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Abstract: In this paper, we present a new, semi-automated methodology for mapping
hydromorphological indicators of rivers at a regional scale using multisource remote sensing (RS)
data. This novel approach is based on the integration of spectral and topographic information within
a multilevel, geographic, object-based image analysis (GEOBIA). Different segmentation levels were
generated based on the two sources of Remote Sensing (RS) data, namely very-high spatial resolution,
near-infrared imagery (VHR) and high-resolution LiDAR topography. At each level, different input
object features were tested with Machine Learning classifiers for mapping riverscape units and in-stream
mesohabitats. The GEOBIA approach proved to be a powerful tool for analyzing the river system at
different levels of detail and for coupling spectral and topographic datasets, allowing for the delineation
of the natural fluvial corridor with its primary riverscape units (e.g., water channel, unvegetated sediment
bars, riparian densely-vegetated units, etc.) and in-stream mesohabitats with a high level of accuracy,
respectively of K = 0.91 and K = 0.83. This method is flexible and can be adapted to different sources
of data, with the potential to be implemented at regional scales in the future. The analyzed dataset,
composed of VHR imagery and LiDAR data, is nowadays increasingly available at larger scales, notably
through European Member States. At the same time, this methodology provides a tool for monitoring
and characterizing the hydromorphological status of river systems continuously along the entire channel
network and coherently through time, opening novel and significant perspectives to river science and
management, notably for planning and targeting actions.

Keywords: hydromorphology; object-based classification; LiDAR data; VHR imagery; machine
learning; riverscape units; hierarchical classification

1. Introduction

The characterization of riverscape units requires monitoring water channels, in-channel
morphological habitats, and riparian corridor structures and their interaction with the surrounding
floodplain. Traditionally, these surveys require resource-demanding field campaigns supported,
where available, by manual interpretation of aerial imagery [1,2]. Field surveys are often based on
categorical information and expert-based opinions that may be biased by operators’ subjectivity and
inconsistency. These issues limit de-facto their operative implementation to a limited number of rivers
(rarely extended to the entire river network scale), and may call into question their suitability for
monitoring purposes, which demand an objective and repeatable assessment method. There is a
pressing need for an operative, multi-scale framework for the evaluation of the hydromorphological
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status of river systems [3]. This is especially the case for modern river management in Europe,
where the Water Framework Directive (WFD) [4] acknowledges the major importance of fluvial
geomorphology, requiring Member States to evaluate and monitor these types of forms.

Recent advances in Remote Sensing (RS) techniques are transforming the way we look at
and analyze river systems and provide a new source of spatially distributed, multi-dimensional
information at wider spatial and temporal scales compared to the past [5,6]. Thanks to RS datasets,
hydromorphological indices nowadays can be estimated in a quantitative rather than descriptive way
for multiple spatial scales—from reach and sub-reach units up to the entire basin—with continuous
information that is more objective and less exposed to operator subjectivity [7–9].

An essential aspect when characterizing river hydromorphology is the delineation of the so-called
active channel (AC) and more widely of different riverscape units [10]. The AC is defined in literature as
the low-flow channel plus adjacent exposed sediment bar surfaces between established edges of perennial,
terrestrial vegetation, which are generally subjected to erosion or deposition [10–13]. Exposed bars are
characterized by vegetation encroachment, which plays a key role in the evolution of alluvial islands [14],
i.e., patches of mature vegetation surrounded by water and bare sediment bars. Sparsely-vegetated patches
first appear in the island growth stage causing sediment accretion [15] and, if vegetation encroachment
persists for long periods without being scoured during floods, it can transform a gravel bar into a forested
or densely-vegetated island. Forested islands are distinguishable in fact by well-established and dense
woody vegetation, which provides evidence of island stability [16].

A precisely delineated AC and mapped riverscape units (e.g., sparse vegetation units or
densely-vegetated units) over time are important tools for understanding the morphodynamics
of a river system. It also provides a useful indicator of changes in potential ecosystem
productivity [10,17,18]. To date, the concept behind the use of RS for the delineation of the riverscape
units has been rather simple: features visible on air photos can be manually traced or digitized and
transferred to map coordinates [11,19,20]. Since the 1990s, the use of this technique has expanded
rapidly, mainly because of the widespread availability of Geographical Information Systems (GIS),
which made it much easier to digitize river features from aerial or satellite imagery. For example,
Toone et al. [13] analyzed historical changes in channel morphology for the development of a
geomorphological zonation of the Drôme river, over a period of 58 years based on a set of eight
aerial photo-series. They digitized channel boundaries and extracted area and width parameters of
the Total Active Channel (TAC), defined as the AC area plus any mid-channel islands or clusters of
vegetation, on aerial photography.

Others have developed methods to semi-automatize the characterization of the low-flow channel
using RS-based procedures, but not of other riverscape units [21]. Wiederkehr et al. [22] and
Belletti et al. [10] measured AC width and island patterns of braided rivers in the French alps from
aerial orthophotos from the 1950s to the 2000s with the aim of describing the present pattern and its
evolution over 50 years. They both used eCognition Definiens® software, GEOBIA and decision trees
on RGB orthophotos to map water, gravel bars and vegetation classes within the total active channel
but did not focus on distinguishing the active channel from other floodplain units. At that time, the
near-infrared band was not available for large coverages and the spatial resolution was not high enough
to be suitable for this type of river application, making it difficult to distinguish vegetation patches
from other channel corridor units. In the study by Bertrand et al. [8], water, vegetation, and gravel
patches were mapped with an object-oriented classification approach, but based on band ratio and
thresholding developed with expert-based rule-sets built on near-infrared and red bands of available
orthophotos. Sediment bars within the channel were distinguished from arable crops, urban areas and
mining sites found within the floodplain, according to their distance to the floodplain centerline and
neighboring objects (e.g., low-flow channel and riparian vegetation previously detected). In this way,
it was possible to delineate the active channel as the ensemble of water channels and unvegetated
sediment bars, and to provide spatially-distributed information for some riverscape units continuously
over the entire Drôme River Basin (France, 1680 km2). This method is case specific since it is driven by
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expert-based rule-sets and thresholds and it does not automatically distinguish the active channel and
its main riverscape units.

Within the water channel, identification of in-stream mesohabitats is also important. These
spatial units represent specific combinations of hydrodynamic and morphological conditions, which
can be linked to distinctive habitats and ecological niches [23]. In the habitat classification of
Frissell et al. [24], they are related to the concept of functional river habitat. At the same time, the
European Habitats Directive (92/43/EEC) [25] aims to mitigate hydromorphological alterations that
affect river ecosystems by implementing habitat enhancement and river restoration actions to benefit
aquatic species [26]. Mapping mesohabitat distribution over a river’s entire length is of key relevance
for quantifying the ecological responses of aquatic organisms to hydromorphological alterations [23,27].

Regarding mapping in-stream mesohabitats with RS data, Wright et al. [28] classified
stream habitats using imagery with 4 spectral bands acquired at 1 m ground resolution with
supervised classification procedures, however, it resulted in low accuracies (between 10% and 53%).
Legleiter et al. [29] tested the effects of sensor resolution on mapping mesohabitats. They achieved
the best overall accuracies of about 60% for four habitat types, showing that reasonable accuracies
were obtained only when using hyperspectral data and that accuracy was significantly higher with
1 m pixels compared with 2.5 m pixels. The spectral resolution was shown to be more important than
spatial or radiometric resolution for this specific purpose [29]. Marcus et al. [30] mapped the main
in-stream habitats using hyperspectral data with an accuracy ranging from 68% to 86%. For the first
time, they showed that in-stream features mapping using RS data of very high spectral resolution can
be more accurate than field crew surveys. More recently, Wiederkehr et al. [22] using the GEOBIA
approach and discriminant analysis, were able to map in-channel mesohabitats (e.g., riffle, pool,
lentic/lotic channel, gravel bench and shaded areas) for the lower Drôme river, with an overall higher
accuracy: 90% of polygons were correctly classified, with less accurate identification of riffles (64%).

Currently, there is no a tool that automatically maps and characterizes riverscape, riparian, and
mesohabitat units from RS data in proper geomorphological terms. The major research challenge
consists of automatically distinguishing the riverscape units that are within the active channels (AC)
from other landscape features found within the floodplain. Sediment bars, arable bare soil fields or
human-made surfaces all present similar spectral reflectances. Likewise, sparsely-vegetated patches
within the active channel and crop fields found in the external part of the floodplain are easily
confounded. At the same time, different kinds of in-stream mesohabitats present subtle spectral
differences. Hyperspectral data have notable potential to overcome both issues [30–32], however its
availability is limited, especially for large-scale applications, whereas, combining spectral data with
other sources of RS data, such as topographic data, might help in achieving this goal.

In this paper, we investigate the potential of very high resolution (VHR) near infrared aerial
imagery (0.4 m) and LiDAR-derived products for mapping riverscape units and in-stream mesohabitats.
For this purpose, we employed a database composed of VHR and LiDAR-derived products that were
simultaneously acquired in 2009–2010 and available at the regional scale for the Piedmont Region in
Italy (25.387 km2). We present a new, semi-automated methodology, based on the integration of the
spectral and topographic information within a multilevel geographic, object-based image analysis
(GEOBIA). The ability of GEOBIA to couple the high spatial resolution of VHR imagery and the
high-resolution topography of LiDAR were tested along a 45-km section of a gravel-bed alpine river
(Orco River, tributary of the Po River). High resolution multi-spectral datasets and LIDAR derived
topography are starting to be accessible to most countries in Europe, covering large areas and opening
the possibility to attempt basin, and beyond regional scales hydromorphological characterization [33].
Being able to semi-automatize this task deriving continuous, objective and repeatable measures
would support the monitoring of active channel changes and associated dynamics of riverscape
units, fostering managers and scientists to interpret river processes with an unprecedented level of
accuracy and therefore providing novel opportunities to understand fluvial processes and to support
their management.



Remote Sens. 2016, 8, 97 4 of 23

2. Study Area and Data

2.1. The Orco River

The Orco River is a large Italian stream originating on Gran Paradiso Mountain at 3865 m above
sea level, located between the Aosta Valley and Piedmont regions in northwest Italy. After flowing
for approximately 80 km, it enters the Po River. The Orco River drainage basin area is about 900 km2,
and contains the most important hydroelectric complex in the Piedmont Region, consisting of five
hydropower dams. It is characterized by a relatively high perennial discharge, ranging from 13 m3/s
in February to 45 m3/s in June [34]. The Orco River is an alpine, gravel-bed, high-energy river with a
single-thread, sinuous channel (meandering) in the upstream part of the catchment. Downstream, just
forty km before joining the Po River, the channel begins to wander and becomes multi-threaded with
vegetated and unvegetated sediment bars, where the valley floor is wider (see Figure 1).

Remote Sens. 2016, 8, 97 4 of 24 

 

2. Study Area and Data 

2.1. The Orco River 

The Orco River is a large Italian stream originating on Gran Paradiso Mountain at 3865 m above 
sea level, located between the Aosta Valley and Piedmont regions in northwest Italy. After flowing 
for approximately 80 km, it enters the Po River. The Orco River drainage basin area is about 900 km2, 
and contains the most important hydroelectric complex in the Piedmont Region, consisting of five 
hydropower dams. It is characterized by a relatively high perennial discharge, ranging from 13 m3/s 
in February to 45 m3/s in June [34]. The Orco River is an alpine, gravel-bed, high-energy river with a 
single-thread, sinuous channel (meandering) in the upstream part of the catchment. Downstream, 
just forty km before joining the Po River, the channel begins to wander and becomes multi-threaded 
with vegetated and unvegetated sediment bars, where the valley floor is wider (see Figure 1). 

 
Figure 1. Orco River study area. The valley bottom layer (light blue) locates the 45-km river stretch 
analyzed. In the first upstream part the channel is single thread and sinuous (see representative 
orthophoto on the bottom left). In the downstream part, the river becomes wandering (see 
representative orthophoto on the top right). 

During the 20th century, the river experienced severe riverbed incision, particularly in its 
downstream reaches due to gravel mining activities, dam construction and landuse changes that 
occurred in the basin [35]. As a consequence of riverbed incision and bank stabilization, the 
wandering multi-threaded river stretch was transformed into a single-thread, sinuous 
configuration. This progressive simplification of the fluvial pattern resulted in the abandonment 

Figure 1. Orco River study area. The valley bottom layer (light blue) locates the 45-km river stretch
analyzed. In the first upstream part the channel is single thread and sinuous (see representative
orthophoto on the bottom left). In the downstream part, the river becomes wandering (see
representative orthophoto on the top right).

During the 20th century, the river experienced severe riverbed incision, particularly in its
downstream reaches due to gravel mining activities, dam construction and landuse changes that
occurred in the basin [35]. As a consequence of riverbed incision and bank stabilization, the wandering
multi-threaded river stretch was transformed into a single-thread, sinuous configuration. This
progressive simplification of the fluvial pattern resulted in the abandonment of secondary channels,
the joining of islands into the surrounding floodplain, and a significant deepening of the riverbed
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(1–2 m on average and a local maximum of 3.5 m). Gravel mining activities have been regulated and
limited over the past decades and this phase of riverbed incision has recently progressively decreased.
Severe floods occurred in 1993 and 2000, which significantly modified the channel geometry, leading
the river to recover its wandering pattern. Indeed, in some river reaches, old channels were reactivated
and the active channel widened [36]. In this study, we focused on a 45-km section of the Orco River,
representing both river types: the single-thread sinuous channel in the upstream part and the mostly
wandering reach in the downstream part (see Figure 1).

2.2. Classification Process: Riverscape Units and in-Stream Mesohabitats

The main units describing the riverscape environment that were mapped in this study are listed
in Table 1 and shown in Figures 2 and 3. Level 1 units were classified in Step 1 of the riverscape units
classification workflow, based on automated Machine Learning classification (see Section 3.1). A higher
level of detail (Level 2) was defined for the in-stream mesohabitats and for other vegetated units of the
riverscape. Part of this classification step was carried out in Step 2 of the riverscape units classification
workflow based on expert-based post-classification rule-sets (see Section 3.1).

Table 1. Classification scheme adopted in this paper to map the main units describing the
riverscape environment.

Land-Cover Class Class Description

Level 1 Level 2

Water Channel
(WC)—part of the AC

Pools Areas with a gentle surface slope and slow flow.

Riffles Areas of swifter-flowing water.

Runs Areas of fast-moving, non-turbulent flow.

Standing Waters Surface water relatively still.

Unvegetated Sediment bars (US)—part of the AC Sediment bars without vegetation.

Sparsely-Vegetated
units (SV)—part of the
Total Active Channel

Sparsely-Vegetated units of Islands (SVI) Sparse vegetation units entirely surrounded by
WC and/or US.

Riparian Sparsely-Vegetated units (RSV) Riparian sparse vegetation units adjacent to (but
not surrounded by) WC and/or US.

FloodPlain units (FP)

Densely-Vegetated units of Islands (DVI) Dense vegetation units entirely surrounded by
WC and/or US and/or SVI.

Riparian Densely-Vegetated units (RDV) Riparian dense vegetation units adjacent to (but
not surrounded by) WC and/or US and/or RSV.

Other Floodplain Units (OFU) All remaining floodplain units

An exhaustive description of riverscape units includes all landscape elements directly affected
by fluvial processes, these include the FloodPlain units (FP) and the morphological active channel,
named Active Channel (AC). FP compose the valley bottom and are most often composed of alluvial
sediments. FP link the AC with surrounding terraces or hillslopes. The AC, as briefly discussed
in the Introduction, is composed of the low-flow Water Channel (WC) and Unvegetated Sediment
bars (US), which frame the active part of a river channel that is continuously reworked by dominant
floods (e.g., 1-in-2 year floods). Here, we also define the Total Active Channel (TAC) as the AC plus
units of Sparsely-Vegetated sediment (SV), i.e., sediment bars which show indications of vegetation
encroachment. The process of encroachment plays a key role in the evolution of alluvial islands [14],
i.e., patches of mature vegetation surrounded by water channel and bars of bare sediments.
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Figure 3. Examples of visible in-stream mesohabitats on the Orco River (Italy) from VHR imagery
(false color composite).

Precise delineations of the AC, TAC and FP are of great importance. Such classification allows
distinguishing the area of the channel regularly reworked by floods from, if present, FP that are
hydrologically connected with the river but where vegetation and morphology are not primarily
controlled by fluvial processes. AC, TAC and FP can be further subdivided into a number of sub-units,
each associable to specific hydromorphological processes and forms. The Sparsely-Vegetated units
(SV) can be subdivided into riparian (RSV) and island (SVI), if surrounded by WC and/or US, while
within the FP it is possible to identify Riparian Densely-Vegetated units (RDV) and Densely-Vegetated
units of Islands (DVI) from Other Floodplain Units (OFU) (Figure 2). SVI and DVI are usually found
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within the active channel boundaries and therefore are entirely surrounded by WC and/or US. On
the other hand, RSV and RDV are vegetation units adjacent to the active channel, but not entirely
surrounded by it (Figure 2).

The major challenge of mapping riverscape units composing AC and TAC automatically from
remotely sensed data lies in distinguishing them from other landscape features found within the
floodplain (FloodPlain units class). Densely-Vegetated units of Islands (DVI) need to be differentiated
from the densely-vegetated areas found within the floodplain and belonging to the OFU class. At the
same time, Sparsely-Vegetated units of Islands (SVI) present very similar characteristics to crop fields
found within the floodplain and characterized by an intermediate level of vegetation growth, clearly
visible from Figure 2. Furthermore, Unvegetated Sediment bars (US) are spectrally comparable to crop
fields left fallow due to crop rotation practices, but also to the mining activities that can be found in
the floodplain (FP class, Figure 2). Similarly, gravel rural roads or urban settlements are found within
the floodplain and belong to the FP class. Parsing the spectral similarity between urban areas and bare
soil fields is a huge challenge, even for RS data operating at high spatial and spectral resolution (e.g.,
hyperspectral data) [32,37–39]. In this study, the use of topographic information coupled with spectral
data was designed to provide a valuable support for the automatic classifier, since morphological
features in the floodplain are normally characterized by higher elevation compared to those in the
active channel where erosional processes take place during floods.

The Water Channel can be further classified into in-stream mesohabitats (Level 2, Table 1), i.e.,
patches of surface water characterized by specific hydrodynamic features. Similarly to Marcus et al. [30],
we identified four visible mesohabitat types: Riffles, Pools, Runs and Standing Water (see Figure 3).
Riffles are areas of swifter flowing water, where the surface is turbulent. They represent topographic
high points in the bed profile and are composed of coarser sediments. At base flows, they are shallow
and have a steep water-surface gradient with rapid flow. In contrast, Pools are deeper and generally
have a gentle surface slope with slower flow. They represent low topographic points with finer
substrates. A Run is a relatively shallow portion of a stream characterized by relatively fast-moving,
non-turbulent flow. Standing Water is a patch of the surface water that is relatively still at the interface
between flowing water and a sediment bar. Identification of these classes has long been a problem,
because different kinds of in-stream habitats present subtle spectral differences.

2.3. Remote Sensing and GIS Input Data Preparation

During the years 2009/2010, the Regione Piemonte commissioned an acquisition campaign to
cover the entire region (25,400 km2) with 40 cm near-infrared orthophotos coupled with simultaneous
topographic LiDAR data acquired at an average point density of 0.4 point/m2. The 45-km section of
the main Orco River analyzed in this study corresponds to a mosaic of eleven tiles of 6.7-by-5.7 km
each, which was projected into the Lambert azimuthal equal-area projection (LAEA) in order to fulfill
the INSPIRE Directive requirements [40]. The different sources of RS and GIS data used for this study
are summarized in Figure 4; dotted lines indicate processes carried out by the authors, while solid
lines indicate external processes made available to the authors for the input data preparation.

The Red and Near-infrared spectral bands (2 and 3, Figure 4) were used by the authors to calculate
the Normalized Difference Vegetation Index (NDVI) (4, Figure 4). The data provider executed the
post-processing of the LiDAR points cloud acquired during the flight, generating a Digital Terrain
Model (DTM) of 5 ˆ 5 m grid cells (5, Figure 4). A quality check was also performed by the data
provider, which resulted with an error of˘0.3 m in both vertical and horizontal directions. The authors
used the DTM to calculate the Slope (6, Figure 4) using the Zevenbergen–Thorne method [41].
The “Fluvial corridor” toolbox described in Roux et al. [42] was adopted by this study for the delineation
of the Valley Bottom (8, Figure 4), defined as the modern alluvial floodplain by Alber and Piégay [9].
It is a crucial fluvial unit in the bio-geomorphic characterization of stream networks [43] because it
represents the deposition zone of alluvium, including both riverbed and floodplain areas. All analyses
performed within this study are focused within the boundaries delineated by the Valley Bottom
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shapefile and therefore all raster-based data described in Figure 4 were accordingly clipped, ignoring
everything that fell outside of these boundaries. The “Fluvial corridor” toolbox was also employed for
the calculation of the Detrended Digital Terrain Model (DDTM), by using the Orco River centerline
shapefile and the DTM. As a first step, the stream elevation was extracted along the fluvial network
with a constant spatial step (disaggregated network). The DDTM was then obtained by subtracting the
stream elevation from the original DTM (7, Figure 4) for each pixel within the floodplain. The DDTM
is necessary to represent the elevation of all floodplain pixels compared to the river network, and if it
is well-fitted, it can be essential in distinguishing different geomorphic features (see Section 4.1).
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the authors, while solid lines indicate external processes made available to the authors for the input
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3. Methodology

3.1. Multilevel GEographical Object-Based Image Analysis (GEOBIA)

The primary aim of GEOBIA is to generate geographic information from RS data that enables
users to tackle general environmental issues such as global climate change, natural resource
management, landuse/land-cover mapping and others [44]. GEOBIA’s ambition as a discipline is
to develop theory, methods and tools sufficient to replicate human interpretation of RS imagery in
automated/semi-automated ways, allowing for more accurate and repeatable information, less subjectivity,
and reduced labor and time costs. GEOBIA relies on RS data and generates GIS outputs, providing a
critical bridge between the raster domain of RS and the vector domain of GIS. The “bridge” linking both
sides of these domains is the generation of polygons, created by grouping connected pixels with similar
characteristics into meaningful image objects, an analysis technique akin to the way humans conceptually
organize the landscape to comprehend it [44]. If carefully derived, image objects are closely related to
real-world objects [45]. Once objects are derived, topological relationships with other objects, statistical
summaries of spectral, textural values, and shape characteristics can all be calculated and employed in
the classification procedure. As opposed to pixel-based approaches, the advantage of integrating a broad
range of different object features into the analysis process is an improved accuracy for more advanced
classification problems [46], such as the ones tackled in this paper.

In this study, we aim to use GEOBIA to enhance the limited spectral resolution of VHR imagery
(only Green, Red and Near-infrared bands, see Figure 4) by integrating it with LIDAR-derived
topographic information for the multilevel classification of riverscape units and in-stream mesohabitats.
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The entire object-based methodology is implemented within eCognition Developer 9® software, from
the generation of meaningful objects from the RS data (i.e., image segmentation), to their classification
into hydromorphologically meaningful classes.

Because of the strong similarities (both spectrally and topographically) of some of the classes (as
explained in Section 2.2), the riverscape units classification problem was tackled in two phases. In
the first step (Step 1 of Figure 5), a Machine Learning (ML) object-based classification was developed
for mapping the main classes, i.e., Water Channel, Unvegetated Sediment bars, Sparsely-Vegetated
units and FloodPlain units (Level 1 of Table 1). Here, the main purpose was to build a supervised
classifier able to automatically discern the main land-cover classes found in the active part of the
channel (i.e., WC, US and SV from Table 1) from the FloodPlain unit class (FP from Table 1), in order to
automatically define the boundaries of the total active channel. For this reason, we propose a multilevel
hierarchical segmentation approach based on the two sources of RS data available in order to generate
objects that are as closely related to real-world objects. The first level of the hierarchical segmentation
(Level 1 of Figure 5) was produced within eCognition using the multi-resolution algorithm [46] with
the Slope layer alone (layer 6 of Figure 2). Thereby, different terrain features of similar slope, emerging
from ongoing morphological processes of the river, might be distinguishable. A finer sub-level
segmentation (Level 2 of Figure 5) was then produced with the multi-resolution algorithm, using
the four spectral layers available, equally-weighted: Green, Red and Near infrared spectral bands
plus NDVI (respectively layers 1,2,3 and 4 of Figure 2). This step generated image objects of different
spectral characteristics within bigger objects that had homogenous slope features. For example, on a
sediment bar identified at Level 1 by specific topographic characteristics, sparsely-vegetated patches
could possibly be distinguished from bare sediments or from densely-vegetated objects characterized
by different spectral values at Level 2. Performing the ML classification on the Level 2 segmentation
(Figure 5) might therefore facilitate the challenging task of distinguishing the main land-cover classes
found in the active part of the channel (i.e., WC, US and SV from Table 1) from areas of the FP class
characterized by very similar spectral characteristics (for instance US in the AC and bare soil crops
within the FP). The two-level segmentations were run with the scale parameter set to 40, the shape
coefficient at 0.1 and the compactness coefficient set to 0.5. Because of the different spatial resolutions
of topographic and spectral data (respectively 5 m and 0.4 m), the same scale parameter used with
different input data resulted in smaller objects at the level 2 segmentation, based on spectral differences.

Once the main riverscape units were automatically classified (Level 1 of Table 1) and the active
channel boundary was well defined, more detailed vegetation classes (Level 2 of Table 1) were
identified. This was done by implementing an expert-based, post-classification phase (Step 2 of
Figure 5), built on rule-sets defined by specific object-based criteria and according to the class
description of each riverscape unit to be identified (Table 1). Objects classified in Step 1 as SV were
re-classified as Riparian Sparsely-Vegetated units (RSV, Table 1) or as Sparsely-Vegetated units of
Islands (SVI, Table 1) if their relative border to the FP class was respectively above or below 0.1. From
the FP class, objects being surrounded by WC, US or SVI and with a mean NDVI higher than 0.35 were
classified as Densely-Vegetated units of Islands (DVI, Table 1). Objects classified as FP with a mean
NDVI higher than 0.35 and having a border to WC, US or RSV classes, were classified as Riparian
Densely-Vegetated units (RDV, Table 1). Finally, all remaining objects of the FP class were re-labeled as
Other Floodplain Units class (OFU, Table 1).

After the riverscape units classification was finalized, a third level object-based segmentation
was further realized for all objects classified as Water Channel (Level 3 of Figure 5), again using
a multi-resolution segmentation based on the four spectral layers (1–4 of Figure 2). This time the
scale parameter was set to 30 in order to obtain smaller objects capable of representing finer spectral
differences and to distinguish in-stream mesohabitats typologies that were not visible at larger object
scales. A different, ML, object-based classification was performed at Level 3, this time for mapping the
in-stream mesohabitats identified at Level 2 of Table 1.
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The next section describes the multilevel, ML classification strategies designed to tackle both
Step 1 of the riverscape units mapping and the in-stream mesohabitats mapping.
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3.2. Multilevel, Machine Learning Classification of Riverscape Units and in-Stream Mesohabitats

A multilevel, supervised classification was performed using Random Forest (RF) [47] and Support
Vector Machine (SVM) algorithms. In the field of RS, both classifiers proved to be among the
most powerful ML algorithms, especially when classifying high-dimensional pixel-based datasets.
In literature, during the recent years they started to be popular also for object-based approaches [48–50].
Moving from pixel-based techniques towards object-based, the feature space data to be classified
significantly increases, augmenting the classification complexity and causing problems to standard
classifiers traditionally used in object-oriented image analysis, e.g., Nearest Neighbor classifiers.
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For this reason, RF and SVM are particularly promising in the context of this study. Object features
were calculated for both Levels 2 and 3 segmentations (Figure 5) and grouped in different categories.
Different combinations of features were tested with the aim of assessing which produce the highest
classification accuracies for either riverscape units or mesohabitat mapping. Table 2 illustrates the
different groups of input feature sets calculated. From the VHR imagery, ten “VHR features” (1) were
extracted by eCognition software: mean and standard deviation of the four spectral layers (1 to 4 of
Figure 2), plus Brightness and Max differences [51]. From the LiDAR-derived products, we grouped
the mean and standard deviation of the DTM and Slope (respectively, layers 5 and 6 of Figure 2) as
the “LiDAR features” group (2). The mean and standard deviation of the DDTM layer (layer 7 of
Figure 2) comprised the “DDTM features” group (3). Fifteen “Geometric features” (4) and twelve
“Texture features” (5) were calculated by the eCognition software, the latter based on Haralick [52]
and using both GLCM and GLDV approaches on the four spectral layers, among which: homogeneity,
contrast, mean, etc. For a more detailed explanation of the texture and geometric features calculation,
the reader is referred to [51,52].

At the Level 2 segmentation (Figure 5), sample objects were collected based on visual
interpretation of VHR imagery, for the Level 1 land-cover classes proposed in Table 1: Water Channel,
Unvegetated Sediment bars, Sparsely-Vegetated units and FloodPlain units, resulting in two sets of
randomly and spatially-distributed training and validation objects. Table 3 lists the number of samples
collected. It is clear that FP class covers most of the analyzed area, and therefore the number of
samples collected for this class is much higher than the number of other classes. The training samples
collected for the FP class cover 19% of the entire analyzed area, while the validation samples of this
class cover 15% of the total area. Considering the whole ground-truthing dataset, the training samples
represent about 28% of the whole area and the validation samples about 23% (Table 3). Validation
objects were used for the accuracy assessment, based on Kappa values and per-class producer and
user accuracy comparisons.

A similar ML approach was also adopted for mapping in-stream mesohabitats, performed at
the segmentation Level 3 (see Section 3.1, Figure 5). Training and validation samples were manually
collected on VHR imagery, but in this case for the classes: Pools, Riffles, Runs and Standing Waters
(Table 1 and Figure 3). A few areas affected by sun glint on water channels surfaces were not included
in the training and validation datasets. In this case, several combinations of input features (Table 2)
were also tested with the aim of identifying which kinds of features produced the highest classification
accuracies for mapping in-stream mesohabitats.

Table 2. Input feature sets used for training different RF and SVM classifiers and for mapping both
riverscape units and in-stream mesohabitats.

(1) VHR (10) (2) LiDAR (4) (3) DDTM (2) (4) Geometric (15) (5) Texture (12)

Mean:
-Green
-Red
-Near infrared
-NDVI

Standard
Deviation:
-Brightness
-Max difference
-Green
-Red
-Near Infrared
-NDVI

Mean:
-DTM
-SLOPE

Standard
Deviation:
-DTM
-SLOPE

Mean:
-DDTM

Standard
Deviation:
-DDTM

Area Homogeneity (GLCM)
Border length Contrast (GLCM)

Length Dissimilarity (GLCM)
Length/Width Entropy (GLCM)

Width Angle of 2nd moment (GLCM)
Asymmetry Mean (GLCM)
Border index Standard deviation (GLCM)
Compactness Correlation (GLCM)

Density Angle of 2nd moment (GLDV)
Elliptic fit Entropy (GLDV)

Radius of largest
enclosed ellipse Mean (GLDV)

Radius of smallest
enclosing ellipse Contrast (GLDV)

Rectangular fit
Roundness
Shape index
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Table 3. Training and validation samples collected by visual interpretation of VHR imagery and areas
covered by each.

Training Validation

Samples Area (km2) % Samples Area (km2) %

WC 2556 1.07 3.6 1504 0.92 3.1
US 2950 0.74 2.5 1990 0.73 2.4
SV 2919 0.74 2.5 1736 0.65 2.2
FP 21761 5.71 19.0 18827 4.56 15.2

27.5 22.9

4. Results and Discussion

4.1. Riverscape Units Classification Results

The results of Step 1 riverscape units classification (Level 1 of Table 1) obtained when testing
combinations of different sets of input features (see Table 2) with RF and SVM, are shown in Figure 6.
In general, accuracies are very similar for both classifiers, underlying the capability of both ML
classifiers to map riverscape units with accuracies in most cases above 0.70. When using the VHR
features (group 1 in Table 2), both RF and SVM generate the same Kappa accuracy of 0.79. When the
topographic features are utilized alone without any spectral information (LiDAR features and DDTM
features, respectively groups 2 and 3 for a total of 6 features), the Kappa accuracy is significantly
lower (0.59 for SVM and 0.60 for RF). This is an expected result since spectral information is required
for distinguishing Sparsely-Vegetated units from Unvegetated Sediment bars and Water Channel,
which could be characterized by similar topographic characteristics but surely different spectral values.
Indeed, when combining the spectral features with the topographic ones, Kappa values increase. VHR
features together with the LiDAR features (groups 1 and 2 of Table 2, for a total of 14 features) produce
a Kappa value of 0.81 for the SVM and 0.78 for the RF. Better performances are generated using DDTM
features (group 3, Table 2) with the VHR features (group 1, Table 2), which resulted in a Kappa value of
0.91 for SVM and 0.89 for RF. Using both LiDAR and DDTM features together with the VHR features
(groups 1, 2, 3), generates slightly lower accuracies (0.88 for SVM and 0.85 for RF), that might indicate
the limits of the algorithms in features selection in the presence of an elevated number of co-varying
inputs. When the VHR features are used in combination with the Geometric features (respectively
groups 1 and 4, 25 features in total), the accuracy is still relatively high for the RF (0.81), while slightly
lower (0.76) for the SVM, showing the limits of SVM in exploiting the Geometric features for this
specific classification problem. When VHR features are used with Texture features (respectively groups
1 and 5, 22 features in total) for both classifiers we obtained a Kappa value of 0.84.

These results emphasize the importance of the DDTM layer (layer 7 of Figure 4). Mean and
standard deviations of this layer calculated for each object and combined with mean and standard
deviations of other spectral layers (layers 1–4 of Figure 4) are sufficient to generate the highest Kappa
accuracy when classifying the main riverscape units. The DDTM layer is more important than
Geometric features and Texture features (calculated using the four spectral layers). These results
underline at the same time the sensibility of the classifiers to the type of features used, rather than the
number of features used. In fact, when going from 14 features to 12 (groups 1, 2 to groups 1, 3), the
Kappa increases. When going from 12 to 16 features (groups 1, 2, 3) and then to 25 (groups 1, 4), the
Kappa gradually decreases.
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Figure 6. Step 1 riverscape units classification results obtained when testing different combinations of
input feature sets (see Table 2) with SVM and RF.

Per-class Producer’s (PA) and User’s (UA) Accuracies were also analyzed for both classifiers and
are plotted in Figure 7. The two classes that produced the highest accuracies were Water Channel and
FloodPlain units, which in most cases have PA and UA above 90%. The Sparsely-Vegetated units class
is the one with the lowest values of PA and UA among all the experiments. This class presents very
similar spectral characteristics to the FP class, due to the presence of vegetation and, at the same time,
similar topographic characteristics as the US class. Patches of sparse vegetation are the first stage of
the vegetation encroachment, which takes place for some bare sediments (see Section 2.2). When only
topographic information are used (groups 2 and 3), the PA and UA reach the lower values, also for
the US class. The topographic information supports the delineation of the border between AC classes
(WC and US) and the FloodPlain units but cannot distinguish sparse vegetation very well on its own,
because this class is characterized by similar topographic features and different spectral features. Only
when using the right combination of topographic and spectral input features (in this case spectral and
DDTM, groups 1 and 3) is it possible to achieve good accuracy for the SV class.

The most efficient result in terms of Kappa, PA, UA and number of input features was produced
by SVM using VHR and DDTM features (groups 1, 3). This result was therefore used in this study
for the next steps: step 2 expert-based post-classification and Level 3 segmentation and in-stream
mesohabitats classification (see Section 3.1, Figure 5). Commission and Omission Errors were also
analyzed for this result (Tables 4 and 5), with the aim of understanding where most of the errors
occurred, so they could be removed in the post-processing phase. The Commission Error (CE) of the SV
class is 17.25% (see Table 4) meaning that 17.25% of the pixels classified as SV should have been instead
classified as other classes, in this case 15.77% of them as the FP class, 1.23% as the WC and 0.25% as the
US class. These errors showed that a significant amount of floodplain objects were classified as sparse
vegetation. This is most likely due to the similar spectral and topographic values of some vegetation
patches occurring in the floodplain, and it indicates that adding the topographic information to the
spectral information is not always enough to discern whether an object is located in the floodplain
or in the total active channel. This error was significantly reduced by the post-classification step (see
Table 4). At the same time, the Omission Error (OE) of the SV class was 21.36% (Table 5), meaning that
21.36% of the SV samples were not classified as SV but labeled as other classes: 19.11% of the pixels
as FP, 1.58% as US and 0.67% as WC (Table 5). This misclassification occurs predominantly for the
vegetation patches located within the TAC boundaries, underlying some of the limits of the classifier
in discerning between sparse and dense vegetation that can be found in the FP class. This type of error,
however, would have little effect on hydromorphological characterization.
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The step 2 post-classification phase (Step 2 of Figure 5) developed to classify the Level 2 riverscape
units described in Table 1, was also meant to remove the main CE and OE and to reduce the typical
“salt and pepper” effect of small objects. In order to reduce the CE and OE errors, several rule-sets
were developed following an expert-based approach, under eCognition software. Several attempts
were tested in order to obtain the optimal expert-based solution. For example, the CE of the US
class was improved by imposing two threshold conditions: distance to WC ě 200 pxl and Mean
DDTM value ě 250. US objects satisfying these conditions where labeled as FP class. Thanks to the
post-classification phase, the Kappa accuracy was increased from 0.91 to 0.95, the total CE of the SV
class reduced from 17.25% to 4.98% (Table 4), and at the same time the OE from 21.36% to 15.39%
(Table 5). For the US class the total CE decreased from 7.15% to 3.87%, (Table 4) and the OE decreased
from 3.19% to 1.85% (Table 5).

Table 4. Commission Errors (CE) produced by SVM when classifying riverscape units using “VHR
and DDTM features” before (above) and after (below) the Step 2 expert-based post-classification.

Total FP US WC SV

CE before
post-classification

FP 3.38 - 0.45 0.19 2.74
US 7.15 4.65 - 1.15 1.35
WC 2.14 1.51 0.15 - 0.48
SV 17.25 15.77 0.25 1.23 -

CE after
post-classification

FP 2.13 - 0.23 0.17 1.73
US 3.87 1.07 - 1.29 1.51
WC 1.41 0.78 0.15 - 0.48
SV 4.98 3.31 0.30 1.37 -
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Table 5. Omission Errors (OE) produced by SVM when classifying riverscape units using “VHR and
DDTM features” before (above) and after (below) the Step 2 expert-based post-classification.

Total FP US WC SV

OE before
post-classification

FP 3.23 - 0.78 0.30 2.15
US 3.19 2.80 - 0.18 0.21
WC 2.70 0.92 0.95 - 0.83
SV 21.36 19.11 1.58 0.67 -

OE after
post-classification

FP 0.74 - 0.18 0.16 0.40
US 1.85 1.43 - 0.19 0.23
WC 2.66 0.83 1.03 - 0.80
SV 15.39 12.84 1.82 0.73 -

The step 2 post-classification phase also visually enhanced the spatial patterns of the final
riverscape units map in some locations. Figure 8 shows an example of CE for the US and WC
classes, after the Step 1 ML classification with SVM. The mining activities localized in the floodplain
were not classified as FP but as US (white color), probably due to the high spectral and topographic
similarities, since the mining site is located close to the active channel area and therefore at a similar
elevation. Similarly, the water pond found in the floodplain was classified as WC instead of FP (blue
color). These errors were not abundant and only occasional: in this case, 4.65% CE for US class in the FP
class, and 1.51% CE for WC class in the FP class. Therefore, the post-classification phase is an important
resource for deleting this type of bias, which at some locations cannot be eliminated by exploiting the
spectral and topographic information alone. At the same time, the expert-based rule-sets developed
based on object-neighboring and spectral characteristics allowed us to map riverscape units at a higher
level, by distinguishing all the vegetation classes composing the natural fluvial corridor (Level 2,
Table 1). Although this object-based, rule-set architecture developed was case-specific and could have
been influenced by operators’ subjectivity, it proved to be very efficient and flexible. Designing ad-hoc
solutions, suitable to solve specific classification problems, is relatively simple within GEOBIA, as it is
demonstrated by these results.Remote Sens. 2016, 8, 97 16 of 24 
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4.2. In-Stream Mesohabitat Classification Results

From the WC class obtained at the segmentation Level 2, a finer Level 3 segmentation
was produced for the classification of in-stream mesohabitats (see Section 3.1, Figure 5). Several
combinations of input feature sets (Table 2) calculated for the Level 3 objects were combined and
assessed in terms of Kappa accuracy for both RF and SVM classifiers (as already explained in
Section 3.1). DDTM features do not exist for the channel class, since relative altitude differences
are calculated with respect to the main river channel. Results are plotted in Figure 9. In general, SVM
slightly out-performs RF. For both classifiers, the lowest accuracies were obtained using VHR features
alone (group 1). When VHR features were combined with one of the other input features group, the
classification performances likewise improved. The best accuracy when using two groups of input
features achieved a Kappa value of 0.77 by combining Texture and VHR features (groups 1 and 5) for
both RF and SVM, while the lowest accuracy was obtained using VHR and LiDAR features (0.70 for
RF and 0.71 for SVM). When spectral features were combined with two other groups of features at the
same time, the accuracy was always around 0.80 for SVM. RF results were slightly more sensitive to
the input feature group used.

Looking at the PA and UA of the mesohabitat classes (Figure 10), one notes that Riffles are
better identified. This is most likely due to the turbulence of the water that creates a very distinct
spectral signal. Pools and Standing Waters have the highest rate of misclassification, since both are
characterized by still or slow flowing water. Some misclassifications of the class Runs are also expected
being a transitional class between riffles and pools. Using the SVM classifier with Geometric and
Texture features (groups 1, 4 and 5) seems to be the best combination since in this case all mesohabitats
classes have PA and UA values higher than 75%. In other words, for mesohabitats classification,
spectral texture and geometric features significantly enhance the classifier performances. These results
demonstrate the strength of the GEOBIA approach, which enables the enrichment of the limited
spectral information with object-related features specific to a particular classification problem.Remote Sens. 2016, 8, 97 17 of 24 
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4.3. New Perspectives in Hydromorphological Characterization of Rivers

Traditionally, riverine hydromrophological characterization relied on data collected via field
surveys. Although very informative, these data are often discontinuously scattered along the river
network and are dependent on operator expertise and subjectivity. In this context, RS information,
in particular orthophotos, have notably enriched the ability to analyze fluvial processes and channel
adjustment trajectories over the past several decades, especially with regard to exploiting historical
archives of aerial imageries [20,53]. These approaches visually and manually classify visible river
features from orthophotos. This is time and resource consuming and for this reason has been mostly
applied on selected river courses. Moreover, advances in remote sensing technology nowadays provide
multiple layers of information ranging from multiple spectral bands to topography, which cannot be
properly investigated simply by visual interpretation.

Figure 11 shows an example of an analysis that can be conducted using the produced RS
classification of riverscape units with the methodology proposed in this paper. In the top of the
figure, two classification maps show reaches representative of the two river types occurring along the
analyzed stretch. Along the first 20 km, the river presents a sinuous, single-thread channel, which
afterwards turns into wandering channels (multiple channels separated by unvegetated and vegetated
bars). Each point in the scatter plots represents a segmented object. In terms of areal features, the
scatter plots provide information on length–width ratio and rectangular index. Based on Unvegetated
Sediment bars, the changes in channel features between the two river types are clearly visible, around
the 20th km. For the wandering river type, the distribution of sediment bars significantly widens,
with longer bars with higher length–width ratios. The rectangular index also decreases for longer
forms, indicating that enlarged Unvegetated Sediment bars are wider in the center and narrower
toward their extremities (see classification maps on the top of the Figure 11). On the other hand,
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Densely-Vegetated units of Islands regularly occur only in the wandering river type. Bigger islands,
with higher length–width ratios, seems to have a kind of periodicity, although a proper assessment of
periodicity is out of the scope of this analysis. Note that the rectangular index here is homogenous,
indicating that the object shape is mostly rectangular for DVI objects. The bottom scatter plot provides
information on topography. It reports the longitudinal patterns of mean DDTM for the US class, in
other words the average bar elevations. Two significantly different morphological signatures describe
the two river types: average bar elevations from the Water Channel and mean slope of the US objects
are systematically higher for sinuous single-channel type compared to wandering. It is also possible to
spot a systematic tendency to decrease the value of mean DDTM going downstream.

This type of analysis provides a continuous, objective and repeatable mapping of
hydromorphological indicators in terms of areal geometry and topography. If sequential acquisitions
of the same kind become more common and available in the future, this approach will open novel
possibilities for monitoring fluvial processes in an unprecedented way.Remote Sens. 2016, 8, 97 19 of 24 

 

 
Figure 11. Longitudinal patterns of object features distinguished for different riverscape units. The 
first (from the top) two scatter plots show length–width ratios for the Unvegetated Sediment bars 
and Densely-Vegetated units of Islands classes. Dot colors are proportional to the rectangular index. 
The third scatter plot shows the pattern of mean DDTM for US class, dot colors are proportional to 
the object mean slope. The top pictures show examples of riverscape unit classification for the two 
river types present: sinuous, single-thread channel (picture on the left) which turns into wandering 
channel (picture on the right) near the 20th km analyzed. 

5. Conclusions 

The multilevel GEOBIA framework presented in this paper proves to be a new powerful tool 
for semi-automated classification of essential geomorphic features, in particular for the 
characterization of the natural fluvial corridor, the delineation of the active river channel, and for 
in-stream mesohabitat mapping. GEOBIA allows for the integration of different sources of RS data, 
such as VHR imagery and LiDAR data, in a flexible but robust environment. Thanks to its 
hierarchical, multilevel capability, the potentials of VHR imagery and LiDAR data are exploited at 
each level in different ways by combining different object features. Compared to previous studies 
that solely applied spectral information for a similar classification target [8,22,54], here for the first 
time spectral and topographic information have been hierarchically integrated for the 
characterization of the riverscape units providing a number of benefits. First, the method 
performances are higher than all previous attempts reported in literature (best performances result 
in K values of 0.91 for riverscape units and 0.83 for in-stream mesohabitats), although validation 

Figure 11. Longitudinal patterns of object features distinguished for different riverscape units. The first
(from the top) two scatter plots show length–width ratios for the Unvegetated Sediment bars and
Densely-Vegetated units of Islands classes. Dot colors are proportional to the rectangular index.
The third scatter plot shows the pattern of mean DDTM for US class, dot colors are proportional to the
object mean slope. The top pictures show examples of riverscape unit classification for the two river
types present: sinuous, single-thread channel (picture on the left) which turns into wandering channel
(picture on the right) near the 20th km analyzed.



Remote Sens. 2016, 8, 97 19 of 23

5. Conclusions

The multilevel GEOBIA framework presented in this paper proves to be a new powerful tool for
semi-automated classification of essential geomorphic features, in particular for the characterization of
the natural fluvial corridor, the delineation of the active river channel, and for in-stream mesohabitat
mapping. GEOBIA allows for the integration of different sources of RS data, such as VHR imagery and
LiDAR data, in a flexible but robust environment. Thanks to its hierarchical, multilevel capability, the
potentials of VHR imagery and LiDAR data are exploited at each level in different ways by combining
different object features. Compared to previous studies that solely applied spectral information for a
similar classification target [8,22,54], here for the first time spectral and topographic information have
been hierarchically integrated for the characterization of the riverscape units providing a number of
benefits. First, the method performances are higher than all previous attempts reported in literature
(best performances result in K values of 0.91 for riverscape units and 0.83 for in-stream mesohabitats),
although validation datasets are subject to the operator subjectivity and therefore present difficult
comparisons. Second, the method proposed allows to automatically delineate the active river channel
boundary from other floodplain units, at the same time mapping all the vegetation units within the
riverscape environment, such as Riparian Densely-Vegetated units or Sparsely-Vegetated units of
Islands. These classes have a hydromorphological meaning of key importance, and, in cases where
sequential acquisitions of the same kind might be available, the proposed methodology would be a
more objective monitoring tool for tracking changes in fluvial processes.

The Machine Learning classification results show that topographical information is a relevant
data source that enhances the identification accuracy of the main riverscape units (Water Channel,
Unvegetated Sediment bars, Sparsely-Vegetated units, FloodPlain units). In particular, the Detrended
Digital Terrain Model (DDTM), which reports the elevation of the objects with respect to the river
network. The best performance of mapping riverscape units was produced when VHR and DDTM
features were combined, for both SVM and RF. The DDTM is a powerful descriptor of AC-Floodplain
connectivity and enables the classifiers to discern between different riverscape elements with similar
spectral signatures: for example a bar of bare sediments within the AC and a bare arable crop field
in the floodplain, or a patch of sparse vegetation in the AC and a sparsely-vegetated area in the
floodplain. The per-class Producer’s and User’s Accuracies demonstrate that the AC boundary
might be successfully delineated from topographic information alone, but only when using the right
combination of input features (in this case VHR and DDTM), it is also possible to gather high accuracies
in a similar fashion for the Sparsely-Vegetated units. Most confusion occurs, in fact, between floodplain
and sparse vegetation classes, both within and outside the active channel boundaries, probably due to
the difficulty in distinguishing between vegetation patches that might appear in both cases. However,
the use of spectral information enriched by geometric or texture features obtained by the object-oriented
approach achieves satisfactory classification results as well; see, for instance, the Kappa value of 0.84
for both SVM and RF, obtained using VHR and Texture features (Figure 6). This result might be
explained by the fact that the first level segmentation (see Figure 5) was based on the slope layer alone,
allowing us to create meaningful topographic objects to be classified. This first-level segmentation
provided meaningful morphological patterns of river forms, such as the longitudinal developments
of DDTM for the unvegetated sediment bars discussed in Figure 11. These kinds of assessments,
which hold notable potentials for monitoring fluvial geomorphological processes in the near future,
can be obtained only by integrating topography with spectral information. Indeed, the border of an
object derived by segmentation based purely on spectral information might not take into account the
topographic variability, important information that would otherwise be lost. For example, a uniformly
vegetated area adjacent to the river characterized by an increasing slope would generate a uniform
object if segmentation was based solely on spectral features. Adding the topographic segmentation
allows generating various objects with different topographic characteristics, which is of key importance
in hydromorphological terms.
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The GEOBIA architecture also allows for the design of ad-hoc, object-based rule-sets, which are
able to increase the level of details of some vegetation classes in the riverscape environment and to
solve specific classification problems, such as the ones mentioned above, in a relatively simple way.

The classification of in-stream mesohabitats also achieved promising results producing the best
Kappa value of 0.83 when classifying spectral, topographic, geometric and texture features with
SVM. Here, the spectral texture and geometric features produce similar performances compared to
previous attempts in literature that used a similar GEOBIA approach [22]. Thanks to the very high
spatial resolution of the near-infrared imagery as well as the object-based approach, which allows
to enhance the limited spectral resolution by adding texture and geometric features, mapping of the
main in-stream mesohabitats can now be done with a high level of accuracy, without the need for
hyperspectral data, a major enhancement compared to previous results in literature that used this type
of data [28]. In addition, in this case, it is reasonable to suppose that the first level of segmentation
based on slope facilitated the classification exercise by building precise objects already belonging to
specific mesohabitats to be classified: riffle and pools correspond respectively to areas of higher and
respectively lower slopes in the riverbed profile. However, an important limitation when classifying
in-stream mesohabitats is the effect of sun glint. Some areas affected by this phenomenon were
neglected in this study. However, for future large-scale applications, this aspect needs to be addressed
more systematically.

We believe that the semi-automated GEOBIA framework proposed in this paper provides notable
potential to enrich the availability of hydromorphological data, opening novel perspectives in the
river science, which has been characterized so far by a chronic lack of suitable river geomorphological
data over large scales and through time [55]. The application of the proposed method to the entire
Piedmont Region, where the same dataset is already available, is now a logical and feasible possibility.
Similar datasets are nowadays starting to be available for most European Member States [33] and most
Member States have already planned similar RS acquisition campaigns in the future. In this context,
and considering the remarkable method’s flexibility to the use of different RS input features, there will
be ample opportunities to broadly apply the proposed technique. If classification of riverscape units
and in-stream mesohabitats will be applied in the future at regional scales around Europe and repeated
through time, it will yield an unprecedented dataset of continuous riverscape features that would allow
monitoring and characterizing the hydromorphological status of river systems coherently through time
in a semi-automated way. This would become a valuable source of data for fluvial geomorphologists:
it would allow, for instance, for the design of survey campaigns and restoration targets based on
quantitative, objective and repeatable indicators, an urgent and challenging requirement of the WFD,
which has not yet been addressed by European Member States.
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