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Abstract: We developed a method that analyzes the quality of the cultivated cropland class mapped
in the USA National Land Cover Database (NLCD) 2006. The method integrates multiple geospatial
datasets and a Multi Index Integrated Change Analysis (MIICA) change detection method that
captures spectral changes to identify the spatial distribution and magnitude of potential commission
and omission errors for the cultivated cropland class in NLCD 2006. The majority of the commission
and omission errors in NLCD 2006 are in areas where cultivated cropland is not the most dominant
land cover type. The errors are primarily attributed to the less accurate training dataset derived
from the National Agricultural Statistics Service Cropland Data Layer dataset. In contrast, error
rates are low in areas where cultivated cropland is the dominant land cover. Agreement between
model-identified commission errors and independently interpreted reference data was high (79%).
Agreement was low (40%) for omission error comparison. The majority of the commission errors
in the NLCD 2006 cultivated crops were confused with low-intensity developed classes, while the
majority of omission errors were from herbaceous and shrub classes. Some errors were caused by
inaccurate land cover change from misclassification in NLCD 2001 and the subsequent land cover
post-classification process.

Keywords: land cover; agriculture; remote sensing

1. Introduction

Land cover change (LCC) is one of the most important topics for global environmental change
studies. Information on LCC is essential to understanding the relationship and feedbacks between land
cover and the climate system, and its impacts on environmental and socioeconomic processes [1–3].
Changes in agricultural lands link closely to both natural and anthropogenic drivers. Studies of
agricultural land change require accurate and spatially explicit estimates of cropland area, types,
and qualities over large geographic regions. Currently in the United States, two national digital
classification maps contain agricultural classes: the National Land Cover Database (NLCD) [4–6]
and the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS)
Cropland Data Layer (CDL) [7]. These two datasets have been widely used for many applications,
often to quantify change across time. For example, Wright and Wimberly [8] quantified the grassland
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conversion in the Western Corn Belt by comparing each Landsat 30-m resolution pixel from the 2006
CDL to the 2011 CDL. Lark et al. [9] used the CDL from 2008 to 2012 and NLCD 2001 and 2006 to
find areas that were converted from and to cropland. Faber et al. [10] used the CDL datasets from
2008–2011 to estimate the amount of grassland, wetlands, and shrub that was converted to crops. Cox
and Rundquist [11] used the CDL datasets from 2008 to 2012 to estimate the conversion from wetland
to cropland. Johnston [12] used the 2010 and 2011 CDL data and U.S. Fish & Wildlife Service’s National
Wetland Inventory (NWI) and NLCD 2001 to determine wetland loss due to row crop expansion in the
Dakota Prairie Pothole Region. Johnston [13] used the CDL from 2006–2012 to analyze all major crops
and non-crop vegetation transitions to help quantify agricultural expansion in the U.S Northern Plains.
Stern et al. [14] used CDL from 2001 to 2010 and NLCD for training data in non-agricultural areas to
help determine changes in crop rotation in Iowa. Howard et al. [15] used all available CDL from 2000
to 2011 as training data and used NLCD 2001 and 2006 to constrict to areas only mapped as cultivated
crops or hay. Although formal national assessments of these products are completed [16] for many
applications, the accuracy of these baseline datasets (e.g., CDL and NLCD) still can be challenging
to understand for specific applications or categories [17]. Laingen [18] has cautioned that dubious
conclusions can be made when reporting land use and land cover change based on classification
results using remotely sensed data if the classification errors are not known and accounted for during
interpretation. He pointed out a wide range of computed cropland area in 2012 and cropland changes
from 2006 to 2012 in South Dakota by using different datasets. Further understanding of the quality of
these datasets through additional accuracy assessments can provide new information about class and
data quality that potentially enhances the ability for users to form accurate conclusions and decisions
with applications that use these data.

In this research, we developed a method to assess the quality of the cultivated cropland class
mapped in NLCD 2006 using a multi-source and multi-criteria approach. Cultivated cropland
(class 82) is defined as “areas used for the production of annual crops, such as corn, soybeans,
vegetables, tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. Crop
vegetation accounts for greater than 20% of total vegetation. This class also includes all land being
actively tilled” [4]. Traditionally, most accuracy assessments for land cover classification have used an
error matrix approach [19]. Although informative, the method does not provide a spatial distribution
of the classification error and possible causes of the misclassification [20,21]. The method described in
this study allows spatially explicit identification of potential commission and omission errors of the
mapped agricultural class in NLCD 2006. We quantify the magnitude of these errors across different
geographic areas, present the spatial distribution of the error, and analyze the plausible causes of the
errors regarding the land cover classification processes.

1.1. Review of NLCD 2006 Methodology

It is important to review how NLCD 2006 was generated because the assessment of the agricultural
class mapped in NLCD 2006 is the major focus of this research. The NLCD 2006 land cover product
was designed to update NLCD 2001 to 2006 and to meet the needs of the user community for more
frequent land cover monitoring.

As a major data source for NLCD 2006 development, Landsat images were compiled by selecting
a two-date pair from circa 2001 and circa 2006 for the same path and row for change detection and land
cover classification. In addition, to reduce impacts caused by seasonal and phenological variation,
images were selected in the same season for all path/rows. The temporal ranges were restricted to
within one month for most scenes. All Landsat image preprocessing was done by the National Landsat
Archive Production System (NLAPS), which does image geometric and radiometric calibrations. Each
image was then converted to top-of-atmosphere (TOA) reflectance [22].

Change detection was done by the Multi Index Integrated Change Analysis (MIICA) model [23].
The MIICA model uses four spectral indices to obtain the spectral change pixels and to determine the
change trajectory that occurred between the two image dates. The four spectral indices are Change
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Vector (CV), Relative Change Vector Maximum (RCVMAX), differenced Normalized Burn Ratio
(dNBR), and differenced Normalized Difference Vegetation Index (dNDVI) [23]. The change map
consisted of two change classes: Biomass Increase (BI) and Biomass Decrease (BD). For NLCD 2006 we
used one image pair for change detection [23].

A decision tree algorithm (See5) was used to generate classification rules for 2006 land cover
classification. See5 uses an entropy criterion, which means the classification trees grow based on
the variable that has the biggest entropy or amount of information [24]. To build classification,
a classification and regression tree (CART) model was applied [5], which is part of the NLCD
mapping module [25]. Training data representing different land cover types were generated from
unchanged areas by a random stratified sampling procedure. The training data for each land cover
class were held proportional to the total number of pixels for that class. The training data served as
a dependent variable as input for a decision tree model, while the 2006 Landsat reflectance, thermal
band, tasseled cap, and Digital Elevation Model (DEM) derivatives (aspect, slope, position index,
compound topographic index) served as the independent variable. Land cover classification was
done using the Decision Tree Classification [5]. Once the classification was generated, changes were
assessed from 2001 to 2006 by analyzing the change pixels from the two-date land cover maps. Finally,
post-mapping analysis was applied to generate the 2001–2006 change pixels, which were then used to
produce the 2006 land cover product [5].

1.2. Review of NLCD 2011 Methodology

Since the methodology developed in this study also uses the NLCD 2011 classification map as
one input file, it is useful to briefly review the NLCD 2011 land cover development method. The 2011
method consists of two parts: change detection and 2011 land cover classification and labeling.

Change detection is done by a robust Comprehensive Change Detection Method (CCDM),
including the Multi Index Integrated Change Analysis (MIICA) model and a novel change model
called ZONE. The CCDM is designed as a key component for the development of NLCD 2011 [23].
The CCDM uses two Landsat image pairs to extract change information. The purpose of using two
image pairs for change analysis is to reduce commission and omission errors caused by seasonal and
phenology change [23]. The core module of the change detection strategy is the MIICA model, which
was also used in NLCD 2006. The ZONE model is designed specifically to detect the changes related
to forest disturbance such as forest fire, forest harvest, and forest regeneration. The MIICA and ZONE
will each generate a spectral change map [23]. The change map will consist of two change classes:
Biomass Increase (BI) and Biomass Decrease (BD).

A decision tree algorithm (See5) was used to generate classification rules for 2011 land cover
classification. To build the See5 classification a CART model was used [5], which is part of the NLCD
mapping module [25]. Within the NLCD mapping module, a sampling tool was executed to generate
sample training data [25]. For independent variables, the sampling tool uses six reflective bands of
Landsat image, and for each path and row three images acquired in 2011 growing season were used.
Also included as independent variables was the DEM and derivatives, which includes aspect, slope,
position index, compound topographic index, and a maximum potential wetland data layer. Maximum
potential wetland is generated based on Hydric Soil, National Wetland Inventory (NWI), and NLCD.
For dependent variables, sampling tool uses the land cover type label. From the training data 5% of
the total pixels was drawn and 2% for validation.

From our sampling method a decision tree was built by See5 followed by a classification for
each pixel of the image using the rules developed. Once the 2011 classification image was created, a
post-classification process was applied, which includes running the Smart Eliminate Tool [25]. Smart
Eliminate is an aggregation algorithm that was applied to set a Minimum Mapping Unit (MMU)
for a given pixel. As a result of this, patches that are less than five pixels are relabeled based on its
neighborhood pixels to reduce the “salt and pepper” effect in the original land cover map [6].
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1.3. Review of National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL)

The CDL is an important dataset to review because the CDL is used both in creating NLCD 2011
and as an input file for this study. As a USDA NASS program, a CDL has been produced annually
since 2006 using medium resolution satellite imagery such as Landsat 5, Landsat 7, and IRS-1C LISS
satellites. The product is a comprehensive, raster formatted, and georeferenced crop specific dataset
with a 56-m spatial resolution for CDL 2006 and 2007 and a 30-m spatial resolution for CDL after
2007 [7]. The USDA mission is to provide accurate, timely, and useful statistics for U.S. agriculture [26].
The NASS cropland classifications are integrated with field survey through regression analysis to
provide a robust method to reduce statistical variation. The regression estimation methodology is
superior to simple pixel counting, which is often biased. Over the last few years, greater access to
imagery and ground truth data has allowed NASS to expand its coverage to include the conterminous
United States [7].

These products use orthorectified imagery to geospatially and accurately identify many crop
types [26]. The CDLs were generated using a supervised classification methodology [7]. The
geo-referenced images and ancillary data were stacked regionally by state using Environmental
Systems Research Institute (ESRI) Geographic Information Systems (GIS) software. Next, samples
were generated across the image stack using ground truth data, which identified the pixel locations of
specific crops. The sample stacks were then data mined to determine the set of multi-spectral rules
from the time series of imagery that would best predict what land cover category was found at ground
truth locations. Once the classification rules were established, all the pixels within the scene were
placed into the class that best fit building a statewide classification [7]. A high quality ground truth
dataset is the key to the classification process. The field level information provides spatially detailed
field information that includes the “Common Land Unit” (CLU), a large and timely USDA database of
agricultural land use of many farms across the country. The database provided a very good sample for
training the image classifier [26]. For this research, we used CDL 2006 and 2007, which is based on the
Advanced Wide Field Sensor (AWiFS) at 56-m resolution, and the CDL 2011 based on Landsat 30-m
resolution imagery.

2. Study Area and Data

2.1. Study Area

The study area consists of eight Landsat Worldwide Reference System-2 (WRS-2) path/rows
located in the conterminous United States (Figure 1). Each path/row was selected where cultivated
cropland was mapped and where we had CDL data available in 2006 (or 2007). For the eight path/rows,
the percentage of the land cover that was cultivated crops ranges from 36.08% in path/row 44/27 to
80.18% in path/row 23/32 (Table 1).

For this study, the main constraint for selecting those path/rows is the availability of CDL datasets
(Figure 2). The eight path/rows selected cover major agricultural areas within the United States and
the selection process is not based on a statistical sampling design. Path/rows 29/30, 23/32, 20/32, and
30/27 are located in the Corn Belt region. Path/row 23/37 is located in the Mississippi River alluvial
valley region. Path/row 30/33 is located primarily in western Kansas. Path/row 42/35 is located in
the Central Valley of California, and 44/27 is located on the Columbia Plateau.
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Figure 1. National Land Cover Database (NLCD) area with specific Landsat path/row study areas
in blue.

Table 1. NLCD 2006 land cover percentages by path/row.

NLCD Land Cover Classes 20/32 23/32 23/37 29/30 30/27 30/33 42/35 44/27

Open Water (11) 0.75% 1.00% 4.42% 1.43% 1.68% 0.46% 0.42% 2.21%
Perennial Ice/Snow (12) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Developed-Open Space (21) 7.03% 4.31% 4.34% 4.79% 4.59% 2.99% 3.86% 2.33%
Developed-Low Intensity (22) 3.06% 4.03% 0.92% 0.85% 0.80% 0.43% 1.46% 0.79%

Developed-Medium Intensity (23) 0.86% 0.96% 0.24% 0.34% 0.23% 0.06% 1.72% 0.27%
High Intensity (24) 0.35% 0.29% 0.08% 0.11% 0.08% 0.01% 0.33% 0.04%
Barren Land (31) 0.08% 0.04% 0.16% 0.05% 0.01% 0.12% 3.99% 0.04%

Deciduous Forest (41) 7.43% 5.27% 8.01% 2.17% 1.68% 0.22% 0.83% 0.05%
Evergreen Forest (42) 0.08% 0.01% 4.88% 0.08% 0.09% 0.00% 9.03% 10.07%

Mixed Forest (43) 0.24% 0.00% 2.09% 0.03% 0.05% 0.00% 0.43% 0.00%
Shrub/Scrub (52) 0.02% 0.00% 3.64% 0.16% 0.01% 0.06% 10.28% 41.70%

Grassland/Herbaceous (71) 1.15% 0.23% 0.55% 12.88% 2.48% 40.92% 26.64% 3.05%
Pasture/Hay (81) 5.60% 3.01% 3.40% 13.52% 5.49% 0.94% 4.42% 1.89%

Cultivated Crops (82) 73.07% 80.18% 49.79% 61.56% 77.14% 52.93% 36.35% 36.08%
Woody Wetlands (90) 0.09% 0.63% 17.00% 0.33% 1.54% 0.85% 0.12% 0.25%

Herbaceous Wetlands (95) 0.20% 0.04% 0.48% 1.72% 4.11% 0.03% 0.11% 1.21%
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2.2. Data 
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pixels of the cropland class in NLCD 2006. In order to identify potential commission and omission 
errors in classified cropland type through the modeling approach, the following datasets were used: 
NLCD 2006, NLCD 2011, CDL 2011, and CDL 2006 or 2007. Spectral change output from a MIICA [23] 
model using Landsat images was also used. These datasets were used as inputs to a geospatial 
model to generate a map depicting where potential omission and commission errors exist in NLCD 
2006. The following two sections describe how the datasets were prepared for the study. 
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Figure 2. (a) National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) 2006;
(b) CDL 2006 cross-walked; (c) CDL 2007; (d) CDL 2007 cross-walked; (e) CDL 2011; and (f) CDL
2011 cross-walked.

2.2. Data

The method developed in this study incorporates several data sources to detect misclassified
pixels of the cropland class in NLCD 2006. In order to identify potential commission and omission
errors in classified cropland type through the modeling approach, the following datasets were used:
NLCD 2006, NLCD 2011, CDL 2011, and CDL 2006 or 2007. Spectral change output from a MIICA [23]
model using Landsat images was also used. These datasets were used as inputs to a geospatial model
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to generate a map depicting where potential omission and commission errors exist in NLCD 2006. The
following two sections describe how the datasets were prepared for the study.

2.2.1. Landsat Imagery

Landsat 5 imagery was used to extract spectral change information from circa 2006 to circa 2011.
All Landsat scenes were acquired from the U.S. Geological Survey (USGS) Earth Resources Observation
and Science (EROS) Center where they were processed to TOA reflectance through the Level 1 Product
Generation System (LPGS). In order to extract spectral change information, we used a MIICA model
and a ZONE model [23].

2.2.2. NASS Cropland Data Layer (CDL) Datasets

The CDL 2006 and CDL 2007 were both used in this study. The spatial coverage of the CDL 2006
was limited to the Midwest and Alaska, and the CDL 2007 covered the Midwest and the West Coast
regions. Some of the study areas were located where CDL did not have coverage in 2006 but had
coverage in 2007. In addition, the CDL 2011 was used both in the NLCD 2011 process and in this study.

The CDL data preparation involves five steps: (1) downloading and mosaicking CDL data;
(2) cross-walking the CDL to NLCD classification schemes; (3) resampling the 2006 and 2007
cross-walked datasets from 56 m to 30 m using Nearest Neighbor resampling; (4) running Smart
Eliminate Tool v2.08 [25], which is part of the NLCD mapping module; and (5) creating a final CDL
dataset that has the same spatial extent as that of NLCD 2006.

The specific cropland classes in the CDL 2006 (Figure 2a), CDL 2007 (Figure 2c), and CDL 2011
(Figure 2e) mosaics were cross-walked to NLCD classification schemes (Table 1).

The last step is to run NLCD Smart Eliminate Tool [25] on all resampled and cross-walked CDL
maps using a minimum mapping unit (MMU) of 16, similar to NLCD.

3. Methodology

A method was developed to identify and analyze the potential commission and omission errors
of the cultivated cropland class mapped in NLCD 2006. The method provided spatially explicit
information on the error distribution, and quantified the magnitude of these errors over different
geographic areas in the United States. This method integrates multiple geospatial datasets and a
change detection algorithm and utilizes both spectral and land cover change information to identify
crop areas that are likely to be misclassified in NLCD 2006.

3.1. Models for Identifying Potential Commission or Omission Errors

We created a model to spatially identify where the potential commission or omission errors are
in NLCD 2006 for the cultivated cropland class. The general logic of the model (Figure 3a) is that if
NLCD 2011, CDL 2011, and CDL 2006 all labeled a pixel as non-cultivated cropland, and the MIICA
spectral change detection using Landsat images shows no change between circa 2006 and circa 2011,
and the NLCD 2006 classification is cultivated crop, then there is a very high likelihood that the pixel
was misclassified as cropland by NLCD 2006. Subsequently, it is identified and labeled as a pixel with
potential commission error.

For identifying potential omission error (Figure 3b), we took advantage of the high accuracy of
the mapped CDL [7,27] in building the model. If both NLCD 2011 and CDL 2011 mapped a pixel as
cultivated crop, and MIICA change detection results show no spectral change between 2006 and 2011,
and NLCD 2006 did not classify it as agricultural class (81 or 82), then the model identifies this pixel as
misclassified in NLCD 2006 and identifies it as a potential omission error.
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Figure 3. (a) Flowchart of the developed method for identifying potential commission errors in the
NLCD 2006 Cultivated Class; and (b) flowchart of the developed method for identifying potential
omission errors in the NLCD 2006 Cultivated Class.

After the model output was generated, we computed several descriptive statistics to quantify
the classification quality of NLCD 2006, including total combined number of pixels identified as
commission and omission based on the model results, total combined percentage of the pixels identified
by the model as commission and omission in NLCD 2006, and the total combined percentage of the
pixels identified by the model as commission and omission for cultivated crops (Class 82) in NLCD
2006. We also analyzed the potential causes of classification errors in NLCD 2006 using a “from and
to” approach. The “from” is the land cover label in NLCD 2006 and the “to” is the NLCD 2011 label.
This approach allows identification of possible causes of classification errors regarding the land cover
classification process.

3.2. Method for Assessing Model Performance

In order to assess the model performance, a procedure was designed and implemented that
consists of three steps: a sampling process, an interpretation protocol, and an analysis procedure.
Eighty sample units were randomly selected for the assessment: among them, 40 units both for
potential commission error and for omission error for each path/row (Figure 4). Each sample unit
consists of a 3 ˆ 3 Landsat pixel block with a homogenous land cover type (contains only one land
cover class).

Once the sample units were generated, a reference land cover label for years 2006 and 2011 for
each unit was assigned via interpretations from high-resolution imagery from the National Agriculture
Imagery Program (NAIP), Google Earth, Bing Maps, and Flash Earth as close to the interpretation date
as possible. Figure 5 provides an interpretation example and the corresponding datasets and images
used. Based on the reference data, we compared the commission and omission errors identified by
the model of each sample unit to the corresponding reference data. If the sample unit with potential
commission error is confirmed by the reference data (same for the pixel with potential omission error),
then the validation code 1 (or 2 for omission) was assigned. If the potential commission or omission
point is not confirmed by reference data, then a code of ´9998 was assigned (´9999 for omission).

A set of accuracy parameters that can be interpreted as probabilities defined for the map being
assessed in this study includes the following:
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(a) Probability of a commission error, which is the conditional probability that a randomly selected
point classified as category i by the map is classified as category k by the reference data (pik{pi` .q,

where pi ` . “
řq

k“1 pik, is the proportion of the area mapped as land-cover class i.

(b) Probability of an omission error, which is the conditional probability that a randomly selected
point classified as category j by the reference data is classified as category k by the map (pkj{p`j .)

where p`j. “
řq

k“1 pkj, is the true proportion of an area in land-cover class j (q=number of
land-cover classes). These two statistical measures are used to quantify the accuracy of the model
performance from this study, and the analysis results are reported in section four of this paper.
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Figure 4. One path/row example of the spatial distribution of the model’s assessment protocol for
path/row 42/35. Commission error samples are represented in blue and omission error samples are
represented in brown.
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After the comparisons and analyses were complete for each path/row, we assessed the quality
of NLCD 2006 cropland classification including agreement/disagreement for potential commission
between reference data and model output, and agreement/disagreement for potential omission
between reference data and model output. In addition, for each pixel we identified the cause of the
commission or omission error. We were particularly interested in knowing if the differences were due
to a change of land cover in 2006 or 2011, or if they were due to classification errors from NLCD 2001
or NLCD 2011.

Remote Sens. 2016, 8, 101 10 of 16 

 

After the comparisons and analyses were complete for each path/row, we assessed the quality 
of NLCD 2006 cropland classification including agreement/disagreement for potential commission 
between reference data and model output, and agreement/disagreement for potential omission 
between reference data and model output. In addition, for each pixel we identified the cause of the 
commission or omission error. We were particularly interested in knowing if the differences were 
due to a change of land cover in 2006 or 2011, or if they were due to classification errors from NLCD 
2001 or NLCD 2011. 

 
Figure 5. Provides an interpretation example and the corresponding datasets and images used. Based 
on the reference data, we compared the commission and omission error identified by the model of 
each sample unit to the corresponding reference data: (a) commission pixels; (b) NLCD 2006;  
(c) NLCD 2011; (d) NLCD 2001; (e) CDL 2011; (f) 8 October 2010, Landsat scene; (g) CDL 2006;  
(h) 13 October 2006, Landsat scene; (i) 5 July 2006, Google Earth image; and (j) 15 July 2010, Google 
Earth image. 

Figure 5. Provides an interpretation example and the corresponding datasets and images used. Based
on the reference data, we compared the commission and omission error identified by the model of each
sample unit to the corresponding reference data: (a) commission pixels; (b) NLCD 2006; (c) NLCD
2011; (d) NLCD 2001; (e) CDL 2011; (f) 8 October 2010, Landsat scene; (g) CDL 2006; (h) 13 October
2006, Landsat scene; (i) 5 July 2006, Google Earth image; and (j) 15 July 2010, Google Earth image.
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4. Results

4.1. Spatial Pattern and Statistical Measures

Eight path/rows of NLCD 2006 were analyzed for commission and omission errors of the
cultivated crop class (Figure 6). Path/rows with the most commission or omission errors included
path/row 30/33 (KA), 42/35 (CA), and 44/27 (WA) where the cultivated cropland accounts for less
than 53% of the total area (Table 1). Pixel counts for these three path/rows ranged from 6833 to 510,029
(Table 2c). In contrast, commission or omission error was much less in the agricultural dominant areas
of path/row 20/32 (IL, OH), 23/32 (IL), and 29/30 (SD, NE, IA, MN) of the Corn Belt region (Figure 6),
with pixel counts ranging from 131 to 770 pixels (Table 2c).
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Figure 6. Spatial location of pixels identified as commission and omission for the cultivated crops
in NLCD 2006. Commission error samples are represented in blue and omission error samples are
represented in brown. The symbols used in this figure (row 2 columns 2) are not to proportion but for
illustration purposes only.

The total combined percentage of the pixels identified by the model as commission and omission
for cultivated crops (Class 82) in NLCD 2006 is shown in Table 2i. The highest error rate is 2.04% in
path/row 30/33 (KS), followed by 42/35 (0.11%) and 44/27 (0.04%), with the remaining path/rows
having less than a 0.002% error rate. In addition, the percentage of pixels identified by the model as
either commission or omission errors was also calculated using all pixels in each path/row. In this case
for omission in NLCD 2006 (Table 2d), the highest number is 0.48% in path/row 30/33 (KS), followed
by 44/27 (0.01%) and 42/35 (0.0034%), with the remaining five path/rows having less than 0.00045%.
Considering the total number of pixels mapped in each path/row, the overall percentage of potential
errors for the cultivated cropland is very low due to high quality training data from CDL in those
path/rows.
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Path/row 30/33 (KS) has the highest potential commission and omission errors among all
path/rows (Table 2c). Land cover classification in this area is rather difficult because this path/row
is located in western Kansas where the crop types include both irrigated and dryland farming [28].
As water resources become depleted, the farmers might revert to new technologies and cropping
systems so that the crop types can be variable from time to time [28]. The major land cover type besides
cropland is the herbaceous grassland, which spectrally is often very similar to the dryland cropland
(e.g., winter wheat) in this region. Thus, the model may not be able to distinguish these two types of
land cover. Path/rows 42/35 (CA) and 44/27 (WA) also have higher rates of commission and omission
error (Table 2c). Like 33/33 (KS), both of these path/rows contain many land cover types in addition
to cropland; therefore, it is difficult to achieve a high classification accuracy for these areas.

Table 2. (a) Total number of pixels identified as omission based on the model results; (b) Total number
of pixels identified as commission based on the model results; (c) Total combined number of pixels
identified as commission and omission based on the model results; (d) Total percentage of the pixels
identified by the model as omission in NLCD 2006; (e) Total percentage of the pixels identified by
the model as commission in NLCD 2006; (f) Total combined percentage of the pixels identified by
the model as commission and omission in NLCD 2006; (g) Total percentage of the pixels identified
by the model as omission for cultivated crops (Class 82) in NLCD 2006; (h) Total percentage of the
pixels identified by the model as commission for cultivated crops (Class 82) in NLCD 2006; (i) Total
combined percentage of the pixels identified by the model as commission and omission for cultivated
crops (Class 82) in NLCD 2006.

Descriptive
Statistics

29/30 SD,
NE, IA, MN

23/32
IL

20/32 IL,
OH

30/27 ND,
MN

23/37 AR,
LA, MS 30/33 KS 42/35 CA 44/27 WA

(a) 21 0 0 0 272 309,869 2923 6655
(b) 749 237 482 131 33 200,160 13,630 178
(c) 770 237 482 131 305 510,029 16,553 6833
(d) 0.000034% 0.00% 0.00% 0.00% 0.00045% 0.48% 0.0034% 0.01%
(e) 0.0012% 0.00033% 0.00071% 0.00021% 0.000054% 0.31% 0.016% 0.00019%
(f) 0.0012% 0.00033% 0.00071% 0.00021% 0.00050% 0.79% 0.02% 0.01%
(g) 0.000072% 0.00000% 0.00000% 0.00000% 0.0013% 1.24% 0.02% 0.04%
(h) 0.0026% 0.00063% 0.0015% 0.00038% 0.00016% 0.80% 0.09% 0.0011%
(i) 0.0027% 0.00063% 0.0015% 0.00038% 0.0015% 2.04% 0.11% 0.04%

4.2. Sources of Commission and Omission Errors

A majority of commission errors in the NLCD 2006 cultivated cropland class was from the
developed urban classes (Table 3); these misclassified cropland pixels were located in areas at or near
the urban fringe within 3 km of urban areas. The second most common “from-to” error was from
the herbaceous class, likely related to the spectral and phenological similarities between herbaceous
vegetation and croplands. The third most common error was from agricultural to barren, mostly
related to spectral confusion between barren land and tilled lands.

The majority of omission errors are from herbaceous to cropland (Table 3), which is likely due to
spectral similarity of the two classes. The second highest number of omission errors is from shrub to
cropland, followed by forest to cropland, wetland to cropland, and water to cropland.

Examination of the pixels identified as commission or omission errors in NLCD 2006 indicated
that the majority of the errors are legacy errors from NLCD 2001 (Figure 7). The other errors were due
to misclassification of change in NLCD 2006, or were mapped correctly in NLCD 2001 and NLCD 2006
but misclassified in NLCD 2011 (Figure 7).
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Table 3. Commission and Omission Agreement/Disagreement From and To Classes.

From and To Classes
Commission

Agreement Total
Pixels

Commission
Disagreement

Total Pixels

Omission
Agreement Total

Pixels

Omission
Disagreement

Total Pixels

Cropland to Urban 235 38
Cropland to Herbaceous 9 30

Cropland to Barren 1
Herbaceous to Cropland 78 26

Shrub to Cropland 20 34
Forest to Cropland 6 6

Wetland to Cropland 4 5
Water to Cropland 2
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4.3. Evaluation of Model Performance

The effectiveness of the model was assessed by comparing model-identified potential
commission/omission errors against the independent referenced data. All eight path/rows covering a
range of different landscapes were evaluated. Each path/row had 80 sample points, and a total of 640
points were used for validation.

The average agreement between modeled and reference data (commission error) for the eight
path/rows was 79%, but the agreement of individual path/rows varied from 25% to 100% (Figure 8).
The path/rows located in the agricultural dominant areas 29/30 (SD, NE, IA, and MN) and 23/32
(AR, LA, and MS) had an agreement greater than 79%. Path/rows located in areas that have more
diverse land cover types are 30/33 (KS) and 44/27 (WA), both of which had an agreement of less than
79% (Figure 8).
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The average agreement between modeled and reference data (omission error) for all eight
path/rows was 40%. The highest percentage of agreement was 100% for path/row 29/30 (SD, NE, IA,
and MN), and the lowest percentage was 37.5% for 44/27 (WA), reflecting the difficulty in correctly
identifying cultivated crops in some of the more heterogeneous areas (Figure 8). There are no sample
points in path/rows 23/32 (AR, LA, and MS), 20/32 (IL and OH), and 30/27 (ND and MN), because
the output file of model-identified omission error was spatially filtered using a 16-pixel Minimum
Mapping Unit (MMU), which resulted in no omission sample units with a patch size smaller than
16 MMU (Figure 8).

5. Conclusions

Reporting land use and land cover change based on classification results using remotely sensed
data requires that the classification errors be known and accounted for. An understanding of the
quality of these datasets through accuracy assessments provides a scientifically defensible basis from
which accurate conclusions and decisions can be made. In this research, we developed a method to
assess the quality of the cultivated cropland class mapped in NLCD 2006 using a multi-source and
multi-criteria approach. Unlike the traditional accuracy assessments for land cover classification using
an error matrix approach, which does not provide a spatial distribution of the classification error and
plausible causes of the misclassification, the method developed in this study allows spatially explicit
identification of potential commission and omission errors of the mapped land cover classes.

The results from this research conclude that the majority of the commission and omission errors
identified by the models are located in areas that have diverse land cover types. Conversely, areas
that have cultivated cropland as the dominant land cover have very low error rates. Geographically,
path/rows 20/32, 23/32, 29/30, and 30/27 within the Corn Belt region had consistently very low
commission and omission errors (all less than 0.01%). Path/row 30/33 had the highest total combined
percentage of the pixels as commission and omission for cultivated crops (Class 82) in NLCD 2006
(2.04%), followed by path row 42/35 (0.11%) and 44/27 (0.04%).

For model performance evaluation, results show that the average agreement between
model-identified commission error and that from independent reference data was 79%, indicating
the effectiveness of the developed model. On the other hand, the average agreement between
model-identified omission error and that of reference data was 40%. Based on these results, it can be
concluded that the NLCD 2006 cultivated crop class was mapped well in NLCD 2006, especially when
the area contained a large number of pixels mapped as cultivated cropland. Overall, this analysis
showed that nearly 2% of the pixels are likely misclassified. This finding provides new evidence that
the cultivated crop class of NLCD 2006 can be used with relatively high confidence for a variety of
agricultural applications.

The strength of the method is that it is simple and easy to operate yet capable of capturing major
classification errors of cropland class of NLCD on a variety of landscapes. The main weakness of the
method is that it relies heavily on the accuracy of the input datasets (e.g., CDL and NLCD 2011) to
identify classification errors. For developing future NLCD, this method has been used to identify
potential errors in the past NLCD product so that the errors can be fixed to serve as a base from
which an accurate and consistent multi-temporal land cover and land cover change database can be
developed in the future.
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