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Abstract: Pansharpening is an important technique that produces high spatial resolution multispectral
(MS) images by fusing low spatial resolution MS images and high spatial resolution panchromatic
(PAN) images of the same area. Although numerous successful image fusion algorithms have been
proposed in the last few decades to reduce the spectral distortions in fused images, few of these take
into account the spectral distortions caused by mixed MS sub-pixels (MSPs). Typically, the fused
versions of MSPs remain mixed, although some of the MSPs correspond to pure PAN pixels. Due to
the significant spectral differences between vegetation and non-vegetation (VNV) objects, the fused
versions of MSPs near VNV boundaries cause blurred VNV boundaries and significant spectral
distortions in the fused images. In order to reduce the spectral distortions, an improved version of
the haze- and ratio-based fusion method is proposed to realize the spectral un-mixing of MSPs near
VNV boundaries. In this method, the MSPs near VNV boundaries are identified first. The identified
MSPs are then defined as either pure vegetation or non-vegetation pixels according to the categories
of the corresponding PAN pixels. Experiments on WorldView-2 and IKONOS images of urban areas
using the proposed method yielded fused images with significantly clearer VNV boundaries and
smaller spectral distortions than several other currently-used image fusion methods.
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1. Introduction

Remote sensing images are recorded in different spectral regions and with different spatial,
temporal and spectral resolutions. Current satellite sensors have two physical limitations: the incoming
radiation at the sensor and the data volume collected by the sensor [1–4]. In order to collect more
energy and simultaneously maintain the signal-to-noise ratio, a multispectral (MS) sensor provides
multiple bands with narrow spectral bandwidths and a low spatial resolution (LSR). In contrast,
a panchromatic (PAN) sensor covers a wider spectral bandwidth with a higher spatial resolution
than the MS sensor. Due to the limitations on data storage and transmission, many Earth observation
satellites, such as SPOT, IKONOS, QuickBird and WorldView-2/-3, are equipped with both MS and
PAN sensors. The fusion of a high spatial resolution PAN image and an LSR MS image simultaneously
acquired over the same area, referred to as pansharpening, can produce high quality high spatial
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resolution MS images. These synthesized images are commonly used commercially, e.g., by Google
Earth and Bing Maps. The fused products are useful for improving image interpretation, as well as in
land cover classification and change detection.

Numerous pansharpening algorithms have been proposed in recent decades. The most effective
techniques are, generally speaking, the component substitution (CS) methods, the methods based
on arithmetic PAN-modulation and the methods based on multi-resolution analysis (MRA) [5–8].
The CS approaches focus on the substitution of a component that is obtained by a spectral
transformation of the MS bands along with the PAN image. The representative CS methods include
the intensity-hue-saturation [9,10], principal component analysis [11] and Gram–Schmidt spectral
sharpening (GS) [12,13] methods. The CS methods are easy to implement, and the fusion images yield
a high spatial quality. However, the CS methods suffer from spectral distortions, since they do not
take into account the local dissimilarities between the PAN and MS channels, which are due to the
different spectral response ranges of the PAN and MS bands. The PAN modulation methods are based
on the assumption that the ratio of a high spatial resolution MS band to an LSR MS band is equal to
the ratio of a high spatial resolution PAN image to an assumed LSR PAN image. The assumed LSR
PAN image can be obtained either from a spatially-degraded version of the high spatial resolution
PAN image or from a linear combination of the original LSR MS bands. The representative PAN
modulation methods include the Pradines [14], synthetic variable ratio [15,16], smoothing filter-based
intensity modulation (SFIM) [17,18], PANSHARP (PS) [19,20] and haze- and ratio-based (HR) [21]
methods. The PAN modulation methods reduce the spectral distortions, since these methods clamp
the spectral distortions of the fused images [22]. The MRA-based techniques rely on the injection of
the spatial details that are obtained through a multi-resolution decomposition of the PAN image into
the up-sampled MS image. Multi-resolution decomposition methods, such as the “à trous” wavelet
transform [23,24], the undecimated or decimated wavelet transform [25–27], Laplacian pyramids [28]
and the contourlet [29,30] and curvelet [31] methods, are often employed to extract the spatial details
of a PAN image. Although the MRA-based methods better preserve the spectral information of the
original MS images than the CS and PAN modulation methods, they may cause spatial distortions,
such as ringing or aliasing effects, originating shifts or blurred contours and textures [32]. Numerous
hybrid schemes that combine MRA and other methods have been developed to maximize spatial
improvement and minimize spectral distortions [33–36]. Although existing image fusion methods
work well in some respects, margins still have to be improved in order to minimize spectral distortions
while preserving the spatial details of the PAN image [32,37].

A major objective of pansharpening is to synthesize images that have both high spatial and spectral
resolutions and are as identical as possible to real high spatial resolution MS images that could be
produced by MS sensors at the PAN scale. Pansharpening algorithms can be generalized as the injection
of spatial details derived from the PAN image into the up-sampled MS image to produce high spatial
resolution MS images. Most of the current methods focus on optimizing the spatial details derived
from the PAN image or on optimizing the weights by which the spatial details are multiplied during
the injection, in order to reduce spectral distortions of fused images. Recent studies also demonstrate
that an up-sampled MS image generated by current up-sampling methods is not spectrally consistent
with the real high spatial resolution MS image at PAN scale for preserving spectral information [38].
However, commonly-used image fusion methods rarely consider the spectral distortions introduced
by the up-sampled MS image. Due to the differences in spatial resolution between the MS and PAN
images, the up-sampled MS image contains a large number of mixed sub-pixels that correspond to pure
pixels in the PAN image. However, the fused versions of these mixed sub-pixels remain mixed in the
fusion products generated by current fusion methods. Additionally, these fused pixels are significantly
spectrally different from the corresponding real MS pixels of the same spatial resolution of the PAN
image. Such mixed fused versions of these mixed sub-pixels bring in blurred boundaries between
different objects and significant spectral distortions in the fusion products. As shown in Figure 1,
each LSR MS pixel (Figure 1a) covers several PAN pixels (Figure 1b) and also covers several sub-pixels
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in its up-sampled version at the PAN scale. Some of the sub-pixels of a mixed MS pixel cover mixed
PAN pixels (i.e., edge pixels across the boundaries between different objects). The PAN pixels that lie
across the boundaries between vegetation and non-vegetation (VNV boundaries) shown in Figure 1c
are an example of this. The other sub-pixels of the same mixed MS pixel cover pure PAN pixels near
these edge pixels; examples are the pure vegetation (V) and non-vegetation (NV) pixels near VNV
boundaries. Typically, the fused versions of all of the sub-pixels of a mixed MS pixel remain mixed in
the fused products generated by current fusion methods, although some of them correspond to pure
PAN pixels. For example, in the GS-fused image shown in Figure 1d, the fused versions of the mixed
sub-pixels that correspond to pure PAN (V and NV) pixels near the VNV boundaries remain mixed.
From here on in this paper, the sub-pixels of mixed MS pixels that correspond to pure PAN pixels are
referred to as MSPs, whereas the edge pixels that lie across boundaries between different objects are
referred to as boundary pixels. It is desirable that these MSPs are set to either pure vegetation pixels or
pure non-vegetation pixels in the fused images in order to reduce spectral distortions.
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from the PAN image. 

Due to the significant spectral differences between vegetation and non-vegetation objects, the 
mixed fused versions of the MSPs near the edge pixels lying across VNV boundaries contribute much 
to the spectral distortions of the fused images. In this paper, an improved image fusion method is 
proposed to realize the spectral un-mixing of MSPs near VNV boundaries during the fusion process. 
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PAN pixel. This is significantly different from both the spectral endmember un-mixing technique [39] 

Figure 1. Mixed multispectral (MS) sub-pixels and the corresponding PAN and fused images.
(a) The mixed MS pixels at MS resolution; (b) the PAN pixels corresponding to the MS pixels in
(a); (c) PAN (edge) pixels across vegetation and non-vegetation (VNV) boundaries and pure PAN
(V and NV) pixels near the VNV boundaries; (d) Gram–Schmidt (GS)-fused image overlain with VNV
boundaries from the PAN image.

Due to the significant spectral differences between vegetation and non-vegetation objects, the
mixed fused versions of the MSPs near the edge pixels lying across VNV boundaries contribute much
to the spectral distortions of the fused images. In this paper, an improved image fusion method is
proposed to realize the spectral un-mixing of MSPs near VNV boundaries during the fusion process.
In this study, the word “un-mixing” means to set the fused version of an MSP into a pure pixel that
has the same land cover category (i.e., vegetation or non-vegetation category) as the corresponding
PAN pixel. This is significantly different from both the spectral endmember un-mixing technique [39]
and the un-mixing-based fused method introduced by Zhukov et al. [40], which is also referred to
as the multisensor multiresolution technique (MMT). The former uses pure spectra of different land
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cover classes (i.e., reference spectra of endmembers) to derive the proportion of each endmember in
mixed pixels. The latter is based on the classification of high spatial resolution data, followed by the
un-mixing of low spatial resolution MS pixels to retrieve signals of the LSR sensor for the classes
recognized in the high spatial resolution data and the reconstruction of high spatial resolution data
with the same spectral-resolution as the LSR data. The spectral endmember un-mixing technique is
widely used to analyze the mixed pixels in multispectral and hyperspectral images, whereas the MMT
is used for the fusion of an LSR MS image with a high spatial resolution multispectral image rather
than a monochromatic image (i.e., a PAN band). In this study, the proposed method is used to fuse
a high spatial resolution PAN image with an LSR MS image obtained by the same satellite.

In the proposed method in this paper, MSPs near VNV boundaries are identified, and their land
cover categories (i.e., vegetation or non-vegetation) are determined. Then, each identified MSP is
fused to a vegetation pixel or a non-vegetation pixel using the HR fusion method, depending on the
corresponding land cover category. Hence, the identified MSPs near VNV boundaries are spectrally
un-mixed to pure vegetation and non-vegetation pixels in the resultant fused image. This improved
HR method, which includes the un-mixing of the MSPs, is given the name “UHR”.

This paper is organized as follows. The proposed method is introduced in Section 2, and the
experimental results, including visual and quantitative comparisons with other fusion methods,
are presented in Section 3. The discussion is presented in Sections 4 and 5 concludes the paper.

2. Methodologies

Given the registered MS and PAN imagery, MSPs near VNV boundaries are first identified
using the coarse VNV boundaries generated from an NDVI (Normalized Difference of Vegetation
Index) image derived from the up-sampled MS bands and the fine boundaries (between different
objects) generated from the PAN band. A land cover category map for the identified MSPs, which
is a prerequisite for the un-mixing of the MSPs, is generated by dividing the identified MSPs
into the vegetation and non-vegetation categories based on the categories in the MS and PAN
images. Finally, each of the identified MSPs is fused to be either a pure vegetation pixel or a pure
non-vegetation pixel, according to the corresponding land cover category. The remaining MS sub-pixels
(i.e., the sub-pixels that are not identified as MSPs near VNV boundaries) are fused using the HR
method. The details of this process are described in the following sections. The notation used in the
next sections is detailed as follows. The high spatial resolution PAN image is denoted as P, the ratio of
the spatial resolutions of the MS and PAN images R, the number of spectral bands in the MS image
N, the up-sampled MS image ĄMS, the fused MS image yMS and the NDVI image derived from the
up-sampled MS image INDVI.

2.1. Identification of the MSPs near the VNV Boundaries

After the up-sampled MS image is produced by up-sampling the MS image to match the pixel
size of the PAN image, MSPs near VNV boundaries are identified according to the procedure shown in
Figure 2.

Step 1: VNV boundaries in the PAN image are identified using the following steps.

(1) An edge map, ENDVI, which includes coarse VNV boundaries from INDVI, is produced by applying
an Laplacian of Gaussian (LOG) edge detector [41] to a binary image generated from INDVI.
This binary image has been previously produced by applying a threshold (TV) obtained using the
automatic threshold selection method proposed by Otsu [42]. In the ENDVI, edge and non-edge
pixels have values of 1 (true) and 0 (false), respectively. The edge pixels are then considered to be
coarse VNV boundaries generated from INDVI.

(2) Because ĄMS lacks spatial detail, the VNV boundaries in the PAN image may be displaced relative
to the coarse VNV boundaries generated from INDVI. To limit the extensions in which VNV
boundaries in the PAN image corresponding to the coarse VNV boundaries in INDVI are searched
for, a mask map, EW

NDVI, is then generated by applying to the ENDVI a morphologically-dilated
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operator using a disk-shaped structure element (SE) with a diameter of LV.Next, a subset of the
PAN image, PS, is generated by clipping the PAN image using the EW

NDVI as a mask image.
Using PS to find the fine VNV boundaries in the PAN image helps to reduce the amount of
calculation. Since the displacements between the VNV boundaries in the PAN image and the
corresponding coarse VNV boundaries generated from INDVI are mainly determined by the
spatial resolution ratio R, the value of LV can also be set according to R. Since a mixed MS pixel
may overlap all of the sub-pixels within a window of size R ˆ R, the displacement between
an edge pixel lying across the coarse VNV boundaries and the corresponding edge pixel lying
across the fine VNV boundaries in the PAN image is no larger than 2R ´ 1. Consequently,
the value of LV should be no higher than 2R´1 in the case of fine alignment between MS and
PAN bands.

(3) An edge map, EP, is calculated by applying an LOG edge detector with a standard deviation
of δ to PS. Similar to ENDVI, the edge and non-edge pixels in EP have values of 1 (true) and 0
(false), respectively. The value of δ also determines the window size SG of the LOG detector, i.e.,
SG = (δ ˆ 3) ˆ 2 + 1. The LOG detector uses a Gaussian filter specified by δ and SG to smooth the
input image before the edge detection, in order to reduce the effects of noises. A large SG results
in a small number of edge pixels being detected by the LOG algorithm and may lead to incorrect
positioning of edge pixels. Hence, the value of δ is set to 0.3, which results in an SG of 3, in the
UHR method.

(4) To remove edge pixels that do not lie across VNV boundaries in EP, an edge map EV
P is generated

by setting the value of each pixel t. EV
P(t) is determined with respect to the values of both EP(t)

and INDVI(t), along with the NDVI value of a neighboring pixel t1, which has the largest difference
from pixel t in the PAN image. This is done according to Equation (1):
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P ptq
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where INDVI ptq and INDVI
`

t1
˘

are the NDVI values of pixels t and t1, respectively, and Tv is
a threshold obtained using the OTSU method, as introduced in Subsection 2.1. The purposes
of the second and third lines of Formula (1) are to eliminate the boundary pixels that do not lie
across VNV boundaries in the PAN image. The two lines are based on a fact that once either pixel
t or t1 lies across VNV boundaries in the PAN image, one of them will have a relative high DNVI
value, and the other should have a relative low NDVI value. Once both pixels have high or low
DNVI values, they lie in a pure vegetation area or a non-vegetation area and should be eliminated
from EP to yield an edge map EV

P. In EV
P, only the edge pixels at the VNV boundaries in the

PAN image have values of 1 (true).

Step 2: After the identification of the VNV boundaries in the PAN image, the pixels on both sides
of the identified VNV boundaries are identified as MSPs near VNV boundaries, as follows.

(1) The pixels on both sides of the identified VNV boundaries are identified as pure PAN pixels
near VNV boundaries by means of a morphological dilation operation. A morphological dilation
operation using a disk-shaped SE with a diameter of LP is applied to EV

P to generate a map, EW
P,

in which both the VNV boundaries and the pure PAN pixels near the VNV boundaries have
values of 1 (true). The value of LP determines the maximum distance (in pixels) between the pure
PAN pixels near VNV boundaries and the nearest VNV boundaries. For a spatial resolution of
R, a pure PAN pixel corresponding to the same mixed MS pixel as a VNV BP pixel, p, will lie
within a window with a width of 2R ´ 1, centered at p. Consequently, the value of LP can be set
to 2R ´ 1. In practice, the value of LP may be also affected by the interpolation method employed
to yield the up-sampled MS image.
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(2) Mark each sub-pixel t in the up-sampled MS image as an MSP near VNV boundaries only if
EW

P ptq “ 1. A pixel classification map MPI is produced by assigning the MSPs near VNV
boundaries to category CM and all others to category CO, according to Equation (2):

MPI ptq “

#

CM, EW
P ptq “ 1

CO, EW
P ptq “ 0

(2)

The MSPs belonging to the category CM in MPI will be un-mixed during the fusion process. Two of
the three involved parameters, the diameters of the two disk-shaped SEs (LV and LP), are required in
this step.
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Figure 2. Scheme for the identification of MS sub-pixels (MSPs) near VNV boundaries.

2.2. Determining the Categories of the Identified MSPs

In order to set the fused version of the MSPs near VNV boundaries (i.e., the sub-pixels with
category CM) as pure vegetation or non-vegetation pixels, the land cover categories (i.e., vegetation or
non-vegetation) of the MSPs should be determined first and act as a prerequisite for the un-mixing
during the fusion process.

The NDVI can be employed to divide a pixel into the vegetation and non-vegetation categories
since a vegetation pixel usually has a higher NDVI than a non-vegetation one. However, MSPs
near the VNV boundaries may also have high NDVI values due to the high NDVI values of the
corresponding mixed MS pixels, which consist of combinations of vegetation and non-vegetation
objects. Consequently, it is difficult to divide the identified MSPs into the vegetation and non-vegetation
categories by applying a single threshold to the whole NDVI image. Hence, two maps, TV and TNV,
which record the local average NDVI values of vegetation edge pixels and non-vegetation edge pixels,
respectively, are produced, and the category of each identified MSP is then determined with respect to
the corresponding values recorded in the two maps.
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Moreover, ideally, vegetation pixels will lie on one side of the VNV boundaries and the
non-vegetation pixels on the other side. Hence, a vegetation pixel map, MV, and a non-vegetation
pixel map, MNV, are generated by applying morphological dilation operations to the vegetation edge
pixels map, EV, and the non-vegetation edge pixels map, ENV. Finally, MV, MNV, TV and TV, along
with the NDVI, are used to determine the land cover category (i.e., vegetation or non-vegetation) of
each identified MSP. The flow diagram for the classification of the identified MSPs is shown in Figure 3,
and the details of each step of this procedure are listed below.
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Step 1: A vegetation edge pixels map EV and a non-vegetation edge pixels map ENV are generated
with respect to EV

P in this step. All of the pixels that are true in EV are the vegetation pixels that lie
across VNV boundaries, whereas all of the pixels that are true in ENV are the non-vegetation pixels
that lie across VNV-boundaries. The details of this step are introduced as follows:

(1) For each pixel, t, that is true in EV
P (i.e., EV

P(t) = 1), a neighboring pixel, t1, with the largest spectral
difference from the pixel t, is searched for in the eight-pixel neighborhood of t. This results in
a list of pixel pairs, {t,t1};

(2) Based on the pixel pairs {t,t1} and the NDVI, the vegetation edge pixels map, EV, and the
non-vegetation edge pixels map, EV, are produced according to Equation (3):

EV
`

tV˘ “ 1, EV
`

tNV˘ “ 0
ENV

`

tNV˘ “ 1, ENV
`

tV˘ “ 0
(3)

where tV and tNV are determined using Equation (4).

tV “ t, tNV “ t1, if INDVI ptq ą INDVI
`

t1
˘

tV “ t1, tNV “ t, if INDVI ptq ă INDVI
`

t1
˘ (4)

The maps EV and ENV are employed to generate the maps TV and TNV in the next step.
Step 2: The maps TV and TNV, which record the local average NDVI values of vegetation edge

pixels and non-vegetation edge pixels, respectively, are produced in this step. The maps are generated
by assigning the value of each pixel, p, in the two maps, according to Equations (5) and (6), respectively:

TV ppq “

ř

jPNSp ppq
pINDVI pjq ˆ EV pjqq

ř

jPNSp ppq
EV pjq

(5)
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TNV ppq “

ř

jPNSp ppq
pINDVI pjq ˆ ENV pjqq

ř

jPNSp ppq
ENV pjq

(6)

where NSP ppq is a neighboring window with a size of SP ˆ SP pixels of pixel p. Since a high value of
SP will increase the amount of calculation, SP can be set equal to 2R ´ 1.

Step 3: The maps MV and MNV are generated by iteratively applying morphological dilation
operations to EV and ENV as follows.

(1) The vegetation map, MV, is produced by applying a morphological dilation operator using
a disk-shaped SE with a diameter of 3 pixels to EV. The pixels that are true in MV and also true in
ENV are then set to be false in MV.

(2) The resultant vegetation map, MV, in which the pixels that are true represent vegetation,
is obtained by iterating Step 1 R ´ 1 times.

(3) The non-vegetation map, MNV, is generated by applying the morphological dilation operator
described in Step 1 to ENV. The pixels that are true in MNV and also in EV are then set to be false
in MNV.

(4) The resultant non-vegetation map, MNV, in which the pixels that are true represent non-vegetation,
is obtained by iterating Step 3 R ´ 1 times.

Step 4: The category (i.e., vegetation or non-vegetation) of each of the identified MSPs (denoted as
pixel m) is determined, according to Equation (7):

MLC pmq “

#

CV, if MV pmq “ 1 and pMNV pmq “ 0 or INDVI pmq ą TV pmqq

CNV, if MNV pmq “ 1 and pMV pmq “ 0 or INDVI pmq ă TNV pmqq
(7)

An MSP m that is true in MV pmq is determined to be a vegetation pixel if MNV pmq “ 0 or
INDVI pmq ą TV pmq, whereas an MSP, m, that is true in MNV pmq is determined to be a non-vegetation
pixel if MV pmq “ 0 or INDVI pmq ă TNV pmq. Eventually, all of the identified MSPs will be divided into
the vegetation and non-vegetation categories, and a classification map, MLC, is produced to assist the
fusion of the identified MSPs.

The size of the neighboring window, SP, is the only parameter that needs to be decided upon in
the classification.

2.3. Fusion of the MS Sub-Pixels

The HR fusion method is employed to yield the fused versions of the MS sub-pixels in the
proposed method, for its better performances than other methods [21], such as the SVR, GS and PS
methods. In order to reduce spectral distortions, the fused version of each identified MSP (i.e., the
sub-pixels with category CM in MPI) is calculated with reference to the spectra of a neighboring pure
(vegetation or non-vegetation) pixel. The fused versions of the sub-pixels with category CO in MPI are
calculated with reference to their own spectra.

The HR method is a PAN modulation fusion method that takes haze into account [43–45]. In this
method, the fused i-th spectral band of pixel t, yMSi ptq, is calculated by using Equation (8):

yMSi ptq “
´

ĄMSi ptq ´ Hi

¯ P ptq ´ Hp

PL ptq ´ Hp
` Hi (8)

where PL is a low-pass filtered version of P; ĄMSi and yMSi are the i-th bands of the up-sampled and
fused MS images, respectively; and Hi and Hp denote the haze values in the i-th MS band and PAN
band, respectively. The Hi and Hp can be determined using the minimum grey level values in the
i-th MS band and PL according to an image-based dark-object subtraction method [43–45]. The HR
method uses the spectral distortion minimizing (SDM) model [46] as the injection model and clumps
the spectral angles between the fused and up-sampled MS pixels. It can be proven that the spectra
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vector of pixel t in the fused image (pVt “
!

yMS1 ptq , yMS2 ptq , . . . , yMSN ptq
)

) is parallel to that of t in

the up-sampled image (rVt “
!

ĄMS1 ptq , ĄMS2 ptq , . . . , ĄMSN ptq
)

) [46].
As the flow diagram shown in Figure 4, each MS sub-pixel is fused according to the appropriate

category (i.e., either the identified MSPs or the remaining sub-pixels) in MPI.
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(1) For a sub-pixel, t,if MPI ptq “ CO, its fused version is calculated according to Equation (8).
Otherwise, its land cover category, MLC ptq, is examined with respect to the value of INDVI ptq,
according to the two conditions in Equation (9).

$

’

’

’

’

&

’

’

’

’

%

INDVI ptq ě

ř

jPNSN
ptq pINDVI pjq ˆ EV pjqq
ř

jPNSN
ptq EV pjq

, if MLC ptq “ CV

INDVI ptq ď

ř

jPNSN
ptq pINDVI pjq ˆ ENV pjqq
ř

jPNSN
ptq ENV pjq

, if MLC ptq “ CNV

, (9)

where NSN ptq is a window with a size of SN ˆ SN pixels centered at pixel t, and EV and ENV are the
vegetation edge pixels map and the non-vegetation edge pixels map, respectively, as introduced
in Section 2.2. The first condition is based on the fact that if MLC ptq “ CV, INDVI ptq should be
higher than the average NDVI value of the surrounding vegetation edge pixels in EV. The second
condition is based on the fact that if MLC ptq “ CNV, INDVI ptq should be lower than the average
NDVI value of the surrounding non-vegetation edge pixels in ENV.

(2) If INDVI ptqmeets no conditions in Equation (9), pixel t may be misclassified in MLC, and its fused
version is calculated using Equation (8), in order to avoid spectral distortions caused by the
incorrect substitutions employed. Otherwise, a neighboring pixel n is searched for among the
pixels with the same land cover class as pixel t (i.e., MLC(t) = MLC(n)) in a neighboring window
NSN ptq according to the conditions in Equation (10):

$

’

&

’

%

INDVI pnq “ max
jPNSN ptq&MLCpjq“CV

INDVI pjq and INDVI pnq ą INDVI ptq , if MLC ptq “ CV

INDVI pnq “ min
jPNSN ptq&MLCpjq“CNV

INDVI pjq and INDVI pnq ă INDVI ptq , if MLC ptq “ CNV
. (10)

The purpose of this step is to find a substitution pixel n for t, depending on MLC ptq.
If t is a vegetation pixel in MLC (i.e., MLC ptq “ CV), the sub-pixel n should have



Remote Sens. 2016, 8, 83 10 of 24

the maximum NDVI value in window NSN ptq and belong to the same category as t
in MLC (i.e., MLC pnq “ MLC ptq “ CV). Otherwise, if t is a non-vegetation pixel in MLC

(i.e., MLC ptq “ CNV), the sub-pixel n should have the minimum NDVI value in the window
NSN ptq and belongs to the same category as t (i.e., MLC pnq “ MLC ptq “ CNV). The spectra of
pixel n will be used to set the fused version of pixel t as a pure vegetation or non-vegetation pixel.
In order to avoid spectral distortions introduced by incorrect substitutions used in the fusion,
the substitute pixel n is restricted to have an NDVI value higher than that of t if MLC ptq “ CV,
whereas it is restricted to have an NDVI value lower than that of t if MLC ptq “ CNV.

(3) If no such pixel n meets the conditions in Equation (10), the fused version of t is calculated using
Equation (8). Otherwise, ĄMSi pnq and PL pnq, the spectral values of the pixel n in ĄMSi and PL,
are assigned to ĄMSi ptq and PL ptq, respectively, as Equation (10), and then, the fused version of
t is calculated using Equations (8) and (11).

#

ĄMSi ptq “ ĄMSi pnq
PL ptq “ PL pnq

(11)

In this case, the pixel vector of pixel t in the fused image is parallel to that of the up-sampled pixel
n, according to the SDM injection model employed in the HR method. It is assumed that pixel n is
a pure vegetation or non-vegetation pixel, and therefore, MSP t is fused to be a pure vegetation or
non-vegetation pixel in the resultant fused image, realizing spectral un-mixing in the fusion process
and reducing the spectral distortion in the fused product.

In this step, parameter SN stands for the size of the neighborhood window within which to
search for a substitution pixel used to un-mix an MSP in the fusion process. The parameter is mainly
determined by the spatial resolution ratio R, along with the interpolation method employed to generate
the up-sampled MS. Specifically, a pure PAN pixel corresponding to the same mixed MS pixel as t lies
within a window with a width of 2R´1 centered at t. Consequently, the value of SN can be set to
2R ´ 1, or slightly lower than 2R´1, in order to avoid over-un-mixing.

3. Experiments

3.1. Test Data, Fusion Methods for Comparison and Evaluation Criteria

Two datasets acquired by the WorldView-2 (WV-2) and the IKONOS sensors were used to assess
the performance of the proposed method. The WV-2 sensor provides data in eight MS bands and a PAN
band with 2-m and 0.5-m spatial resolutions, respectively. The MS bands include four conventional
visible and near-infrared MS bands: blue (B, 450–510 nm), green (G, 510–580 nm), red (R, 630–690 nm)
and near-IR1 (NIR1, 770–895 nm); and four new bands: coastal (C, 400–450 nm), yellow (Y, 585–625 nm),
red edge (RE, 705–745 nm) and near-IR2 (NIR2, 860–1040 nm). The WV-2 PAN band, for which the
spectral response range is 450–800 nm, covers a narrower NIR spectral range than the IKONOS PAN
band. The WV-2 dataset was acquired in September 2014 over the city of Beijing, China, and had an
average off-nadir angle of 13.7˝. The IKONOS sensor provides data in four MS bands with 4-m spatial
resolution. These comprise the blue (B, 0.45–0.53 µm), green (G, 0.52–0.61 µm), red (R, 0.64–0.72 µm)
and near-infrared (NIR, 0.77–0.88 µm) bands, and there is also a corresponding 1-m PAN band
(0.45–0.90 µm). The IKONOS dataset was acquired over Beijing in May 2000. These two sensors were
chosen for this work, since the two PAN bands have different spectral response ranges. Both of the
original MS images from the two sensors had a size of 512 ˆ 512 pixels, and both of the original PAN
images had a size of 2048 ˆ 2048 pixels. Typical land cover types in the two scenes included water
bodies, grasses, trees, buildings, roads and shadows.

To verify the performance of the proposed fusion scheme, the fused images obtained using the
proposed method were compared to methods from the literature that were both well known and
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known to perform well. These included the HR [21], PS [19,20], GS [12] with Mode 1 (GS1), GS with
Mode 2 (GS2) and GS adaptive (GSA) [13] methods.

Two quantitative assessment procedures were adopted to evaluate the performance of the
proposed fusion method, along with a visual comparison. The first procedure compared the fused
imagery generated from the degraded MS and PAN images of the two sensors with the corresponding
original MS images according to Wald’s protocol [47]. Three comprehensive indices, the Erreur Relative
Globale Adimensionnell de Synthèse (ERGAS) [48], the Spectral Angle Mapper (SAM) [49,50] and
Q2n [51,52], which is a generalization of the Universal Image Quality Index (UIQI) for monoband
images and derived from the theory of hypercomplex numbers, particularly of 2n-ones, were employed
to do this. These indices estimate the global spectral quality of the fused images. The lower the ERGAS
and the SAM values, the better the quality of the fused image. The higher the Q2n index, the better the
quality of the fused product. Given the number of bands in the two datasets, the Q4 and Q8 indices
were used for the IKONOS and WV-2 datasets, respectively. The second procedure compared the
fused versions of the original MS and PAN images of the two sensors using the Quality index with
no reference images (QNR) [53]. The QNR is formed from the product of two variables, Dλ and DS,
which quantify the spectral and spatial distortions, respectively. Dλ is derived from the difference
between the inter-band UIQI [54] values calculated from the fused MS bands and those calculated
from the LSR MS bands. DS is generated from the difference between the UIQI values calculated using
the PAN band and each of the fused MS bands and those calculated using the degraded PAN band
and each of the LSR MS bands. The higher the QNR index, the better the quality of the fused product.
The maximum theoretical value of the QNR is 1, which occurs when both Dλ and DS are equal to 0.

3.2. Generation of the Fusion Products for Comparisons

The degraded versions of the WV-2 and IKONOS images were obtained by applying a low-pass
filter that matched the modulation transfer function (MTF) of the corresponding sensor and
a decimation characterized by a sampling factor equal to the resolution ratio, R, to each band.
The fusion experiments were then carried out on both the degraded and original versions of the
two datasets.

The PS-fused images were generated in PCI Geomatics software, whereas the other fusion
products were produced by using the corresponding algorithms developed in MATLB R2011b
(Version 7.13.0.564). For all of the fusion methods, except PS, the up-sampled MS images were
generated by using a polynomial kernel with 23 coefficients [55]. For GS2 (GS with Mode 2), GSA, HR
and the proposed UHR methods, the low-pass version PAN images (PL) were produced by employing
low-pass filters that matched the MTF of the corresponding sensors [46,56]. The HR-fused images
were produced by using the same haze values as for the UHR method. For the UHR method, the NDVI
images of the original and degraded WV-2 datasets were obtained by using the bands R and NIR1,
whereas those of the original and degraded IKONOS datasets were generated by using the bands R
and NIR.

The values of the parameters required by the proposed method were determined according to
the explanation given in Section 2. Parameter δ was set to 0.3; the values of SP, LV and LP were set
to 7 (2R ´ 1), 5 (2R ´ 3) and 7 (2R ´ 1), respectively, for a value of 4 for R. In addition, the value of
SN is also mainly determined by the spatial resolution ratio, R. The value of SN can be set to 2R ´ 1,
or slightly lower than 2R ´ 1 in order to avoid over-un-mixing. The SN values for the original and
degraded datasets were thus set to 7 and 5, respectively, for both the WV-2 and IKONOS datasets.

Finally, the UHR-fused images of the original and degraded WV-2 datasets were produced with
652,048 and 61,901 un-mixed MSPs, respectively. The UHR-fused images of the original and degraded
IKONOS datasets were generated with 864,400 and 60,953 un-mixed MSPs, respectively.
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3.3. Wald’s Protocol

The quality indices for the fused images produced from the WV-2 and IKONOS datasets at the
degraded scale are shown in Table 1. “EXP” in the table refers to interpolated MS images at the PAN
scale formed without the injection of details derived from the corresponding PAN bands. In order
to observe the fusion products in detail, the subsets of the MS image and the corresponding fused
images produced from the degraded WV-2 dataset are shown in Figure 5. In addition, the error maps
of the fusion products shown in Figure 5 are shown in Figure 6 to better compare the quality of the
fused images. These error maps, which record the root mean square error (RMSE) values of the fused
pixels in each of the fusion products, are applied to an identical histogram stretching scheme generated
from the error map of the up-sampled MS image. The subsets of the MS image and the corresponding
fused images produced from the degraded IKONOS dataset are shown in Figure 7. In this study, the
original and fused MS images of the WV-2 dataset are shown as a combination of bands R, NIR1 and
B, whereas the original and fused MS images of the IKONOS dataset are shown as a combination of
bands R, NIR and B. An identical histogram stretching scheme generated from the up-sampled MS
image (in the case of the original scale) or the reference MS image (in the case of the degraded scale)
was applied to the MS images shown in these two figures.
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Figure 5. The 84 ˆ 84 pixel subsets of the MS images and the corresponding fused images produced
from the degraded WorldView (WV)-2 dataset: (a) true 2-m MS image; (b) up-sampled version of the
8-m MS image; (c) 2-m PAN image; and the results of (d) UHR fusion, (e) HR fusion, (f) PS fusion,
(g) GS1 fusion, (h) GS2 fusion and (i) GSA fusion.
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Table 1. Values of the comprehensive quality indices of the fused images produced from the degraded
WV-2 and IKONOS datasets. Q, Quality; UHR, un-mixed haze- and ratio-based (HR); PS, PANSHARP.

WV-2 IKONOS

ERGAS SAM (˝) Q8 ERGAS SAM (˝) Q4

UHR 2.459 3.052 0.914 1.577 1.882 0.871
HR 2.496 3.197 0.912 1.581 1.931 0.869
PS 2.651 3.752 0.885 1.962 2.403 0.779

GS1 2.997 3.749 0.846 2.112 2.358 0.751
GS2 2.834 3.613 0.865 2.058 2.315 0.760
GSA 2.473 3.440 0.911 1.652 2.067 0.859
EXP 3.826 3.932 0.722 2.673 2.576 0.584
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produced from the degraded WV-2 dataset: (a) true 2-m MS image; and the error maps for the results of
(b) the up-sampled version of the 8-m MS image; (c) UHR fusion; (d) HR fusion; (e) PS fusion, (f) GS1
fusion; (g) GS2 fusion and (h) GSA fusion.

Comparison between the fusion products (of the two sensors) generated by the six approaches
shows that the proposed UHR method provides the best result in terms of ERGAS, SAM and Q8,
followed by the HR and GSA methods. The GSA and PS perform better than the GS2 and GS1 methods
due to the use of an MSE minimization solution to estimate the weights for the generation of an LSR
PAN image from the MS image. However, the GS1 and GS2 methods yield better values of SAM than
the PS methods due to the fact that the weights obtained by the MSE minimization approach are not
the best for SAM [13]. The GS2 performs better than the GS1 method. This is because the former
method uses an LSR PAN image obtained by applying an MTF-matched filter to the original PAN
image followed by decimation, which restricts the spectral distortions introduced by the LSR PAN
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image. Compared to the HR method, the superiority of the UHR is demonstrated in that it shows that
the un-mixing of the MSPs during the fusion is effective at reducing the spectral distortions.

In terms of visual quality, the images produced by the UHR and HR methods contain more
spatial details than the other fusion products, especially for vegetation-covered areas. This is also
demonstrated by the error maps shown in Figure 6, in which more spatial details can be observed from
the error maps of the PS-, GS1- and GS2-fused images. The error maps of the UHR- and HR-fused
images offer smaller RMSEs than other error maps, for the vegetation- and shadow-covered areas.
In addition, the UHR method produces sharper boundaries between vegetation and non-vegetation
objects, such as buildings, squares, roads and shadows, than the HR method does. It also can be
seen from Figure 6 that the pixels near VNV boundaries offer lower RMSEs in the UHR-fused image
than those in the HR-fused image. For the fusion products derived from the degraded WV-2 dataset,
the GS1, GS2 and GSA results show similar tonalities, whereas the PS method produces a well-textured
result for vegetation-covered areas. In contrast, for the fusion products derived from the degraded
IKONOS dataset, the GSA method produces better results than the fusion products generated by the
PS, GS2 and GS1 methods, especially for areas containing buildings. Although the PS-fused images
for the two sensors yield well-textured results, they do show spectral distortions, particularly for
the PS-fused image produced from the degraded IKONOS dataset. In addition, the fused images
generated by the GS1, GS2 and GSA methods seem blurred, as few spatial details extracted from
the PAN image were injected into the fused images. These fusion products have very blurred VNV
boundaries in particular.
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Figure 7. The 64 ˆ 64 pixel subsets of the MS images and the corresponding fused images produced
from the degraded IKONOS dataset: (a) true 4-m MS image; (b) up-sampled version of the 16-m MS
image; (c) 4-m PAN image; and the results of (d) UHR fusion; (e) HR fusion; (f) PS fusion; (g) GS1
fusion; (h) GS2 fusion and (i) GSA fusion.
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3.4. Full Resolution

The quality indices of the fusion products derived from the two types of imagery at the original
scale are shown in Table 2. Figures 8 and 9 show the subsets of the MS and PAN images and the
corresponding fused images for the original WV-2 and IKONOS datasets, respectively.

Table 2. Values of the comprehensive quality indices of the fused images produced from the original
WV-2 and IKONOS datasets. QNR, Quality index with no reference images.

WV-2 IKONOS

Dλ DS QNR Dλ DS QNR

UHR 0.015 0.050 0.936 0.022 0.075 0.906
HR 0.031 0.062 0.909 0.030 0.087 0.885
PS 0.064 0.075 0.866 0.108 0.121 0.784

GS1 0.019 0.114 0.870 0.051 0.134 0.822
GS2 0.048 0.065 0.890 0.055 0.089 0.860
GSA 0.065 0.090 0.852 0.099 0.157 0.760
EXP 0 0.067 0.933 0 0.095 0.905
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Figure 8. The 256 ˆ 256 subsets of the MS and PAN images and the corresponding fused images
produced from the original WV-2 dataset: (a) 0.5-m PAN image; (b) up-sampled version of the 2-m MS
image; and the results of (c) UHR fusion, (d) HR fusion, (e) PS fusion, (f) GS1 fusion, (g) GS2 fusion
and (h) GSA fusion.
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For the experiments at the original scale, the UHR method gives the highest QNR value followed
by the HR and GS2 methods, for both the WV-2 and IKONOS datasets. The UHR performs better
than the HR method in terms of QNR, Dλ, and DS, indicating that the UHR is effective at reducing
both spectral and spatial distortions. It can also be seen from the UHR-fused images shown in
Figures 8 and 9 that this method produces sharper VNV boundaries than the other fusion methods.
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Figure 9. The 128 ˆ 128 subsets of the MS and PAN images and the corresponding fused images
produced from the original IKONOS dataset: (a) 1-m PAN image; (b) up-sampled version of the 4-m
MS image; and the results of (c) UHR fusion; (d) HR fusion; (e) PS fusion; (f) GS1 fusion; (g) GS2 fusion
and (h) GSA fusion.

The GS2 method outperforms the GS1 method in terms of the QNR, because the former has
a significantly lower DS value than the latter. This may be because GS2 employs a low-pass version of
the PAN image obtained by applying an MTF-matched filter to the original PAN image rather than
by using a weighted average of the MS bands. The latter approach is also employed by the GSA and
PS methods to produce the LSR PAN images. The LSR PAN images produced by the latter approach
may introduce spectral distortions due to the difference between the spectral response ranges of the
MS bands and that of the PAN band. This is especially obvious in Figure 9, where the PS-, GS1- and
GSA-fused images show obvious spectral distortions.
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The GS1 method has a higher QNR than the PS and GSA methods because it produces lower Dλ

values than the other two methods, especially for the IKONOS dataset. Although PS and GSA perform
better than GS2 and GS1 at the degraded scale in terms of ERGAS, SAM and Q2n, the former methods
perform more poorly than the latter in terms of Dλ. This is because Dλ measures the difference between
the inter-band relationships of the fused bands and those of the LSR MS bands, and this difference is
not considered by the quality indices.

The GSA yields the lowest QNR for the WV-2 dataset, as it produces the highest Dλ value, whereas
it provides the lowest QNR for the IKONOS dataset, as it produces the highest DS. This difference
between the Dλ and DS values of the GSA-fused images of the two sensors may be caused by the
different spectral response ranges of the PAN images acquired by the two sensors.

3.5. Determination of the Involved Parameters

The determination of the values of the parameters used in the fusion process, on which the quality
of the fusion products generated by the proposed method mainly depends, is discussed in this section
in order to facilitate the application of the proposed method. Each of the parameters LV, LP and SN

was set to a range of different values, and the quality of the resultant fusion products obtained using
both the WV-2 and IKONOS datasets at the original and degraded scales was assessed using both the
QNR and Q2n indices.

In Section 2, it was already explained that the value of LV, which determines the accuracy of the
identification of VNV boundaries in the PAN image, can be set no higher than 2R ´ 1. Given a value of
R of 4 for all of the datasets, LV was, therefore, tested with values of 5 (2R´ 3), 7 (2R´ 1) and 9 (2R + 1)
in the experiment.

The value of LP, which determines the maximum distance (in pixels) between the identified
MSPs and the corresponding VNV boundaries, also depends mainly on the value of R and, based
on this consideration, should be set equal to 2R ´ 1. However, the value of LP is also affected by the
interpolation method used to produce the up-sampled MS image. A 23-tag pyramid filter was used
to generate the up-sampled MS images in this study. The spectrum of a vegetation pixel that lies
across the coarse VNV boundaries derived from the LSR MS image can affect the spectral values of
pixels within the neighboring 23 ˆ 23-pixel window. Since the coefficients with significantly higher
values are concentrated at the 11 pixels in the center of the filter, LP was set to the odd numbers in the
range [5,11], and the quality of the resultant fused images was assessed. The value of SN determines
the size of the window within which the search for the purest vegetation or non-vegetation pixel to be
used to un-mix an MSP during the fusion process is carried out. Its value is also affected by the value
of R and the interpolation method used for producing the up-sampled MS, as well as by the spatial
resolution. Consequently, the value of SN was also set to odd numbers in the range [5,11].

The fusion products derived from the two image types at both scales were generated by using
different values for LV, LP and SN, along with a δ of 3 and an SP of 7. The values of QNR and Q2n

were used to assess the quality of the fused images. RMSP, the ratio (as a percentage) of the number of
un-mixed MSPs in each fusion product to the image size (in pixels) was also recorded as a reference
of the determination of these parameters. The values of QNR and Q8 along with the RMSP values of
the fusion products for the two WV-2 datasets are shown in the line graphs in Figure 10; those for the
two IKONOS datasets are shown in Figure 11.
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the original WV-2 dataset; (c) Q8 and (d) RMSP for the UHR-fused images produced from the degraded 
WV-2 dataset. 

Figure 10. (a) QNR and (b) ratio of un-mixed MSPs (RMSP) for the UHR-fused images produced from
the original WV-2 dataset; (c) Q8 and (d) RMSP for the UHR-fused images produced from the degraded
WV-2 dataset.

It can be observed from Figures 10 and 11 that the quality of the fusion products, in terms of both
Q2n and QNR, for both the WV-2 and IKONOS datasets at the two scales, is most sensitive to the value
of SN, followed by the values of LV and LP. For the two datasets at the degraded scale, only the fusion
products generated using a value of 5 for SN yield better performances than the HR-fused image in
terms of Q2n. In contrast, for the two datasets at the original scale, all of the fusion products yield
better performances than the HR method in terms of QNR.

RMSP is also more sensitive to the value of SN than it is to LV and LP. Generally, a higher value of
SN results in a higher RMSP. However, a higher SN does not always result in a better quality fusion
product, because a higher RMSP may introduce spectral distortions caused by over-un-mixing. This is
especially significant for the case of the fusion products at the degraded scale, where a value of 11 for
SN results in the highest RMSP, but the lowest Q2n value.

The best performances for the two degraded datasets are achieved by a value of 5 for LV and
values of 7, 9 and 11 for LP, along with a value of 5 for SN. The best performances for the two original
datasets are achieved by the fusion products generated using a value of 5 for LV and values of 7, 9
and 11 for LP, along with a value of 11 for SN. Although a value of 11 gives the poorest performance
at the degraded scale, it performs the best at the original scale. This may be caused by the fact that
the QNR is less sensitive to spectral distortions introduced by over-un-mixing of MSPs than the Q2n.
Consequently, it is suggested that the values of LV and SN be set to 5 (i.e., 2R ´ 3), whereas the value of
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LP can be set to odd values in the range (2R ´ 1, 11) in cases where a 23-tag filter is employed to yield
the up-sampled MS image.Remote Sens. 2016, 8, 83 

19 

 

Figure 11. (a) QNR and (b) ratio of un-mixed MSPs (RMSP) for the UHR-fused images produced from 
the original IKONOS dataset; (c) Q4 and (d) RMSP for the UHR-fused images produced from the 
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Figure 11. (a) QNR and (b) ratio of un-mixed MSPs (RMSP) for the UHR-fused images produced
from the original IKONOS dataset; (c) Q4 and (d) RMSP for the UHR-fused images produced from the
degraded IKONOS dataset.

4. Discussion

Pansharpening can be generalized as the injection of spatial details derived from the PAN image
into an up-sampled MS image to produce a high spatial resolution MS image. Numerous methods
were proposed to optimize the spatial details derived from the PAN image or to optimize the weights
by which the spatial details multiply during the injection, in order to reduce spectral distortions of the
fused images. However, commonly-used image fusion methods rarely consider the spectral distortions
introduced by the up-sampled MS image. Consequently, the generated fusion products suffer from
spectral distortions and blurred boundaries between different objects. Hence, the application of these
fused images in mapping, classification and object extraction is limited. It is desirable that the MSPs
that correspond to the pure PAN pixels are fused to pure pixels with the same land cover classes
(i.e., the same as those of the corresponding pure PAN pixels) to reduce the spectral distortions in the
fused images. A pansharpening method including the un-mixing of MSPs is proposed in this study.
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However, the un-mixing of MSPs is not an easy task, because it is difficult to identify the MSPs
and to decide which land cover categories the corresponding pure PAN pixels belong to using only the
LSR MS and PAN images. Moreover, incorrect un-mixing of the MSPs, caused by incorrect decisions
about the land cover categories and the use of incorrect substitutions during the un-mixing, may
introduce spectral distortions. Since the spectral differences between vegetation and non-vegetation
objects are more significant than those between other objects, the MSPs near the VNV boundaries
contribute more spectral distortions than those near the other boundaries. Hence, only the MSPs near
the VNV boundaries are considered to be un-mixed to pure vegetation or pure non-vegetation in the
proposed UHR fusion method.

In the tests on the IKONOS and WV-2 datasets, two quality assessments were performed on the
fusion products obtained at both the original and degraded scales in order to evaluate the proposed
method. The quality assessments of the datasets acquired by the two sensors demonstrated that the
UHR-fused images had the lowest spectral and spatial distortions. Visual comparison demonstrated
that the UHR-fused images also had clearer VNV boundaries than the fusion products generated by
the PS, GS and HR methods. The UHR method performed better on the original datasets in terms of
the QNR than on the degraded datasets in terms of Q2n, perhaps because of the relatively low spatial
resolution of the degraded imagery, as well as the different quality indexes used at the two scales.
The relatively low spatial resolutions of the degraded datasets increased the ratio of the number of
MSPs to the number of pixels in the whole image. As a result, it became more difficult to search for
correct substitutes for the fusion of the identified MSPs. As a consequence, some MSPs that correspond
to pure non-vegetation were defined as being pure vegetation in the fused images, and vice versa.
The incorrect fusion of these MSPs led to limited improvement in the quality indexes (i.e., Q2n) of the
UHR-fused images for the degraded IKONOS and WV-2 datasets. However, the UHR-fused images
for the two degraded datasets still had significantly sharpened VNV boundaries, as could be observed
by visual inspection.

It was necessary to set the values of several parameters to generate fused images using the
proposed method. These parameters include the standard deviation (δ) of an LOG edge detector, the
size of a moving window within which to calculate the average NDVI values (SP), the diameters of
two disk-shaped SEs (LV and LP) and the size of the neighborhood window within which to search
for a substitution pixel (SN). The values of δ and SP were set to 0.3 and 2R ´ 1, respectively, where
R was the spatial resolution ratio of the MS and PAN images. The parameters LV, LP, SN were set to
different values, and the quality of the resulting fusion products at the original and degraded scales
were accessed using the QNR and Q2n indices, respectively. The experimental results showed that the
best performances were achieved by the fusion products generated using a value of 5 for both LV and
SN, along with values of 7, 9 and 11 for LP. Consequently, it is recommended that LV and SN are set
to a value of 2R ´ 3, whereas the value of LP can be set to any odd number in the range (2R ´ 1, 11).
Haze was taken into account in the proposed fusion method. In the fusion experiment, haze values
were determined for each of the bands using the minimum grey level values in the bands, based on an
image-based dark-object subtraction method [42–44].

The quality of the fused images generated by the proposed fusion method is affected by the
accuracies of the three processing steps involved, including identifying MSPs near VNV boundaries,
determining land cover categories of the identified MSPs and finding the correct substitution pixels
for the un-mixing of these MSPs near VNV boundaries. The second step, determining the categories
(i.e., vegetation or non-vegetation) of the MSPs near VNV boundaries (i.e., the sub-pixels with category
CM in MPI) is the most difficult, since these MSPs often have high NDVI values. In this study, the VNV
boundaries, along with the NDVI image, were used to determine the categories of the identified MSPs.
Although some classification errors could be found in the land cover classification map, the fused
images generated from the original IKONOS and WV-2 datasets by the proposed method had lower
spectral and spatial distortion than the fused images generated by any of the HR, PS, GS and GSA
fusion methods. However, improving the accuracy of the classification is a topic requiring further
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research. In order to minimize spectral distortions caused by incorrect substitutions, the land cover
category of pixel t (i.e., MLC(t)) is checked with respect to the corresponding NDVI value (i.e., INDVI(t)),
whereas the NDVI value of the substitution pixel n is strictly checked before the fusion is performed.
In detail, the value of MLC ptq is checked using the two conditions in Equation (9). If neither of the two
conditions in Equation (9) is met, indicating that pixel t may be misclassified in MLC, the un-mixing is
not performed for pixel t, in order to avoid spectral distortion caused by an incorrect substitution pixel
employed. The NDVI of the substitution pixel n (INDVI pnq) is checked using Equation (10). In detail, if
pixel t is a vegetation pixel in MLC, INDVI pnq should be higher than INDVI ptq, since the substitution
pixel should correspond to a pure vegetation pixel in the up-sampled MS image, but t corresponds to a
VNV mixed pixel in the up-sampled MS image. Similarly, if pixel t is a non-vegetation pixel in MLC,
INDVI pnq should be lower than INDVI ptq. Although both pixels are of the same category (i.e., vegetation
or non-vegetation) in the PAN band, there is a spectral difference between the pixel t in the true high
spatial resolution MS image and the fused pixel t, which is generated by the HR method with respect
to the spectra of the substitution pixel. In addition, the MSPs that lie across VNV boundaries, which
are mixed pixels of vegetation and non-vegetation in the reference MS image, are set to pure vegetation
or non-vegetation pixels in the resultant fused images, which may introduce spectral distortions. The
substitution strategy works fine, but needs further optimization. Although the HR method is employed
in the proposed fusion scheme to calculate the fused versions of the sub-pixels, some other fusion
methods based on the SDM injection model, such as the Brovey, SFIM and PS methods, could also be
used in the proposed scheme to improve the quality of the fusion products.

5. Conclusions

Pansharpening algorithms can be summarized as the injection of the spatial details of a PAN
image into an up-sampled MS image to generate a high resolution MS image. How to minimize spectral
distortions while preserving the spatial details of the PAN image is a major topic in pansharpening.
Most current methods focus on optimizing the spatial details derived from the PAN image and the
weights of the spatial details during the injection. However, the mixed sub-pixels in the up-sampled
MS image also contribute to the spectral and spatial distortions in the resulting fused image, and few
fusion algorithms include the reduction of the spectral distortions caused by these mixed sub-pixels.
To reduce the spectral distortions generated by currently-used fusion methods, an image fusion method
that realizes the spectral un-mixing of mixed MS sub-pixels near VNV boundaries in the fusion process
was proposed in this paper. In tests using high resolution WorldView-2 and IKONOS datasets over
Beijing, the proposed method was compared to the PANSHARP, Gram–Schmidt (Modes 1 and 2),
Adapted Gram–Schmidt and haze- and ratio-based fusion methods. The fused images generated by
the proposed method produced lower spectral and spatial distortions and much sharper boundaries
between vegetation and non-vegetation objects, indicating that un-mixing of the MSPs near VNV
boundaries is effective at reducing spectral distortions. The land cover category (i.e., vegetation
or non-vegetation) of each of the MSPs is a prerequisite for the correct un-mixing of the identified
MSPs. Improving the accuracy of the land cover classification and optimizing the spectral substitution
strategy are the subjects of further studies. Although the HR method is employed by the proposed
fusion method to generate fused sub-pixels, some other fusion methods employing the SDM injection
model, such as the Brovey, SFIM and PS methods, can also be used in the proposed scheme to improve
the quality of the fusion products.
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