more rapidly once the sampling frequency is reduced below 4 h. The effect is
more dramatic for the shortwave radiation, where spatial and temporal variations are larger than for
longwave radiation.
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Figure 9. As for Figure 7, (a) shortwave; (b) longwave and (c) total radiation, but showing δr,n.

Figure 10 shows mean correlation Rn and correlation spread Rn ± σR,n for the daily, monthly,
seasonal and annual intervals. The data are displayed as in Figures 6 and 8. For the 4-h sampling
frequency, the correlations are generally close to one, and the standard deviations of the correlation
coefficient are small for most of the intervals. Some decreases in mean correlations for this sampling
frequency are seen in the Northern Hemisphere winter time. For 8- and 12-h sampling frequencies,
the correlations get significantly smaller for the daily interval. For a 4-h sampling frequency, the
monthly, seasonal and annual correlation coefficients are all close to one, and the standard deviations
are small, showing that the structure of the time series is very similar for all starting points.
For monthly intervals, the correlations remain high for the 8-h sampling frequency, but can reduce
below 0.5 for the 12-h sample frequency. Seasonal and annual correlations are close to one, and the
standard deviations of the correlation coefficients are small for all sample frequencies.

Table 1 shows the means and standard deviations of the l1, l2 and l∞ normalized errors for the
daily interval. Values are computed by generating subsampled time series for each day and then
interpolating those time series. Error norms are computed for every start point, and mean and
standard deviation over all starting points for a given frequency are computed.

The l1 and l2 errors measure the differences between a subsample and the original truth
time series; l∞ gives the maximum difference, focusing on where the aliasing is most significant.
Examining the subsampled time series in this metric gives slightly different results than seen for the
interval means. Here, the errors increase most rapidly for the highest frequency sampling rates, for
example the standard deviation of l∞ with the 2-h frequency is around 60-times larger than with
the 1-h frequency. Effectively, the measures demonstrate that errors at a specific time due to aliasing
increase fairly consistently. Unlike in computing the means, there is not a more rapid increase in these
metrics when below a certain sampling frequency.
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Figure 10. As for Figure 6, (a) daily; (b) monthly; (c) seasonal and (d) annual intervals, but showing
Rn and Rn ± σR,n.

Table 1. Means and standard deviations of the normalized errors for the daily interval.

l1 Error (Wm−2) l2 Error (Wm−2) l∞ Error (Wm−2)

Sampling freq. Mean SD Mean SD Mean SD

1 h 0.1040 0.0029 0.1834 0.0024 0.5958 0.0010
2 h 0.3842 0.0123 0.5557 0.0164 1.5579 0.0594
4 h 1.0934 0.0965 1.4912 0.1358 3.7740 0.3610
8 h 2.4855 0.2277 3.2808 0.3161 7.4871 0.8056
12 h 3.6515 0.3420 4.7048 0.5102 9.9982 1.3570
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Arctic Region

The results presented above are computed for the entire sunlit side of the Earth. Now, the
area is reduced to only consider the Arctic, a region that has been experiencing an unprecedented
change for the past few decades [17]. The radiation budget over the Arctic is one of the main factors
that drives these changes [18]. DSCOVR presents a valuable opportunity to study polar regions,
especially during the polar summer, when the region is orientated towards the Sun. This is an area
with otherwise fairly sparse observation coverage. Indeed, a satellite located at the L2 Lagrange
point has been proposed, so that the polar winter could be continuously observed, too, and satellite
coverage of the entire Earth simultaneously could be achieved [19].

At some points during the year, the Arctic region (north of 66◦N) will be orientated away from
the Sun (polar night) and, so, not visible to DSCOVR. As such, the time series of outgoing radiation
in this region, as seen from the L1 Lagrange point, is not continuous. In the statistical metrics used
here, the days, months and seasons for which at least part of the interval is not sunlit are neglected.
For the annual metrics, this is not possible, so instead, all of the times when a measurement is made
are initially included.

Figure 11 shows the same metrics shown in Figure 7, but here for the Arctic region. The standard
deviations of the difference between full and subsampled daily means are larger for the total radiation
in the Arctic sunlit region than they are for the global sunlit region. However, the larger contribution
now comes from the longwave radiation, rather than shortwave radiation. For Earth as a whole,
the average weather, and therefore cloud cover, is quite constant, whereas when focusing on a small
region like the Arctic, the average conditions can be more varied, giving rise to larger fluctuations in
outgoing longwave radiation. Near the beginning and end of the polar night, there is significant daily
variation in the outgoing total radiation. At this time, only a very small sliver is being observed, and
weather or the type of land in view in that region can be highly varied over the course of a day.
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Figure 11. As for Figure 7, (a) shortwave; (b) longwave and (c) total radiation, but for the Arctic region.

It is interesting to note that when sampling at 4 h and examining longwave or total radiation, the
average standard deviation of the difference between full and subsampled time series is actually
larger than for the monthly and seasonal intervals. This is due to the method used in the data
processing. Since monthly and seasonal means are only computed when at least some sunlight
is present for the entire interval, the regions closest to where the polar night begins and ends are
not included. However, the annual mean is computed using data right up to where Arctic polar
night begins and ends, and so, the higher variation that is seen in longwave radiation at this time
is included. When a few weeks of data for either side of the polar night are arbitrarily omitted
from the annual mean calculation, the average standard deviation of the difference between full and
subsampled time series is smaller than for monthly and seasonal means. This is also the case for the 8-
and 12-h sampling frequency when examining longwave radiation. The characteristics of the absolute
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error in the interval mean for the Arctic region are very similar to those of the average standard
deviations of the difference between full and subsampled time series (not shown), as seen globally.

4. Conclusions

A two-year time series of outgoing radiation, as produced by the high resolution Goddard Earth
Observing System Version-5 (GEOS-5) Nature Run, has been analyzed. The objective of this work has
been to assess the impact of temporal sampling frequency on DSCOVR-retrieved radiation budget.
The findings of this study can thus also inform the optimization of the temporal sampling that will
be used with observations. The Nature Run data were chosen for their high temporal and spatial
resolution, because these offer a consistent model run over a long period and because they do not
suffer from discrete re-initialization steps due to data assimilation.

Potential sampling frequencies ranging from 1 h to 24 h were examined in the study. Simulation
of the observations was achieved by subsampling the full Nature Run time series of outgoing
(top-of-atmosphere) radiation. Experiments were performed treating longwave and shortwave
radiation separately and for total radiation.

The ability of different sampling rates to capture the time series of outgoing radiation was first
analyzed in the context of daily, monthly, seasonal and annual means. For each sampling frequency,
there are a number of possible starting points. Computing the interval mean for all of the possible
starting points for a particular sampling frequency and then computing the standard deviation of
those means gives an insight into the variability. Results show that higher sampling frequency
definitely gives more information and less uncertainty. Sampling frequency coarser than every 4 h
results in significant error.

The absolute error in the interval means were also compared, where interval means for each
sampling frequency and starting point were compared directly to the true interval mean. This metric
provides further insight into the behavior of a given sampling, particularly by revealing seasonal
cycles. Averages of the standard deviation of the difference between full and subsampled time series,
as well as absolute errors were taken over all possible intervals. Differences between longwave and
shortwave radiation were compared in this setting; it was shown that errors and spread in sampling
shortwave radiation grow more rapidly than for longwave radiation. This is due to the more variable
nature of shortwave radiation over the intervals being examined.

In order to assess the similarity between the structure of the sampled time series and the full time
series, correlation coefficients between the two were considered. The mean and standard deviations
of the correlation coefficients with daily, monthly, seasonal and annual intervals across all starting
points were computed. This provides a measure of how much the similarity between the two time
series varies with different sampling rates. A sampling rate of around 4 h was shown to perform well
for monthly, season and annual intervals. For the 4-h sampling rate, correlations of 0.9 or more are
often seen for the daily interval, almost always for monthly intervals and always for seasonal and
annual intervals.

In the final part of this work, the experiments were repeated, but only considering the Arctic
region. Here, the variations were found to be larger, increasing the uncertainly for each sampling
frequency. Around the time the Arctic polar night begins and ends, the uncertainty becomes
particularly large. If this region, or the Antarctic region, were being examined in detail, it would likely
be necessary to increase the sampling frequency. There is more uncertainty in sampling longwave
radiation in the Arctic than shortwave radiation, unlike for the rest of the sunlit region of the Earth,
where the opposite was found to be true.

We note that a higher DSCOVR sampling frequency is definitely helpful and sometimes a must
for conducting some of the studies, such as atmosphere correction and vegetation indices retrieval.
This paper only focuses on radiation budget. In Part 2 of this work, the cloud cover is examined.
In order to produce the full outgoing radiation product from DSCOVR, it will be necessary to also
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formulate information about the spatial structure of the atmosphere. Analyzing the time series of
cloud cover will further inform the temporal sampling required.

Acknowledgments: This work was funded by the NASA DSCOVR Earth Science Algorithms program managed
by Richard Eckman through Grant NNX15AB51G for the project EPIC Cloud Algorithms.

Author Contributions: Y. Yang proposed undertaking this work, and D. Holdaway carried out the experiments
and generation of the data from the GEOS-5 Nature Run and operational forecasts. Both authors chose the
metrics used to analyze the data and designed the presentation of the results. D. Holdaway prepared a first draft
of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yang, Y.; Marshak, A.; Mao, J.; Lyapustin, A.; Herman, J. A Method of Retrieving Cloud Top Height
and Cloud Geometrical Thickness with Oxygen A and B bands for the Deep Space Climate Observatory
(DSCOVR) Mission: Radiative Transfer Simulations. J. Quant. Spectrosc. Radiat. Trans. 2013, 122, 141–149.

2. Gebremichael, M.; Krajewski, W.F. Characterization of the temporal sampling error in space-time-averaged
rainfall estimates from satellites. J. Geophys. Res. 2004, 109, D11110.

3. Tiao, G.; Reinsel, G.; Xu, D.; Frederick, J.H.; Zhu, X.; Miller, A.J.; DeLuisi, J.J.; Mateer, C.L.; Wuebbles, D.J.
Effects of auto-correlation and temporal sampling schemes on estimates of trends and spatial correlation.
J. Geophys. Res. 1990, 95, 20507–20517.

4. Gelaro, R.; Putman, W.M.; Pawson, S.; Draper, C.; Molod, A.; Norris, P.M.; Ott, L.; Prive, N.; Reale, O.;
Achuthavarier, D.; et al. Evaluation of the 7-km GEOS-5 Nature Run; Technical Report Series on Global
Modeling and Data Assimilation 36; NASA Global Modeling and Assimilation Office: Greenbelt, MD,
USA, 2014.

5. Lin, X.; Fowler, L.D.; Randall, D.A. Flying the TRMM Satellite in a general circulation model. J. Geophys. Res.
2002, 107, ACH 4-1-ACH 4-17.

6. Forsythe, W.C.; Rykiel, E.J.; Stahl, R.S.; Wu, H.; Schoolfied, R.M. A model comparison for daylength as a
function of latitude and day of year. Ecol. Model. 1995, 80, 87–95.

7. Hansen, J.; Sato, M.; Kharecha, P.; von Schuckmann, K. Earth’s energy imbalance and implications.
Atmos. Chem. Phys. 2011, 11, 13421–13449.

8. Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s Global Energy Budget. Bull. Am. Meteorol. Soc. 2009,
90, 311–323.

9. Trenberth, K.E.; Fasullo, J.T.; Balmaseda, M.A. Earth’s Energy Imbalance. J. Clim. 2014, 27, 3129–3144.
10. Loeb, N.G.; Wielicki, B.A.; Doelling, D.R.; Smith, G.L.; Keyes, D.F.; Kato, S.; Manalo-Smith, N.; Wong, T.

Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Clim. 2009, 22, 748–766.
11. Wong, T.; Stackhouse, P.W.; Kratz, D.P.; Wilber, A.C. Earth radiation budget at top-of-atmosphere [in State

of the Climate in 2008]. Bull. Am. Meteorol. Soc. 2009, 90, S33–S34.
12. Young, D.F.; Minnis, P.; Doelling, D.R.; Gibson, G.G.; Wong, T. Temporal Interpolation Methods for the

Clouds and the Earth’s Radiant Energy System (CERES) Experiment. J. Appl. Meteorol. 1998, 37, 572–590.
13. Foster, M.J.; Heidinger, A. PATMOS-x: Results from a Diurnally Corrected 30-yr Satellite Cloud

Climatology. J. Clim. 2013, 26, 414–425.
14. Reuter, M.; Thomas, W.; Mieruch, S.; Hollmann, R. A Method for Estimating the Sampling Error Applied

to CM-SAF Monthly Mean Cloud Fractional Cover Data Retrieved From MSG SEVIRI. IEEE Trans. Geosci.
Remote Sens. 2010, 48, 2469–2481.

15. Bloom, S.; da Silva, A.; Dee, D.; Bosilovich, M.; Chern, J.D.; Pawson, S.; Schubert, S.; Sienkiewicz, M.;
Stajner, I.; Tan, W.W.; et al. Documentation and Validation of the Goddard Earth Observing System (GEOS)
Data Assimilation System-Version 4; Technical Report Series on Global Modeling and Data Assimilation 26;
NASA Global Modeling and Assimilation Office: Greenbelt, MD, USA, 2005.

16. Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J.; Song, I.S.; Eichmann, A. The GEOS-5 Atmospheric General
Circulation Model: Mean Climate and Development from MERRA to Fortuna; Technical Report Series on Global
Modeling and Data Assimilation 28; NASA Global Modeling and Assimilation Office: Greenbelt, MD,
USA, 2012.



Remote Sens. 2016, 8, 98 17 of 17

17. Intergovernmental Panel on Climate Change. Climate Change 2014: Impacts, Adaptation, and Vulnerability.
Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014.

18. Sedlar, J.; Tjernstrom, M.; Mauritsen, T.; Shupe, M.D.; Brooks, I.M.; Persson, P.O.G.; Brich, C.E.; Leck, C.;
Sirevaag, A.; Nicolaus, M. A transitioning Arctic surface energy budget: The impacts of solar zenith angle,
surface albedo and cloud radiative forcing. Clim. Dyn. 2011, 37, 1643–1660.

19. Valero, F.P. DSCOVR: A New Perspective for Earth Observations from Space. Synergism and
Complementarity with Existing Platforms. In Proceedings of the AGU Fall Meeting, San Francisco, CA,
USA, 5–9 December 2011.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons by
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Data and Methodology
	The Nature Run
	Methodology
	Uncertainties in the Mean
	Absolute Error in the Mean
	Correlation
	Error Norms


	Results
	Conclusions

