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Abstract: We assessed the potential for using optical functional types as effective markers to monitor
changes in vegetation in floodplain meadows associated with changes in their local environment.
Floodplain meadows are challenging ecosystems for monitoring and conservation because of their
highly biodiverse nature. Our aim was to understand and explain spectral differences among
key members of floodplain meadows and also characterize differences with respect to functional
traits. The study was conducted on a typical floodplain meadow in UK (MG4-type, mesotrophic
grassland type 4, according to British National Vegetation Classification). We compared two
approaches to characterize floodplain communities using field spectroscopy. The first approach
was sub-community based, in which we collected spectral signatures for species groupings indicating
two distinct eco-hydrological conditions (dry and wet soil indicator species). The other approach was
“species-specific”, in which we focused on the spectral reflectance of three key species found on the
meadow. One herb species is a typical member of the MG4 floodplain meadow community, while
the other two species, sedge and rush, represent wetland vegetation. We also monitored vegetation
biophysical and functional properties as well as soil nutrients and ground water levels. We found that
the vegetation classes representing meadow sub-communities could not be spectrally distinguished
from each other, whereas the individual herb species was found to have a distinctly different spectral
signature from the sedge and rush species. The spectral differences between these three species
could be explained by their observed differences in plant biophysical parameters, as corroborated
through radiative transfer model simulations. These parameters, such as leaf area index, leaf dry
matter content, leaf water content, and specific leaf area, along with other functional parameters,
such as maximum carboxylation capacity and leaf nitrogen content, also helped explain the species’
differences in functional dynamics. Groundwater level and soil nitrogen availability, which are
important factors governing plant nutrient status, were also found to be significantly different for the
herb/wetland species’ locations. The study concludes that spectrally distinguishable species, typical
for a highly biodiverse site such as a floodplain meadow, could potentially be used as target species
to monitor vegetation dynamics under changing environmental conditions.
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1. Introduction

Floodplain meadows are highly biodiverse and sensitive ecosystems supporting numerous species
of flora and fauna [1,2]. They also provide a wide range of ecosystem services [3], such as buffer
zones during flooding and are an ideal habitat for pollinating insects such as bees. Historically
in the British landscape, they were mainly used for hay production and grazing. However, with
changes in agricultural policies and also as a result of rapid urbanization, there has been a sharp
decline in the area covered by floodplain meadows [4,5]. In particular, the biodiversity of these
meadows is under constant threat due to changes in hydrological regime, poor management and
agricultural intensification. Because of their high ecological significance, they have been given a high
conservation priority, and hence they need to be studied and monitored closely to prevent any further
loss of biodiversity.

Being complex ecosystems with delicate interlinkages between vegetation, hydrological and
nutrient regimes, floodplain meadows are important sites for studying ecosystem behavior under
changing climatic conditions. Although there has been an increase in scientific research on floodplain
meadows in recent years, most of the literature is based on time- and labor-intensive conventional
methods, such as botanical surveys (for example, [1,2,6]). Integration of these methods with modern
technologies can lead to more efficient ways to study and monitor these complex ecosystems.
Vegetation spectral data, for instance, provide a promising means to monitor the biodiversity as
well as vegetation quality, quantity and dynamics (e.g., [7,8]).

In ecological research, applications of remote sensing data can be grouped into three categories.
Firstly, mapping vegetation cover is done by relating vegetation types to spectral data and from
that sub-community or species level maps are generated [9,10]. Recently, this application has also
been extended to mapping biodiversity by correlating spectral variations with species richness or
abundance [11,12]. The second category of applications derives empirical relationships between
spectral data and vegetation biophysical and biochemical properties such as total biomass, leaf
pigments or water content, thereby improving our understanding of the physiological conditions
of the vegetation [13–17]. Finally, there are applications that use remotely sensed vegetation
properties in ecosystem models to understand functional dynamics such as evapotranspiration and
photosynthesis [18–21].

Modern hyperspectral sensors have opened a vast area of research for analyzing species-level
differences in biophysical and chemical properties [22–27]. With the availability of fine resolution
datasets and advanced knowledge about vegetation and environment interactions, the focus of remote
sensing applications in ecological research is gradually shifting towards utilizing spectral data to
characterize vegetation into functional types [25,28–31]. This involves integrating all three kinds of
applications discussed above, wherein observed spectral differences are explained with respect to
biochemical and structural differences in the vegetation and these differences are then related to the
functional interactions between vegetation and its environment. Although there is no universally
accepted single definition of functional type, it involves “grouping species based on their structural,
physiological and/or phenological features in response to environmental conditions or according to
their impacts on ecosystem” [29]. Thus, the monitoring of functional types may help predict changes
in vegetation with respect to changes in their immediate environment [32–35]. However, the concept
of “functional types” is still largely context dependent due to the occurrence of a wide range of
physiological, morphological and biochemical traits, which make a discrete classification virtually
impossible. Furthermore, multiple approaches exist to classify vegetation into functional types based
on ecological, botanical or modeling points of view [29]. Thus, it is important to assess which of these
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functional types are distinguishable in spectral data. From a spectroscopy perspective there are a
limited number of useful functional traits such as leaf pigment content, leaf dry matter, water content,
Leaf Area Index (LAI), and leaf angle distribution; these all play an important role in radiative transfer
and hence govern vegetation spectral behavior [13,36,37]. Thus, they can potentially be used to study
functional differences in the target ecosystems through spectroscopy [29,36,38,39]. This has further led
to the concept of ”optical functional types”, which refers to vegetation functional types that could be
traced using spectral datasets [28,29].

Despite these developments, applications to study herbaceous communities are still limited.
These communities, in general, are very challenging for spectroscopy research [38] due to the relatively
small plant size and the presence of an often diverse assemblage of species and multiple plants in one
sampling unit. There have been applications of remote sensing to herbaceous communities, such as
those monitoring species diversity (e.g., [32,40–42]) involving retrieval of properties such as LAI and
biomass using empirical methods or radiative transfer model inversion [43–46]. However, there is a
recognized need for further research on spectroscopy-based vegetation biophysical and functional
characterization [47,48].

In this paper, we investigate the potential for and limitations of spectral data in characterizing
important optical functional types in a typical UK floodplain meadow community. We assess if it is
possible to identify spectrally distinguishable members of the community. We investigate if their leaf
and canopy level biophysical and biochemical properties explain the observed differences in vegetation
spectra with the help of radiative transfer model. With the help of these properties and some additional
functional traits, we explain the functional differences in the optical types. We have also monitored
groundwater level and soil available nitrogen to understand differences in the water and nutrient
availability in root zone of these optical types. Thus, we assess the potential of optical functional types
to be used as effective markers to monitor changes in vegetation in floodplain meadows and associate
them with changes in their immediate environment.

2. Background

2.1. MG4 Floodplain Meadows

In the UK, floodplain meadow communities are described using the National Vegetation
Classification (NVC). The meadow used within this study is classified as MG4 [49], which at the
European scale forms part of the “Alopecurion alliance” [50]. MG4 is Alopecurus pratensis–Sanguisorba
officinalis grassland (syn. Fritillario–Alopecuretum pratensis with 16 constant species referring to those
that are typical members of MG4) including grasses and broad leaf herbaceous species. It is one of
the most typical floodplain communities in the UK; a semi-natural ecosystem developed as a result
of traditional management. This management allows vegetation to grow during spring and summer,
which is then cut for hay during June–July, followed by grazing in the two months in early autumn.
The hay harvest removes nutrients from the meadows and replacement is primarily via surface water
flooding. Nutrient status is then dependent on a combination of groundwater flows, soil-moisture
and related soil aeration status, and soil temperature; changes in hydrological regime can significantly
alter nutrient availability [1]. The meadow soils often have low nutrient availability, which limits
plant growth. This limitation increases the competition between plant species and prevents dominance
of the community by any aggressive species, contributing to the high levels of diversity in the plant
community [2,49]. This community can consist of many grass and broad leaf herbaceous species
as well as several sedges, rushes, ferns and mosses with total numbers of species reaching 40 per
square meter. The MG4 community is found on soil that can supply enough water during the growing
season and also supports adequate aeration, and is more negatively affected by water logging than
by water scarcity [1,2]. On drier soils the MG4 shows transitions towards MG5 community, which
has a dominance of dry indicator species such as Centurea nigra and Leucanthemum vulgare; on wetter
soils it moves towards MG8 (Cynosurus cristatus–Caltha palustris grassland; [2]) or shows dominance



Remote Sens. 2016, 8, 112 4 of 22

of species like Filipendula ulmaria or even wetland species. It is important to note that the NVC
system is based on the association of species; it does not directly take into account the soil moisture,
nutrient or hydrological conditions. However, extensive research has been carried out to associate the
communities with water availability in soil by defining preferred ranges of water table depth through
long-term groundwater level (GWL) and botanical surveys [1,2,51].

2.2. Study Area

The field site, known as Yarnton Mead, has an area of 32 ha, and is located on the floodplain
of the River Thames (Figure 1), northwest of the city of Oxford [52] in the lowlands of southern UK
(51.791499N, ´1.296714E). It forms part of the Oxford Meadows, an EU designated Special Area of
Conservation. The site is relatively flat with elevation ranging between 55 and 60.3 m and has a
shallow water table, typically fluctuating within 0.6 m of the ground surface. Depth to groundwater
is determined by a number of factors: proximity to the River Thames, which, due to a downstream
weir, has a consistently high water level causing recharge to the gravel aquifer along the whole of its
reach adjacent to the meadow; proximity to ditches, primarily the ditch that runs along the north of the
meadow, which is both a discharge line and a route for flood waters; but mainly due to the topography,
with low-lying zones more prone to waterlogging. The meadow is underlain by alluvial deposits: a
fine-grained alluvium of silts, clays and fine-to-medium sand of variable thickness, over calcareous
gravel. The predominant soil type is a silty clay loam with an organic top layer of variable thickness.
A map of thickness of alluvium was derived for Yarnton Mead from a surface geophysical survey using
an EM31ground conductivity meter (Geonics Ltd., Mississauga, ON, Canada). Typical representative
species of MG4 and species representing its transition towards MG5 (discussed in Section 2.1) occur
mainly in the northwest of the meadow, an area of the field characterized by relatively thin alluvium.
Wetness-indicating species are coincident with the low-lying areas and with areas of thick clayey
alluvium that have poor drainage (Figure 1). Although alluvium thickness may not directly govern
species composition, it plays a role by modulating GWL.
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3. Materials and Methods

The field sampling was done during spring and early summer season (end of March to early July)
in 2013 and 2014. This period corresponds to undisturbed and rapid vegetation growth, followed
by flowering and fruiting stages of the plant life cycle. In 2013, the spectral sampling strategy was
designed to capture reflectance of fully-grown species assemblages as their composition changes over
the meadow with respect to the soil water availability (i.e., “sub-community based” approach). In 2014,
near-homogeneous, fully-grown canopies of three species were targeted for spectral measurements
(i.e., “Species based” approach). The observed spectral differences were then explained through
vegetation radiative transfer model sensitivity runs and field measurements of plant optical parameters.
In addition to the optical parameters, plant functional properties, and nutrient conditions in the plant
root zone were studied at species level, with the aim of assessing the functional differences between
the typical MG4 representative species and wetland species.

3.1. Sampling Locations

For the “sub-community based” sampling in 2013, we considered two subcategories of MG4
based on eco-hydrological differences—DRY and WET. Over the field, 25 locations (Figure 1, red dots)
were chosen using a Latin hypercube algorithm [53], which ensured that the variability in elevation,
alluvium depth and information from an NVC map [54] was well represented. Although, through the
NVC map, overall community level variability was taken into account, exact botanical composition
was not known before selection of the sampling locations. Botanical surveys were carried out at
these locations in mid May 2013. Based on the projective cover of indicator species in 1 m by 1 m
sampling plots, the locations were assigned to a DRY or WET category. Table 1 lists species used
for the DRY and WET classification. Average score on Ellenberg’s moisture scale for DRY species
would be 5 and for WET would be 7.4 [55]. In general, the locations with a typical MG4 community,
and those showing botanical transition towards MG5 were also grouped into the DRY class, while
others with sedges, rushes, and wetness indicating grass and herb species were grouped into the WET
class. Furthermore, in addition to the 25 locations, we also included two small transects (one with
14 locations and another with 7 locations, both with roughly 5 m intervals between adjacent locations)
through different vegetation patches. The species assemblages at these locations were also assigned to
the DRY or WET classes based on their botanical compositions.

Table 1. List of prominent species, grouped under vegetation classes, studied for spectral
discrimination, including the final number of sampling locations (and spectra) after removal of
poor-quality measurements.

Class Main Species Found Date of
Spectral Sampling

Number of
Sampling Locations

DRY

Sanguisorba officinalis, Centaurea nigra,
Succisa pratensis, Galium verum, Lotus

corniculatus, Primula veris, Dactylis glomerata,
Carex flacca, Festuca rubra, Trisetum flavescens

5 and 9 July 2013 25 (400 spectra)

WET

Carex riparia, Carex acuta, Juncus acutiflorus;
Filipendula ulmaria, Thalictrum flavum,
Lysimachia numullaria, Holcus lanatus,

Hordeum secalinum, Cardamine pratensis,
Agrostis stolonifera

5 and 9 July 2013 10 (158 spectra)

SO Sanguisorba officinalis 12 June 2014 8 (131 spectra)

CA Carex acuta, Carex riparia 13 June 2014 10 (146 spectra)

JA Juncus acutiflorus 12 and 13 June 2014 7 (85 spectra)

For the species based sampling in 2014, three important species were selected, namely Sanguisorba
officinalis (SO), Juncus acutiflorus (JA) and Carex acuta (CA). This choice was based on the following



Remote Sens. 2016, 8, 112 6 of 22

important species-differentiating facts: SO is a herb from the Dicotyledonous Class of plants forming
rosettes of oblong pinnate leaves and is a typical representative of MG4 community (Figure 2a); JA, a
rush, and CA, a sedge, represent the Monocotyledon Class of plants differing from the Dicots by their
growth habits. Normally they are absent on MG4 meadows or occur in small amounts, however, on
Yarnton Mead, they have started to dominate in wet parts of the meadow in recent years [54]. JA has
almost cylindrical tube-like, glossy leaves that taper at the end to form a sharp tip (Figure 2c). CA,
however, has linear, glaucous leaf blades with a bluish tinge (Figure 2b). On Yarnton Mead, CA occurs
in close association with another big sedge, Carex riparia; because of their similar growth habit, we
grouped them together into CA. Besides these botanical observations, the change in spectral sampling,
from sub-community to species based approach, was driven also by conclusions drawn from the
spectral data analysis obtained in 2013 (discussed in Section 4.1.1).
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Figure 2. Digital photographs showing top of canopy (1 m height above ground) for (a) Sanguisorba
officinalis (SO); (b) Carex acuta and Carex riparia (CA) and (c) Juncus acutiflorus (JA). Photographs taken
on 12 and 13 June 2014.

We identified three areas in the field where one of the target species was most abundant (Figure 1).
Next, 10–12 locations were chosen in each area based on the criteria that within a 1 m by 1 m plot
around the location (marked with canes) the projective cover of the target species was more than 90%
(blue dots in Figure 1) and locations are at least 5 m away from each other.

3.2. Spectral Sampling, Post Processing and Analysis

Spectral radiance in nadir direction was measured in 2013 with a SVC HR-1024 hyperspectral
spectroradiometer on 5 and 9 July, and in 2014, with a slightly advanced version of the same
instrument (known as SVC HR-1024i; with on-board digital camera and GPS) on 12 and 13 June.
Both spectroradiometers record the radiance for more than 900 spectral bands covering the visible
(VIS), near infrared (NIR) and short wave infrared (SWIR) regions of wavelengths, and have a similar
spectral resolution (3.5 nm in VIS, 9.5 nm in NIR and 6.5 nm in SWIR). Foreoptics with 8˝ instantaneous
field of view was used for spectral sampling from 1 m height above the ground, sampling a circular
ground area of 154 cm2 (i.e., a radius of 6.9 cm). Each radiance measurement was taken with an
integration time of 3 s. At each sampling location a plot of 1 by 1 m was sampled. It was divided into
16 grid-cells of equal size (~0.25 m by 0.25 m). Target measurements were taken approximately in the
center of each of these 4 by 4 grid-cell configurations. Regular reference measurements, required to
convert radiances into reflectance, was taken over spectralon panel before every 4 target measurements.
The same measurement protocol was followed in both years. Sampling dates reflect maximum
vegetative growth and predominantly clear sky conditions necessary for spectroscopy. However, not
all planned locations could be sampled on each sampling date due to interruptions caused by the
frequent and partial cloud cover.
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The radiance data were post-processed to produce calibrated reflectance spectra (ρλ; subscript
λ refers to wavelength) using the field spectroscopy toolbox (Field Spectroscopy Facility,
http://fsf.nerc.ac.uk). This process, followed by qualitative checks using the field photographs
and notes, led to further removal of spectral data that were considered sub-optimal due to poor
illumination conditions. An average reflectance spectrum for each location was calculated using all
good quality spectra at that location (mostly ranging between 10 and 16 in number).

Different tests were performed using the spectral reflectance data to characterize spectral
variations between the sub-community and species based vegetation classes. The average and standard
deviation of each vegetation class was calculated using all locations within the class.

The discrimination metric D [56] was calculated to assess the dissimilarity in the ρλ measured
over the two sub-communities and three key species,

D “ r
1

n´ 1

n
ÿ

i“1

pρ
re f
λi
´ ρsam

λi
q

2
s

1{2

(1)

where n is the number of wavelengths used between 400 and 2470 nm (n = 923 for year 2014 data,
and 935 for year 2013 data); and superscripts “ref ” and “sam” refer to reference and sample spectra,
respectively. This metric enables the comparison of vegetation class pairs (for example, comparing SO
with CA or WET with DRY), with one as the reference and the other as the sample spectrum. Smaller
values of D indicate less dissimilarity between reference and sample spectra. D was calculated for all
possible class pairs (SO–CA, SO–JA, CA–JA, and DRY–WET).

A further technique (developed by Cochrane [56]), “spectral shape filtering”, which differentiates
vegetation classes based on the overall shape of their spectra, was implemented. It involves normalizing
all the measured ρλ (sam and ref ) by dividing them by a standard spectrum and evaluating the location
of the normalized spectrum of sam relative to the spectral shape space of the standard spectrum.
The standard spectrum is the average ρλ of the ref class. The spectral shape space for ref class is defined
by minimum and maximum values at each wavelength, considering all the normalized spectra of ref.
If the average normalized spectra for sam fall within the spectral space of ref, it indicates that sam is
spectrally inseparable from ref.

Finally, the difference in ρλ was tested for statistical significance at every wavelength between
different pairs of classes. The non-parametric ANOVA test (Mann–Whitney U test) was used for this
purpose as it does not rely on the assumption of normal distribution of spectral data and compares
sample median rather than mean. It has also been used in similar types of spectroscopy based
research [41,57,58].

3.3. Field Data Collection for Vegetation Biophysical and Functional Properties

The canopy-level structural parameter LAI was measured in 2013 and 2014 using the Sunscan
Canopy Analysis System (Delta-T Devices, Burwell, UK). Five to seven measurements were taken
below the canopy at every location. LAI was measured within 1 to 5 days of the spectral sampling.
Simultaneously with the spectral sampling on 12 and 13 June 2014, leaf samples were collected for each
target species to obtain leaf chlorophyll content (Lcc), leaf dry matter content (Ldmc), leaf water content
(Lwc) and specific leaf area (SLA), using standard laboratory techniques. Leaf samples from different
locations were bulked to form a main sample. Ten leaves were drawn from the main sample for
determination of Lcc. Chlorophyll content was obtained by acetone extraction method, and standard
equations [59,60] were used to convert the absorbance measurements into chlorophyll concentrations.
Another set of 10 leaves was used to measure leaf area using a calibrated Delta-T leaf area meter.
Once the area was measured, leaves were weighed immediately for fresh weight. They were then
oven-dried at 80˝C for 48 hours, and weighed again to determine Ldmc, Lwc and SLA. Lcc, Ldmc and Lwc

were expressed in mass per cm2 of leaf area, as required for the radiative transfer model simulations.
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After leaf biochemical analysis, the remaining plant material was dried at 80 ˝C for two days,
ground into fine powder and subjected to total carbon and nitrogen analysis in a Thermo Flash 2000
Carbon Nitrogen Analyser, using aspartic acid as standard material for calibration. This analysis gave
percentage of leaf nitrogen and carbon content (Nl and Cl) in leaf dry matter.

Along with the spectral sampling in June 2014, CO2 response curves (also known as A-Ci, or
photosynthesis-intercellular CO2 response curves) were also measured using a LICOR-6400 InfraRed
Gas Analyser (IRGA) to estimate Vcmax (maximum carboxylation capacity of Rubisco enzyme involved
in photosynthesis) for SO, CA and JA. The protocol for these measurements was developed based
on [61]. Subsequently, leaves used for determination of the response curves were cut, and their area
was measured using a leaf area meter. The A–Ci curves were corrected for actual leaf area and then
used in Curve-Fit GUI (version 0.5) to estimate Vcmax [62].

The vegetation and soil available nitrogen (explained in Section 3.5) have been tested for significant
difference among different vegetation groups by one-way ANOVA tests using GENSTAT statistical
package (v16.1.10916). When testing more than two groups (for example, SO, CA and JA) for significant
difference, Fisher’s unprotected t-test was used for pair-wise comparison. We inspected the histogram
of the residuals and a plot of the expected normal quantiles against the residuals to ensure that
the residuals approximated a normal distribution. Single outliers were identified amongst the
measurements of dry matter and water content. These were removed prior to conducting the ANOVA.

3.4. Model Simulations

A one-by-one sensitivity analysis was conducted with the PROSAIL canopy radiative transfer
model [37,63,64] to help explain the effect of each optical parameter on ρλ in association with the
field measurements. The PROSAIL model is a coupled canopy (SAIL) and leaf radiative transfer
(PROSPECT) model that has been widely used and tested for different kinds of canopies such as
agricultural crops, grasslands, and forests [37]. The model simulates canopy ρλ based on information
provided about illumination and observation geometry, and vegetation and soil optical properties.
The vegetation optical parameters are LAI, Lcc, Ldmc, Lwc, leaf thickness parameter (N), and a parameter
describing leaf inclination. The leaf inclination is modeled using a leaf inclination distribution function
(LIDF). Within this function leaf angles are represented by parameter LIDFa in PROSAIL. The value
of LIDFa varies from ´1.0 for completely erectophile to 1.0 for completely planophile leaves, but the
range from ´0.5 to 0.5 covers common leaf inclinations in reality. The sensitivity analysis entailed
calculation of canopy ρλ in the nadir direction, for different values of the six canopy optical parameters;
one parameter was varied at a time, while the others were kept constant (at representative values of
LAI = 5 m2¨m´2, Ldmc = 0.008 g¨ cm´2, Lcc = 30 µg¨ cm´2, Lwc = 0.009 cm, LIDFa = ´0.35 (unitless), and
N = 1.6 (unitless)). The range of parameter values was determined based on the field data, except for N,
as it could not be easily measured in absence of leaf level spectral measurements. This parameter refers
to internal leaf structure, cell arrangements and intercellular air spaces [64]. Some mixed grassland
studies have reported values of N around 1.5 to 1.7. In absence of any field-based information, N was
varied uniformly within the wide range reported in the literature (i.e., 1.3 to 2.1). The distribution
of other parameters within their respective range were chosen such that they are proportional to the
sensitivity of ρλ to that parameter [65].

The vegetation over the meadow was very dense and covered soil completely, thus making soil
spectral parameterization less important. A typical spectrum of organic meadow soil has been used to
describe soil reflectance.

3.5. Soil Measurements

Time-integrated availability of root zone soil nitrate pNO´3 q and ammonium pNH`4 q, hence
available soil nitrogen over the study period were measured using Plant Root Simulator (PRS) probes
(Western-Agsolutions, Saskatoon, SK, Canada, http://www.westernag.ca). These probes are of two
types—anion and cation. They consist of ion exchange resin strips (~7 cm long and ~1 cm wide)
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encased in a firm plastic frame. The total surface area of resin strips is 17.5 cm2, including both sides.
They were buried vertically down in the soil so that the resin strips were completely in contact with
the soil. In 2014, three locations were chosen in each of the SO, CA and JA sampling locations. At each
sampling location, four pairs (anion and cation) of PRS probes were installed. Two batches were used:
the first set was installed on 3 May and removed on 1 June 2014; the second batch was deployed on
1 June and removed on 4 July 2014. The probes were transported in sealed plastic bags in a cool-box
and, after thorough washing in the laboratory using de-ionized water, were then sent in insulated
cool-boxes to the manufacturer for analysis.

3.6. Groundwater Level Data Acquisition

In the absence of continuous monitoring of root zone soil moisture, groundwater level data (GWL)
were used in the study as a proxy for soil moisture. From the existing network of 17 boreholes on the
site, three were identified that coincide with the three species-dominated focus areas. The locations of
these boreholes are shown in Figure 1. All three boreholes are completed in the gravel aquifer with
1-metre long screens at their base. Non-vented data loggers (Rugged Troll 100, In-Situ, Fort Collins,
CO, USA) installed in the boreholes measure pressure; height of the water column above the logger,
and in turn the depth to groundwater, is calculated by combining total pressure with output from a
barometric pressure data logger (Rugged BaroTroll, In-Situ), also located on Yarnton Mead. The loggers
provide water level measurements on an hourly interval, validated by manual monitoring of water
levels on a monthly basis using a water level meter (Soil Instruments, Uckfield, East Sussex, UK).

4. Results

4.1. Spectral Variations

All spectral analysis tests show that the DRY and WET sub-community based classes are spectrally
very similar, while for the species based classes results suggest spectral differences between SO and
CA or JA with mixed results for differences between CA and JA. The results are elaborated further.

4.1.1. Sub-Community Based Spectral Discrimination

The spectral variability plot (Figure 3a) of the sub-community based approach shows that
the average ρλ of the DRY class was overall slightly higher than that of the WET class across all
wavelengths. However, the plots of the mean ρλ along with standard deviation for the two groups
consistently overlapped.

The discrimination metric D was equal to 1.66 for the DRY–WET comparison and markedly lower
than the D values obtained for the species-based approach (see Section 4.1.2 below), indicating a strong
similarity between ρλ of these DRY and WET classes.

The shape filter analysis plot (Figure 3b) shows the spectral shape space for DRY, and average
spectrum of WET normalized with respect to DRY. The normalized spectrum of WET was well within
the upper and lower boundary of spectral shape space for DRY. The shape filter analysis confirms the
results of the metric D that ρλ of WET could not be distinguished from DRY at any wavelength.

Finally, results of the band-wise Mann–Whitney U tests (Figure 3c) also showed that the spectral
differences between WET and DRY class were not statistically significant over most of the measured
wavelengths, except between: 400 and 541 nm; 666 and 681 nm; 719 and 728 nm; and 1165 and 1316 nm.
However, in the shape filter plot, no difference was observed at these wavelengths.
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Figure 3. (a) Average spectra (along with standard deviation) measured in nadir direction above
canopy of DRY and WET class on 5 and 9 July 2013; (b) Shape filter space of DRY class with mean
of normalized (with respect to DRY) spectra of WET class vegetation; (c) Results of wavelength wise
Mann–Whitney U test between WET and DRY location spectra showing significant differences in grey
scale (p-value < 0.05). Number of sampling locations is given in bracket in the legend of plot 3a.

4.1.2. Species-Based

Figure 4a shows the average ρλ for SO, CA and JA along with their standard deviations.Reflectance
for SO was higher than for CA and JA over almost all wavelengths, but particularly in the NIR and
SWIR region (750 to 1200 nm). SO had the highest and JA had the lowest ρλ, with ρλ for CA located in
between. Average ρλ in the NIR shoulder (700 to 750 nm) was 50%–52% for SO, 38%–40% for CA and
30%–32% for JA. However, there was considerable overlap between the mean and standard deviation
spectra for JA and CA (Figure 4a).

The dissimilarity matrix D was 12.21 between SO and JA, and 8.63 between SO and CA,
which indicates a high dissimilarity between the mean spectrum of SO and those of CA and JA.
The‘dissimilarity matrix D between CA and JA was equal to 3.67, which is less than the D between SO
and CA as well as between SO and JA.

The shape filter analysis plot (Figure 4b) shows the spectral shape space for SO and average
spectra of CA and JA normalized with respect to SO; the ρnorm of JA could be discerned from SO for
all wavelengths. In the case of CA, ρnorm was outside the spectral shape space of SO for most of the
wavelengths, except a few in the SWIR region near 2000 nm. When JA spectra were normalized with
respect to CA, they also fell outside the spectral shape space of CA, but it was aligned much closer
to the lower boundary of the shape space of CA in the VIS and NIR part of the spectrum (Figure 4c).
The distance between this lower boundary and ρnorm of JA increased in the SWIR region.

The Mann–Whitney U tests plots show that ρλ were significantly different between SO–JA and
SO–CA over all the wavelengths (Figure 4d,e). In the case of CA–JA, ρλ was also significantly different
over most of the wavelengths, except 15 wavelengths between 1056 nm and 1110 nm (Figure 4f).
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Figure 4. (a) Average spectra (along with standard deviation) measured in nadir direction above
canopy of SO, CA and JA on 12 and 13 June 2014; (b) Shape filter space of SO class with mean of
normalized spectra (with respect to SO) of CA and JA; (c) Shape filter space of CA class with mean of
normalized (with respect to CA) spectra of JA; (d–f) Results of wavelength wise Mann–Whitney U test
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grey shading (p-value < 0.05). Number of sampling locations is given in brackets in the legend of (a).

4.2. Vegetation Biophysical and Functional Differences

LAI for SO was generally higher than for CA and JA (Figure 5a) throughout the growing season
(also on 13 June 2014, the date of spectral sampling). Multi-date observations of LAI for 2014 show that
it increased rapidly between 15 April and 17 May, and more gradually throughout the end of May
and early June. The range of LAI values presented in Figure 5a illustrates how dense the vegetation
was. Table 2 shows that, as per ANOVA tests (at 5% level of significance), LAI of SO was always
significantly different from JA and CA. When comparing the DRY and WET classes, LAI was not
statistically significantly different (Figure 5b, p-value 0.811).

The values for leaf parameters, Ldmc and Lwc, measured for SO were significantly lower than those
found for the sedges, CA (Figure 5d,e and Table 2). Furthermore, mean Ldmc and Lwc also differed
significantly between CA and JA (Table 2). JA had the highest Ldmc and Lwc among all three species. SO
and CA had similar Lcc values; significantly higher than those recorded for JA (Figure 5c and Table 2).

Figure 6 shows the other functional properties of SO, JA and CA. SO had higher SLA than CA and
JA (Figure 6a), and higher Nl and Vcmax values (Figure 6b,c), while CA and JA were indiscernible from
each other. Average Nl :Cl values for SO, CA and JA were 0.054, 0.024 and 0.024, respectively. ANOVA
results reported in Table 2 also show that at the 5% level, SO had significantly different SLA, Nl , Vcmax

and Nl :Cl values compared to CA and JA.
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Figure 5. (a–e) Field measurements for (a) LAI, (c) leaf chlorophyll content; (d) leaf dry matter content;
(e) leaf water thickness for SO, CA and JA (measured on 13 June 2014) and (b) LAI measurements for
DRY and WET class (measured on 5 and 9 July 2013). The values in the brackets show the number of
sampling locations (a,b) and number of samples (c–e).

Table 2. One-way ANOVA tests results (with 5% level of significance) for leaf and canopy parameters,
soil-available NH`

4 and NO´
3 and groundwater levels (GWL). Bold p-values denote significant

differences (see Figures 5, 6 and 9; and Sections 4.2 and 4.4 for detailed descriptions).

Parameter (unit) Average (Standard Deviation) p-Value Significantly
Different Pairs

SO CA JA

LAI (m2¨ m´2) 7 May 2014 5.65 (1.55) 4.24 (0.93) 3.34 (0.93) 0.002 SO–CA; SO–JA

LAI (m2¨ m´2) 1 June 2014 7.31 (1.65) 5.99 (0.84) 4.19 (0.98) <0.001 SO–JA; SO–CA ;JA–CA

LAI (m2¨ m´2) 13 June 2014 7.88 (1.52) 6.69 (1.03) 5.88 (0.94) 0.001 SO–JA; SO–CA

Lcc (µg¨ cm´2) (13 June
2014-for all leaf parameters)

32.59 (2.26) 31.54 (3.94) 23.54 (5.12) <0.001 SO–JA; JA–CA

Ldmc (g¨ cm´2) 0.006 (0.0004) 0.010 (0.0008) 0.011 (0.001) <0.001 SO–JA; SO–CA; JA–CA

Lwc (cm) 0.010 (0.001) 0.020 (0.002) 0.030 (0.003) <0.001 SO–JA; SO–CA; JA–CA

SLA (cm2¨ g´1) 167.01 (10.30) 99.34 (8.31) 94.99 (9.31) <0.001 SO–JA; SO–CA; JA–CA

Vcmax (µg¨ cm´2¨ s´1) 64.51 (16.53) 39.81 (6.53) 42.93 (2.20) <0.001 SO–JA; SO–CA

Nl (%) 2.33 (0.03) 1.08 (0.01) 1.07 (0.02) <0.001 SO–JA; SO–CA

Nl :Cl 0.054 (0.0007) 0.024 (0.0005) 0.024 (0.0003) <0.001 SO–JA; SO–CA

NH`
4 (May–June 2014) 2.39 (0.04) 3.90 (1.45) 2.63 (0.20) 0.142 none

NO´
3 (May–June 2014) 7.58 (0.23) 4.15 (0.66) 3.66 (2.56) 0.040 SO–JA; SO–CA

NH`
4 (June–July 2014) 3.35 (0.91) 3.70 (0.06) 2.86 (0.43) 0.403 none

NO´
3 (June–July 2014) 6.55 (1.39) 6.86 (2.74) 4.05 (3.44) 0.420 none

GWL Time series data <0.001 SO–JA; SO–CA; JA–CA



Remote Sens. 2016, 8, 112 13 of 22

Remote Sens. 2016, 8, 112 

13 

 
Figure 6. Field measurements for (a) specific leaf area; (b) percentage leaf Nitrogen measured on 13 
June 2014; (c) maximum carboxylation capacity measured during May–June 2014 for SO, CA and JA; 
(d) available soil Nitrogen; and (e) soil available Nitrate in the SO, CA and JA root zone over the burial 
period. The values in the brackets show number of samples. 

4.3. Radiative Transfer Model Simulations 

The average spectra measured at each location per species (SO, CA and JA) have been plotted 
together with PROSAIL model ensemble runs in Figure 7. It shows the suitability of PROSAIL to 
simulate and help discussion with regards to spectral variability for these target species. The shaded 
portion represents the model ensemble runs, showing output spectra produced considering all 
possible combinations of field measured optical parameters for each species. These combinations 
were produced considering minimum, maximum and average value of each optical parameter as 
measured on 12 and 13 June 2014. In the case of LIDFa, a range from 0 to 0.50 was chosen for SO with 
an interval of 0.10 (thus covering planophile to uniform leaf inclination types). In the case of JA and 
CA, the range of LIDFa was −0.50 to −0.10 with interval of 0.10 (thus covering erectophile to spherical 
leaf inclination types). The model shows a good match in the NIR and SWIR region, but relatively 
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prominent in NIR than SWIR, as in the SWIR part of the spectrum Lwc interferes with Ldmc due to its 
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Figure 6. Field measurements for (a) specific leaf area; (b) percentage leaf Nitrogen measured on
13 June 2014; (c) maximum carboxylation capacity measured during May–June 2014 for SO, CA and JA;
(d) available soil Nitrogen; and (e) soil available Nitrate in the SO, CA and JA root zone over the burial
period. The values in the brackets show number of samples.

4.3. Radiative Transfer Model Simulations

The average spectra measured at each location per species (SO, CA and JA) have been plotted
together with PROSAIL model ensemble runs in Figure 7. It shows the suitability of PROSAIL to
simulate and help discussion with regards to spectral variability for these target species. The shaded
portion represents the model ensemble runs, showing output spectra produced considering all possible
combinations of field measured optical parameters for each species. These combinations were produced
considering minimum, maximum and average value of each optical parameter as measured on 12
and 13 June 2014. In the case of LIDFa, a range from 0 to 0.50 was chosen for SO with an interval
of 0.10 (thus covering planophile to uniform leaf inclination types). In the case of JA and CA, the
range of LIDFa was ´0.50 to ´0.10 with interval of 0.10 (thus covering erectophile to spherical leaf
inclination types). The model shows a good match in the NIR and SWIR region, but relatively poor
performance in the VIS region. The model generally overestimates reflectance in the VIS. The model
seems to underestimate reflectance in the SWIR wavelengths, especially for wavelengths higher than
2000 nm (especially for CA and JA).

Figure 8 shows a sensitivity analysis conducted with the PROSAIL model, for canopy ρλ in the
nadir direction, as a function of six model parameters. LAI mainly affects ρλ in the NIR region where
ρλ increases with increasing LAI (Figure 8a). Based on the range of LAI chosen, it can be seen that
sensitivity of ρλ to LAI reduces progressively towards the higher end of the LAI range. This is also true
for the leaf parameters. In the VIS region, ρλ is strongly affected by Lcc; it decreases with increasing Lcc,
as more light is absorbed by the chlorophyll (Figure 8b). Conversely, Ldmc significantly affects the NIR
and SWIR region (Figure 8c); ρλ decreases with increasing Ldmc. The effect is more prominent in NIR
than SWIR, as in the SWIR part of the spectrum Lwc interferes with Ldmc due to its strong absorption
features (Figure 8d). Reflectance in NIR and SWIR decreases with increasing Lwc, but most prominently
in the water absorption region (around 950, 1200 and 1400 nm wavelengths; Figure 8d). Another
important canopy parameter affecting ρλ in almost all wavelength regions is the leaf inclination angle.



Remote Sens. 2016, 8, 112 14 of 22

The canopies with lower LIDFa (nearly vertical leaves) have lower ρλ compared to canopies with
higher LIDFa (near planophile), whereas the intermediate values represent intermediate leaf inclination
angle distributions such as uniform, oblique and spherical (Figure 8f). The effect of N seems to be less
significant in comparison with all other parameters chosen, however it affects all parts of the spectrum
equally (Figure 8e).
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4.4. Soil Nitrogen Availability and Groundwater Level Variations

Figure 6d,e shows soil nitrogen availability in the root zones of target species during the 2014 study
period. Availability of NH`4 did not show a significant difference between the different species (Table 2)
during either of the burial periods. The availability of NO´3 , however, displayed some noticeable
differences. Figure 6d,e shows that in the SO root zone the availability of soil NO´3 (and hence available
soil nitrogen) was higher and less variable between the different sampling locations (small error bars).
In the case of CA and JA, wider error bars show a strongly variable availability across the sampling
locations. However, the differences in NO´3 between species were only significant for the first burial
period (i.e. 3 May to 1 June 2014).

Figure 9 shows daily GWL records for the boreholes in SO (borehole number PX21), JA (PX100)
and CA (PX101) dominated parts of the field over the study period (1 March to 15 July 2014). Boreholes
near SO locations had deeper GWL than those representing JA and CA. The differences in GWL at the
three boreholes were statistically significant (Table 2). In the beginning of the season (early March),
GWL were very close to the surface in SO-dominant areas and above the surface in the CA- and
JA-dominant parts. There was an overall recession of GWL during the growing season, superimposed
by short-lived rises in GWL, and by the end of June it was approximately 0.7, 0.5 and 0.4 m below
ground level in SO-, CA- and JA-dominated areas, respectively.
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5. Discussion

5.1. Explaining Spectral Variability of Meadow Vegetation

The results in Section 4.1.1 suggest that the two sub-categories of the MG4 vegetation community
delineated based on eco-hydrological differences (indicating dry or wet conditions over the field)
cannot be distinguished from each other spectrally (Figure 3). For the WET and DRY sub-communities,
species class membership was irrespective of their morphological and biochemical differences
(for example, Filipendula ulmaria is a broad leaf herb species, which was grouped with CA and JA
under WET class) that have been shown to be important in determining ρλ. In some locations in DRY



Remote Sens. 2016, 8, 112 16 of 22

sub-community, planophile and wide leaf herbs such as SO and Succisa pratensis were found along with
narrow and thick leaf species such as Galium verum and Carex flacca. This kind of species assemblage at
the sub-community scale is a result of optimal use of space and resources. Due to this wide variability
in life forms and other biophysical and leaf biochemical properties under WET and DRY classes,
these sub-communities failed to emerge as spectrally distinct. This argument, however, could be
strengthened through more data (other than those gathered for SO, CA and JA) for optical parameters.
These results for DRY and WET community highlight the limitations of using hyperspectral data to
distinguish between different sub-communities.

The dependence of ρλ at species level on different optical parameters is illustrated
through sensitivity plots (Figures 7 and 8), which concur with results discussed by other
researchers [30,36,66,67]. A good match in the NIR and SWIR region illustrates that the model is
able to explain the role of different parameters governing ρλ for our target species. The poor match
in the VIS region could potentially be due to model representation errors: (1) the model assumes a
vertically constant Lcc, while the upper most leaves in the vegetation, which dominate reflectance
measurements, might have an above average Lcc; or (2) clumping of the vegetation (gaps with lower
LAI), which makes it appear darker, especially in the visible domain. The underestimated reflectance
in wavelengths higher than 2000 nm may also be the result of discrepancies between the actual
and modeled canopy structure, in particular the distribution of Lwc and Ldmc within the canopy.
Furthermore, for these wavelengths, incoming (and hence reflected) radiation is very low, which
makes the spectral measurements more prone to measurement errors.

Among the three species, SO, with its planar leaves, had the highest LAI and Lcc, and the lowest
Ldmc and Lwc. Higher LAI promotes more scattering of light at canopy scale and also enhances
expression of leaf optical parameter at canopy scale. However, considering the overall very high
LAI values for all three species (~more than 4 m2¨m´2 on 13 June 2014) and reduced sensitivity of
reflectance at these higher values (Figure 8a), LAI might not be the dominant factor governing ρλ

variability; based on the sensitivity analysis, LIDFa, Ldmc and Lwc appear more influential factor for ρλ.
Leaf angles varied from planar for SO, to erect for JA, which marks the extreme ends of the leaf angle
range. Higher sensitivity of ρλ, across all wavelengths, to these LIDFa values also helps to explain
higher ρλ of SO throughout the spectrum; especially in the VIS, where both SO and CA had higher ρλ

than JA despite having higher Lcc.
Simulations with PROSAIL for an LAI of 4 m2¨m´2 nevertheless show that the difference in

reflectance for a bright (dry) and dark (wet) soil is less than 1% in the NIR (figure not shown). Thus,
soil reflectance cannot explain the differences in reflectance between SO and CA.

Although ANOVA tests show that ρλ was significantly different among all species, across almost
all the wavelength regions, the variability was more prominent in the NIR, followed by SWIR and then
VIS (Figure 4a). A similar pattern was observed by [36] in grass canopies. NIR region in general has
proven to be crucial for spectral discrimination among different species in various kinds of ecosystems
such as forest, grasslands, marsh, wetlands [32,41,57,68,69]. Reflectance in the NIR is mainly due to
multiple scattering at leaf and canopy level. Although scattering is not dependent on wavelength,
unlike absorption, higher scattering in the NIR is an indirect effect of very low absorption by plants and
hence more availability for scattering in this region [30]. At the leaf scale, scattering is dependent on
leaf thickness, fraction of intercellular air spaces, and cellular arrangement, while at the canopy scale it
is dependent on canopy density (related to LAI and leaf angles). In the PROSPECT model, simulation
of leaf level scattering is governed directly by N and indirectly by Ldmc and Lwc. Both Ldmc and Lwc have
weak absorption in the NIR region and strong absorption in theSWIR. The sensitivity analysis shows a
decrease in ρλ with increasing Ldmc due to more absorption by Ldmc as well as less scattering [30,31,70];
this is due to leaves becoming more compact with fewer intercellular spaces. Compared to the SWIR,
the effect of Ldmc is more significant in the NIR, as it is less affected by absorption by Lwc in this region.
Our sensitivity analysis shows that N is of less importance at the canopy scale, whereas both Ldmc and
Lwc still appear the dominant factor for ρλ. In the case of SO, both lower Ldmc and Lwc values could
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result in more scattering in the NIR and SWIR than would be the case for CA and JA. Between CA and
JA, less variability in ρλ in the NIR could be due to a smaller difference in Ldmc and the fact that they
have similar leaf angle distributions. Although Lwc was significantly different between CA (0.02 cm)
and JA (0.03 cm), sensitivity of ρλ at those values is reduced (Figure 8d). Thus, the lower ρλ observed
in CA and JA compared to SO was the result of a “synergistic effect” of several leaf and canopy level
parameters, as discussed in [30].

5.2. Functional Differences in SO, CA and JA and Optical Parameters as Functional Traits

It is notable that Ldmc (inverse of SLA), Lwc and leaf angles, which emerged in our study
as important parameters governing ρλ, are also effective indicators of species resource-use
strategies [31,34,71]. These parameters along with a few other crucial functional traits such as Nl and
Nl :Cl are useful for characterizing the functional dynamics of species [72,73]. Plants with higher SLA
tend to have higher Nl and higher photosynthetic capacity. This is confirmed by our nutrient analysis
and the Vcmax values measured. Higher Vcmax and Nl in SO leaves compared to CA and JA show that
SO had a higher photosynthetic capacity. Various researchers have found a correlation between Nl
and Vcmax, and also Lcc, as nitrogen is an important constituent of enzymes used in photosynthesis
(e.g., [74,75]). Reich et al. [73] showed that forbs generally have a tendency of accumulating Nl and have
high SLA and photosynthetic capacity and higher Nl :Cl ratio. Craine et al. [76] found that plants with
lower Nl tend to produce sturdy, tough leaves with lower Nl :Cl ratio, which means higher biomass
accumulation per unit Nl ; both CA and JA have thick leaves with more mechanical tissues around
their vascular systems. By contrast, SO has loosely arranged mesophyll cells with more intercellular
air spaces [77] to support rapid diffusion of CO2 to support higher photosynthesis rates [30]. Greater
depth to groundwater below SO indicates more less mobility of NO´3 with soil water and hence
higher and more consistent NO´3 availability; greater depth to groundwater in this area is a result
of higher ground elevation and the closer proximity to the main drainage ditch. In addition, higher
photosynthesis in SO is also related to higher transpiration, which is an important factor in root zone
drying. Taking into account all functional traits and soil nutrient and water conditions, in the context
of basic classification of functional types suggested by [78], SO can be categorized as a competitive
plant, adapted to use the available resources in order to maximize carbon gain; whereas CA and
JA are more stress-tolerant types that can survive resource-poor conditions due to the lower cost of
photosynthesis [79]. The degree of contrast in strategies found within this semi-natural MG4 meadow
under given narrow range of variability in soil nutrient and water conditions has been reported in
other similar grassland community studies [33,34,40,79].

5.3. Functional Traits as Ecosystem Monitoring Tool

The findings of this study support the functional trait-based ecosystem monitoring approach
suggested by some researchers [27,68,76]. It is evident that sets of functional traits such as Ldmc, Lwc and
leaf angle distribution, indicating a particular type of species resource-use strategy, are also responsible
for modulating spectral reflectance of that species; and therefore these traits could be monitored using
remote sensing. Ecological monitoring efforts to-date have been largely based on species identification
and mapping but in the case of a highly bio-diverse site such as Yarnton Mead, mapping large numbers
of species would be a complicated and time-consuming task. Remote sensing-based classification
of these kinds of sites may not be always appropriate [9,10], however, the monitoring of functional
traits of a few key species at locations within the sites where they dominate could be an effective
approach to guide management. Ansquer et al. [68] have shown that monitoring of even two species
in grasslands could identify ecosystem response to changes in regulatory factors. The functional trait
monitoring could be done through either directly estimating functional traits through empirical or
physical models using hyperspectral data, or building databases comprising spectral and functional
information of key species. It would involve identification of a small number of key indicator species
and regularly obtaining remote sensing data for these species along with some limited in situ data
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about the functional traits. It is important to note that some of these traits, such as Ldmc, Lwc, are easy
to study in the field. However, these spectral data-based functional traits monitoring approaches
have their own challenges. These involve: establishing the optimal spatial and spectral resolutions
for sensing variability in functional traits; improving retrieval efficiency of radiative transfer models’
inversion algorithms; and exploring the potential of spectral data in estimating further crucial traits
such as Nl , Vcmax. One more important aspect of spectral data-based monitoring is characterization of
the temporal changes in the spectral responses of target vegetation. In order to promote spectral based
monitoring of similar kinds of vegetation systems, it may be useful to collect data throughout different
phenological stages and identify time periods when the discrimination between key species is clearest.
Characterizing the spectral changes through time would also be useful to interpret associated changes
in vegetation biophysical/chemical properties; for example Chavana-Bryant et al. [80] proposed a
statistical model to monitor leaf age and related traits by tracing changes in their reflectance.

Along with the seasonal changes, inter-annual variations in the spectral reflectance, and related
interpretations with regards to composition, could be a major concern in some study sites. In our
research, the composition of the WET and DRY sub-communities is not expected to change drastically
between two consecutive years. Furthermore, in absence of any disturbances such as floods or extensive
grazing or manuring efforts, the soil water and nutrient status are not expected to vary dramatically
within two years. Hence, considering these facts, we did not expect large differences to occur in
the spectral reflectance at the sub-community nor at species level, between the two years. However,
other herbaceous communities may have additional challenges due to more dramatic changes in the
abiotic factors and related changes in the species composition and vegetation parameters such as
leaf water content. In order to deal with all these different issues, regular spectral sampling may
be required. However, collecting spectral data (to deal with seasonal and inter-annual variability)
under temperate, with related high cloud-cover, conditions prevailing in a country such as the UK is
problematic. Spectral data of higher temporal resolution can be obtained by fixed position continuously
logging hyper/multispectral sensors, as well as with unmanned aerial vehicles. Thus, in order to
advance the application of remote sensing in ecosystem functional dynamics, further research should
be directed to respond to these various challenges.

6. Conclusions

This study demonstrates the potential of hyperspectral data for functional characterization of
key species in floodplain meadow communities. It also supports a functional trait-based monitoring
approach for such complex and biodiverse vegetation communities. The study shows that the spectral
reflectance of a typical member of MG4 floodplain meadow community, Sanguisorba officinalis, was
significantly different (p-value < 0.05) from the spectra measured on the same meadow for wetland
representative species Carex acuta (in association with Carex riparia) and Juncus acutiflorus. Thus, the
spectral data, especially at near infrared and short wave infrared wavelengths, can potentially be
used to monitor the spread of these wetland species over MG4 floodplain meadows. Furthermore,
the spectral differences were explained using field information about optical functional traits in
combination with the canopy radiative transfer model. Among these traits, leaf dry matter content,
leaf water content and leaf inclination angles were identified as key traits governing spectral response
of the meadow vegetation. Along with the optical traits, other vegetation traits such as leaf nitrogen
content and maximum carboxylation capacity, as well as soil nitrogen content and groundwater levels
were used to explain the functional differences among the spectrally distinct species. This analysis
shows that spectral data of a careful selection of a number of key target species can be used effectively
to understand the functional diversity in floodplain meadows. However, the study also highlights
the limitation of the hyperspectral data in distinguishing sub-communities (e.g., wet versus dry
sub-communities) due to the heterogeneous mixture of species.

Further research is needed to study the potential of hyperspectral data and the functional trait
based approach to monitor seasonal and inter-annual changes in target species and relate these
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changes with their immediate environment. The major challenge for operational use of this approach
for floodplain meadow monitoring would be regular acquisition of good quality hyperspectral data.
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