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Abstract: In this paper, we introduced a new algorithm for retrieving aerosol optical depth (AOD)
over land, from the Cloud and Aerosol Imager (CAI), which is one of the instruments on the
Greenhouse Gases Observing Satellite (GOSAT) for detecting and correcting cloud and aerosol
interference. We used the GOSAT and AErosol RObotic NETwork (AERONET) collocated data
from different regions over the globe to analyze the relationship between the top-of-atmosphere
(TOA) reflectance in the shortwave infrared (1.6 µm) band and the surface reflectance in the red
(0.67 µm) band. Our results confirmed that the relationships between the surface reflectance at
0.67 µm and TOA reflectance at 1.6 µm are not constant for different surface conditions. Under low
AOD conditions (AOD at 0.55 µm < 0.1), a Normalized Difference Vegetation Index (NDVI) based
regression function for estimating the surface reflectance of 0.67 µm band from the 1.6 µm band was
summarized, and it achieved good performance, proving that the reflectance relations of the 0.67 µm
and 1.6 µm bands are typically vegetation dependent. Since the NDVI itself is easily affected by
aerosols, we combined the advantages of the Aerosol Free Vegetation Index (AFRI), which is aerosol
resistant and highly correlated with regular NDVI, with our regression function, which can preserve
the various correlations of 0.67 µm and 1.6 µm bands for different surface types, and developed a
new surface reflectance and aerosol-free NDVI estimation algorithm, which we named the Modified
AFRI1.6 algorithm. This algorithm was applied to AOD retrieval, and the validation results for our
algorithm show that the retrieved AOD has a consistent relationship with AERONET measurements,
with a correlation coefficient of 0.912, and approximately 67.7% of the AOD retrieved data were
within the expected error range (± 0.1 ± 0.15AOD(AERONET)).

Keywords: AOD retrieval; GOSAT CAI; Modified AFRI1.6 algorithm; surface reflectance

1. Introduction

Aerosols have a considerable influence on the radiative balance of the Earth and global climate
change through the absorption and scattering of solar radiation [1–3]. Particularly, atmospheric aerosol
particles are closely associated with public health and the environment (e.g., the tropospheric aerosols,
also known as particulate matter, PM) [4–6]. One important aerosol optical property, aerosol optical
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depth (AOD), can reflect the characteristics of atmospheric turbidity and is the most frequently used
monitoring parameter of atmospheric aerosols [7].

Satellite remote-sensing techniques are very effective for observing the spatial distributions and
temporal variations of aerosol optical properties on a large scale [8]. Various satellite sensors have
been applied to retrieve AOD [9–11], even though these sensors are not initially intended for aerosol
monitoring [12]. The estimation of AOD has benefited from the development of algorithms for sensors
with different wavelengths, viewing angles and polarizations [13,14].

Removal of the surface contribution has long been considered the primary task for estimating the
optical properties of aerosols [14,15]. Due to the complexities of the land surface, aerosol retrieval over
land is much more difficult compared to retrieval over ocean. Currently, several methods have been
developed to remove the land surface contribution in satellite remote sensing. Among these, the Dark
Target (DT) algorithm has been widely used for aerosol retrieval and has been successfully applied to
different satellite sensors, such as Moderate-Resolution Imaging Spectroradiometer (MODIS) [16,17],
Advanced Very High Resolution Radiometer (AVHRR) [18] and Visible infrared Imaging Radiometer
(VIIRS) [19]. The DT algorithm is based on the assumption that aerosols will brighten the scene
over “dark” surfaces (vegetated land and dark ocean). Generally, the dark surfaces have low surface
reflectances in parts of the visible and shortwave infrared (SWIR) channels, and the low surface
contribution benefits the determination of contribution of aerosols. The MODIS DT algorithm uses the
linear relationships between the surface reflectance of the SWIR (2.1 µm) channel (negligibly affected
by aerosols at this wavelength) and the red or blue channels to account for the surface signal in the
corresponding channel. This method works best over dark vegetated surfaces, but not over bright land
surfaces. This is because the top-of-atmosphere (TOA) reflectances acquired by satellite sensors over
bright land surfaces are overwhelmed by the surface contributions, making it very difficult to estimate
the contribution of aerosols [20,21]. The development of the Deep Blue algorithm has made up the gap
in aerosols retrieval over bright land surface; the Deep Blue algorithm successfully performed aerosols
retrieval over bright targets as well as over most vegetated targets [21,22]. The precalculated surface
reflectance database in the blue channels is the prerequisite of the Deep Blue algorithm, and it is a
complicated task to develop a reflectance database for other sensors. Despite the MODIS DT algorithm
having been proven to be a mature algorithm for AOD retrieving, sensors without a 2.1 µm channel
onboard cannot rely on this algorithm to estimate the surface reflectance of red or blue channels.
Therefore, different strategies were developed for the instruments that do not measure reflectance in
the 2.1 µm channel. In the synergetic aerosol retrieval (SYNAER) method [14,23], Holzer-Popp et al.
introduced a Normalized Difference Vegetation Index (NDVI) and scattering angle-involved iterative
regression function for estimating the surface reflectance at 0.67 µm from the apparent reflectance
of the 1.6 µm band [23,24]. This method was carried out with Advanced Along-Track Scanning
Radiometer (AATSR) and Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY
(SCIAMACHY) sensors onboard ENVISAT used for AOD retrieval [23–25]. Similarly, Mei et al. derived
an approach to estimate surface reflectance at 0.67 µm from the apparent reflectance at 3.75 µm from
the AVHRR data based on NDVI. In their algorithms, the NDVI is used to determine the dark fields
and tune the ratios and relationships between the 0.67 µm and the 1.6 µm or 3.75 µm bands under
different surface conditions [26]. Nevertheless, aerosols easily influence NDVI, and increasing AOD
would typically result in the decrease of NDVI values [27,28]. To eliminate the errors in NDVI caused
by aerosols, an additional one-step iteration was performed to adjust the NDVI value [23–26,29].
Compared with non-iterative retrieval algorithms, the iteration step will increase the computational
cost of retrieval. Therefore, replacing NDVI with the Aerosol Free Vegetation Index (AFRI) has the
potential to simplify the retrieval process.

In our study, the data from Greenhouse Gases Observing Satellite (GOSAT) were used for AOD
retrieval. GOSAT is the world’s first spacecraft to retrieve the concentrations of carbon dioxide and
methane. Thermal and Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer
(TANSO-FTS) and Cloud & Aerosol Imager (TANSO-CAI) are the observation instruments on board
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the satellite. TANSO-FTS is used to measure the total columns of carbon dioxide and methane [30].
One of the important responsibilities or functions of TANSO-CAI is to provide information about
aerosols by visualizing the atmosphere and the ground surface to detect cirrus clouds and aerosols,
which are then used to correct the TANSO-FTS data [31,32]. Many studies show that inaccurate aerosol
information can result in significant errors in the retrieved column-averaged dry-air mole fractions
of CO2 (XCO2) results, and information on aerosol optical properties has been considered the most
substantial factor affecting the XCO2 retrieval algorithm [32,33]. However, since the TANSO-CAI
does not have any definitive aerosol product, a priori information on aerosol as the input to the
TANSO-FTS retrieval process is utilized from other platforms [34]. Because the atmosphere is constantly
changing, different platforms will inevitably bring uncertainty due to their observation conditions
and spatial-temporal differences. Therefore, as the onboard instruments use the same platform
as TANSO-FTS, the development of the aerosol retrieval algorithm for TANSO-CAI can take full
advantage of their spatial-temporal consistency and fulfill the requirement of obtaining more accurate
aerosol information for the TANSO-FTS retrieval process. An AOD retrieval algorithm can extend the
function of TANSO-CAI to the AOD observations to provide one-platform combination data (including
carbon dioxide, methane and AOD) for future studies on the relationship between greenhouse gases
and aerosols. Moreover, the AOD observations also play a key role for estimating ground-level PM2.5
concentrations [35]. The improvements of aerosol and chemical transport model have proliferated the
assimilation of aerosol data, which can analyze and forecast dust storms and general air quality [36,37].

In this paper, we mainly describe a non-iterative AOD retrieval algorithm over land using the
GOSAT TANSO-CAI red (0.67 µm), near infrared (NIR, 0.87 µm) and SWIR (1.6 µm) bands. An
important part of this work was the development of a surface reflectance estimation algorithm based
on the analysis of TANSO-CAI and AErosol Robotic Network (AERONET) collocated data from
different ground stations located in different global regions (described in Section 3). The AOD retrieval
was based on a look-up table method that was established using a radiative transfer model, and the
evaluation of the retrieval algorithm was conducted by comparing the retrieved AOD and AERONET
AOD (described in Section 4).

2. General Principle

For Lambertain surfaces under a cloud-free and vertically homogeneous atmosphere, the physical
processes of reflection, scattering and absorption of solar radiation are described by Equation (1).

RTOA (λ, µ0, µ, ϕ) = RPath (λ, µ0, µ, ϕ) +
RSurf (λ)Td (λ, µ0)Tu (λ, µ)

1− RSurf (λ) S (λ)
(1)

where µ0, µ and ϕ are the cosine of the solar zenith angle, the cosine of the satellite zenith angle and
the relative azimuth angle between the sun and satellite, respectively; RTOA is the TOA reflectance at a
given wavelength λ; RPath is the atmospheric “path reflectance”, which includes the molecular and
aerosol scattering; Rsurf is the angular “surface reflectance”; S is the atmospheric hemispherical albedo;
Td is the atmospheric transmittance from TOA to surface; and Tu is the atmospheric transmission from
the surface to TOA. From Equation (1), the TOA reflectance received by the satellite sensor can be
regarded as the joint contribution of surface and atmosphere [20,38].

Three very important atmospheric parameters are RPath, TdTu and S, and they are functions
of AOD. When the aerosol model is determined, multiple sets of RPath, TdTu and S values can be
precomputed according to pre-defined combinations of AODs and geometrical conditions using the
radiative transfer model. Then, a look-up table can be established for AOD retrieval [39–41].

When using the look-up table to retrieve AOD, the geometric parameters in the look-up table
that are equal or closest to the geometric parameters of the satellite observations would be found.
The selected geometric parameter set has multiple corresponding sets of atmospheric parameters:
RPath, TdTu and S with different AOD values. Each set of atmospheric parameters RPath, TdTu and S,
along with the estimated surface reflectance, is substituted into Equation (1) to calculate the theoretical
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apparent reflectance. The theoretical apparent reflectances for the different parameter sets are compared
with the actual apparent reflectance; to find the one that is closest to the actual apparent reflectance; its
corresponding AOD will be considered the retrieved AOD.

In Equation (1), we can see that the three atmospheric parameters and the surface reflectance
are critical to the retrieval accuracy. Among these, the atmospheric parameters are provided by the
radiative transfer model, which in turn is determined by the surface reflectance estimation algorithm.

3. Data and Algorithm

3.1. GOSAT TANSO-CAI

The Greenhouse Gases Observing Satellite, developed by the Japan Aerospace Exploration Agency
(JAXA), the Ministry of the Environment of Japan (MOE) and the National Institute for Environmental
Studies (NIES) of Japan, was successfully launched on 23 January 2009 from Tanegashima Island,
Japan [30,42]. GOSAT flies in a sun-synchronous orbit with a ground speed of 6.8 km/s at an altitude
of 666 km and maintains an inclination angle of 98◦. Its period of revolution is approximately 1 h
and 40 minutes, the local nadir overpass time is approximately 12:47 p.m., and it revisits the same
point in space every three days with a total of 44 paths [42]. GOSAT carries two primary instruments,
TANSO-FTS and the TANSO-CAI, to monitor the global distributions of carbon dioxide and methane
and to detect clouds and aerosols [43].

The TANSO-CAI is a multichannel, narrow-band radiometer with ultraviolet (UV, band 1), visible
(band 2), NIR (band 3) and SWIR (band 4) bands, used to capture daytime images of the atmosphere
and ground. The center wavelengths of bands 1 to 4 are 0.38, 0.67, 0.87 and 1.6 µm, respectively. Bands
1, 2 and 3 all have 20 µm bandwidths, while band 4 has a 90 µm bandwidth. Bands 1 to 3 have a 500 m
spatial resolution at the nadir and a 1000 km observation swath; band 4 has a 1.5 km spatial resolution
and a 750 km scan swath [42–44].

TANSO-CAI provides different processing-level radiances, cloud flag, global radiance and
reflectance distribution, along with NDVI products [30]. The satellite data used in this study are
the CAI L1B+ radiance data, and the radiance of each band has to be converted to reflectance for AOD
retrieval [45]. In CAI L1B+ product, radiometric and geometric corrections (such as orthorectification,
band-to-band registration and resampling) have been performed [46,47]. The observation information
includes important geometric parameters for retrieval, such as the solar zenith/azimuth angle and
satellite zenith/azimuth angle, which are recorded and added into the product data [48].

3.2. AERONET AOD Data

The AERONET [49] is a ground-based remote-sensing aerosol network with over 800 stations
globally, providing long-term, continuous, standardized data on aerosol optical, microphysical and
radiative properties. The AERONET obtains spectral AOD within the 0.34 to 1.02 µm wavelength
range by direct Sun measurement with an accuracy of 0.01–0.02, and the AOD data are computed
for three data quality levels: Level 1.0 (raw, unscreened), Level 1.5 (cloud-screened), and Level 2.0
(cloud-screened and quality-assured) [50,51]. In this study, extensive use of AERONET Level 2.0 AOD
data was made for atmospheric correction and validation of satellite retrievals. Since the retrieved
AOD is at the wavelength of 550 nm, comparing TANSO-CAI AOD with AERONET AOD at the same
wavelength requires that all AERONET AOD at other wavelengths should first be interpolated into
0.55 µm using the Angstrom exponent, which can be calculated as follows [52]:

α = −
ln
(

τλ
τ0.55

)
ln
(

λ
0.55

) (2)

where τλ is the aerosol optical depth at a given wavelength λ, and α is the Angstrom exponent, the
values of which are provided by AERONET measurement.
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3.3. Atmospheric Correction of Collocated TANSO-CAI/AERONET Data

To develop a surface reflectance (at 0.67 µm) estimation algorithm using the TOA reflectances at
1.6 µm, it is imperative to analyze the relationship between the satellite-measured reflectance and the
surface reflectance by conducting accurate atmospheric correction.

Through atmospheric correction, we attempt to obtain information on atmospheric optical
properties and then determine the real surface reflectance using the information from satellite
observation [27]. Atmospheric correction primarily eliminates the impact of molecular and aerosol
scattering and absorption by gases, such as water vapor, ozone, oxygen, and aerosols [53–56].
Molecular scattering and absorption by ozone and oxygen, which have relatively stable atmospheric
concentrations, are not difficult to subtract. In addition, it is practical to correct the effects of water
vapor by using climatology data or other satellite data. However, aerosols are the most difficult
component to eliminate since their distributions are often heterogeneous [56].

Fortunately, the theoretical model of atmospheric radiative transfer can be used to account for
the effects of the atmospheric components, including those mentioned above [57]. In this study, the
6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer model and the
ground-measured AOD from AERONET were used to perform atmospheric correction on TANSO-CAI
images. 6S is an advanced radiative transfer code developed specifically for satellite applications [58].
It offers two main working modalities: simulation and atmospheric correction [59]. To run this
code, a number of parameters are required as input: geometric conditions, atmospheric model,
aerosol model and AOD, spectral conditions, ground reflectance type, and TOA reflectance/radiance.
The atmospherically corrected reflectance/radiance and the relevant correction coefficients are output
as results [60]. The continental aerosol model was selected as it can broadly describe both the
scattering and absorption properties [16,61]. The atmospheric correction was performed on the
arranged spatially and temporally matched TANSO-CAI/AERONET collocated data. The selection
of TANSO-CAI/AERONET collocation data are based on the following criteria: GOSAT overpasses
are within 15 min of the AERONET measurements and localized within a 30 km radius around the
AERONET sites. To reduce the effect of multiple aerosol scattering, only the collocated data with low
AOD are corrected atmospherically [61]. The TANSO-CAI/AERONET collocated data, selected in 2011,
with τ0.55 < 0.1, were obtained from nine global sites (Figure 1 and Table 1) [62]. After atmospheric
correction, they were utilized to study the relation between 0.67 µm surface reflectance and 1.6 µm
TOA reflectance.
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Figure 1. The geographical distribution of AErosol Robotic Network (AERONET) sites (red sites were
used for studying reflectance relationships, and green sites were used for validating results) and global
Normalized Difference Vegetation Index (NDVI, it ranges from −1 to 1, a 0 or negative value means no
vegetation and close to 1 indicates the highest possible density of green leaves) from TANSO-CAI on
29 June 2015.
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Table 1. The geographical information of AERONET sites (S sites were used for studying reflectance
relationships, V sites were used for validating results).

Site Name Longitude
(Decimal_Degrees)

Latitude
(Decimal_Degrees) Elevation (Meters)

Alta_Floresta S, V −56.10 −9.87 277
Appalachian_State S, V −81.69 36.21 1080

Aubiere_LAMP S 3.11 45.76 423
Belsk V 20.79 51.84 190

Chiang_Mai_Met_Sta V 98.97 18.77 312
CLUJ_UBB S 23.55 46.77 405

Dhaka_University V 90.40 23.73 34
DRAGON_Mt_Rokko V 135.23 34.76 760

Gandhi_College V 84.13 25.87 60
Georgia_Tech S −84.40 33.78 294

Gorongosa V 34.35 −18.98 30
Harvard_Forest V −72.19 42.53 322

Ilorin V 4.34 8.32 350
Palaiseau S 2.21 48.70 156

Timisoara S, V 21.23 45.75 122
Tomsk_22 V 84.07 56.42 80

UAHuntsville S −86.65 34.73 223
Ubon_Ratchathani S 104.87 15.25 120

Ussuriysk V 132.16 43.70 280
Vientiane V 102.57 17.99 170
XiangHe V 116.96 39.75 36
Xinglong V 117.58 40.40 970

3.4. Relationship between TOA Reflectance at 1.6 µm and Surface Reflectance at 0.67 µm

Atmospheric correction resulted in surface reflectance at 0.67 µm (TANSO-CAI band 2), which
was compared with the TOA reflectance at 1.6 µm; Figure 2a shows a plot of their match-ups and
regression line, with the color scale indicating the data frequency. The correlation coefficient (r) value
is 0.79, and the slope and offset are approximately 0.42 and −0.01. The regression exhibits large scatter
and cannot satisfactorily ensure retrieval accuracy. For example, where the TOA reflectance at 1.6 µm
is 0.2, the regression function would lead to a surface reflectance of 0.072 at 0.67 µm. The scatter plot
shows the surface reflectance at 0.67 has a large variation, ranging from 0.020 to 0.185. This uncertainty
could cause large deviations in AOD retrieval. Therefore, using this regression function to estimate
surface reflectance at 0.67 µm is not advised.Remote Sens. 2016, 8, 998  7 of 22 
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Figure 2. Scatter plots of top-of-atmosphere (TOA) reflectance at 1.6 µm and surface reflectance at
0.67 µm with: density data frequency (a); and NDVI (b). The results are from TANSO-CAI/AERONET
collocated data (selected from the s marked AERONET sites in Table 1) in 2011 with AOD (at
0.55 µm) <0.1.
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Levy et al. (2007) and Thomas et al. (2008) suggest that the reflectance relationships between the
red (0.67 µm) and SWIR bands (such as 1.6 and 2.1 µm) vary based on the surface type (vegetation
condition/amount) [23,61,63]. Figure 2b shows the comparison of the surface reflectance at 0.67 µm
and TOA reflectance at 1.6 µm, and the color of each point indicates the value of the NDVI, according
to the given color scale. It is easy to see that this relationship of surface reflectance at 0.67 µm and TOA
reflectance at 1.6 µm (0.67 vs. 1.6) is a function of NDVI, and an apparent change in regulation is that
the higher NDVI data seem to have lower slope, and vice versa. Therefore, like Levy et al. (2007) and
Thomas et al. (2008), we also attempted to use the NDVI to indicate the impact of surface variability
on the reflectance relationships of the red and SWIR bands [23,61,63]. NDVI is a numerical indicator
that has been widely applied to estimate the quantity, quality and development of vegetation. It uses
the different absorption properties of vegetation toward the red and NIR wavelengths to measure the
biomass amount. Sensors onboard satellites or aircrafts can calculate the NDVI value according to
Equation (3) [64–66].

NDVI = (RNIR − Rred) / (RNIR + Rred) (3)

where RNIR and Rred are the reflectances in the NIR and red bands. Specifically, these bands are
the TANSO-CAI band 3 (0.87 µm) and band 2 (0.67 µm), respectively. The NDVI values of these
experimentally collocated data were calculated performing atmospheric correction on bands 2 and 3.
The scatter plots in Figure 3 are the subsets of the total set of experimental data in Figure 2, they display
the reflectance relationships at 1.6 µm and 0.67 µm, varying by intervals of 0.025 in NDVI. Each scatter
plot of Figure 3 has a specific 0.67 vs. 1.6 relationship and regression line for a given NDVI value.
Almost all of them were found to show significantly higher r-values than the total set of experimental
data. In Figure 4, the slopes and intercepts of 0.67 vs. 1.6 regressions (for the scatter plots in Figure 3)
are plotted as functions of NDVI. The regression slopes of the scatter plots are highly correlated with
NDVI (r = −0.955), and the slopes are decreasing as surface NDVI increases. In contrast, the regression
intercepts have a very weak correlation (r = −0.198) with NDVI changes. Based on these results, an
NDVI-dependent regression function for estimating the surface reflectance at 0.67 µm from the 1.6 µm
band was established and is given in Equation (4).

R0.67 = Slope0.67/1.6 ∗ R1.6 + Intercept0.67/1.6,
With

Slope0.67/1.6 = a1 ∗NDVI + b1,
Intercept0.67/1.6 = a2 ∗NDVI + b2,

(4)

where R0.67 is the surface reflectance at 0.67 µm; R1.6 is the TOA reflectance at 1.6 µm; and NDVI is
calculated by atmospherically correcting the reflectances of the NIR and red bands. The coefficient
values (a1 = −0.605, b1 = 0.590, and a2 = −0.009, b2 = 0.023) are based on the results in Figure 4.

We tested this regression function by comparing the estimated results with the atmospherically
corrected surface reflectance using the 6S radiative transfer code and AERONET measurements
(Figure 5a). With an r-value of 0.959, the estimated surface reflectance has a very high consistency with
the atmospherically corrected surface reflectance. In a biophysical context, as NIR light is reflected by
spongy mesophyll cells [66], so it could be expected that higher-density vegetation land surface would
show relatively higher reflectance at 0.87 µm than other surface types. Many studies suggest that the
reflectances of red and SWIR have stronger correlation in dense dark vegetation areas [63]. Therefore,
we also tested the data with surface reflectance values higher than 0.25 in band 3. As depicted in
Figure 5b, the r-value increases to 0.980, and most of the overestimated points have been removed.
The above results indicate that the relationship of 0.67 vs. 1.6 is dependent on the amount of vegetation
and that NDVI can be used as a suitable tuner to interpret how the 0.67 vs. 1.6 ratio changes with
different surface types.
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Figure 4. Relationship between TOA reflectances at 1.6 µm and surface reflectance at 0.67 µm as a
function of NDVI: (a) slopes (for each scatter plot in Figure 3 with given NDVI values) as a function of
NDVI; and (b) intercepts as a function of NDVI.
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Figure 5. Comparison of estimated surface reflectances and atmospherically corrected surface
reflectances at 0.67 µm: (a) experimental data; and (b) experimental data with reflectance of band 3
larger than 0.25.

3.5. The Modified AFRI1.6 Algorithm

The NDVI-based regression function has great practicability for estimating surface reflectance
under very low aerosol conditions. However, the sensitivity of NDVI to the influence of atmospheric
aerosols [27,28] render it ill-suited for estimating reflectance under higher aerosol conditions. Typically,
as the AOD increases, the satellite-measured NDVI values rapidly decrease [66,67]. In the MODIS
retrieval algorithm Collection 5, NDVISWIR, a new vegetation index (VI) much less influenced
by aerosols, is calculated from the 1.2 µm and 2.1 µm channels used for estimating the surface
conditions [61,63]. Nevertheless, TANSO-CAI does not have the 1.2 µm and 2.1 µm wavelength
bands on board. To overcome these difficulties, we developed a new algorithm based upon the idea
of AFRI [68], which was first proposed by Karnieli et al. (2001). AFRI is calculated as function of
reflectances of NIR and SWIR (1.6 or 2.1 µm) bands and described by the following equations.

AFRI2.1 = (RNIR − 0.5 ∗ R2.1) / (RNIR + 0.5 ∗ R2.1) (5)
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AFRI1.6 = (RNIR − 0.66 ∗ R1.6) / (RNIR + 0.66 ∗ R1.6) (6)

where RNIR, R1.6 and R2.1 are the surface reflectances of NIR, 1.6 and 2.1 µm bands, respectively,
and the coefficients 0.5 and 0.66 are based on the empirical linear relationships between the red
(0.67 µm) band and the SWIR (1.6 and 2.1 µm) bands that were found by aircraft measurements [68].
The difference between NDVI and AFRI is that the SWIR reflectance has replaced the red reflectance of
NDVI, according to these empirical linear relationships. Thus, it takes full advantage of the ability of
SWIR to penetrate the atmospheric column containing aerosols with negligible influence; at the same
time, it remains sensitive to vegetation and has the potential to become a capable alternative to NDVI
for estimating surface status [68,69]. AFRI1.6 and AFRI2.1 were developed based on a single constant
linear relationship between red and SWIR bands; however, the relationship of 0.67 vs. 1.6 is sensitive to
changes in the surface type. Regarding this, it was already shown in Section 3.4 that the relationship of
0.67 vs. 1.6 is typically dependent on surface vegetation conditions (tested using TANSO-CAI bands).
Therefore, a single constant linear relationship cannot represent the true correlation of 0.67 vs. 1.6
for ground with complicated surface conditions, because any error from a biased linear regression
function would be inherited and applied in AFRI1.6.

Combining the main strategies of the AFRI and the NDVI-based regression functions, we
developed a new aerosol-free NDVI estimation method named the modified AFRI1.6 algorithm.
The modified AFRI1.6 algorithm retains the original advantages of AFRI1.6, which is less influenced
by aerosols, but replaces the single constant relationship-based method with a method that takes
the vegetation-dependent relationships of 0.67 vs. 1.6 into account. Equation (4) can be rewritten as
Equation (7), in which, the surface reflectance at 0.67 µm is a function of both the NDVI and TOA
surface reflectance at 1.6 µm. Equation (8) shows the NDVI calculated from the TANSO-CAI bands.

R0.67 = (a1 ∗NDVI + b1) ∗ R1.6 + a2 ∗NDVI + b2 (7)

NDVI = (R0.87 − R0.67) / (R0.87 − R0.67) (8)

where R0.87 is the TOA reflectance of TANSO-CAI band 3; R0.67 is the estimated surface reflectance of
TANSO-CAI band 2; and NDVI is the aerosol-free NDVI, calculated by R0.87 and R0.67. By substituting
Equation (7) into Equation (8), and then rearranging, we obtain Equation (9).

NDVI2 ∗ (a1 ∗ R1.6 + a2) + NDVI ∗ (R0.87 + (a1 + b1) ∗ R1.6 + a2 + b2)

+ (b1 ∗ R1.6 + b2 − R0.87) = 0
(9)

Equation (9) is a quadratic equation in NDVI, and the solutions of the equation are as follows:

NDVI = −(R0.87+(a1+b1)∗R1.6+a2+b2)±
√

(R0.87+(a1+b1)∗R1.6+a2+b2)
2−4∗(a1∗R1.6+a2)∗(b1∗R1.6+b2−R0.87)

2∗(a1∗R1.6+a2)
(10)

In Equations (7)–(10), the coefficient values are a1 = −0.605, b1 = 0.590, and a2 = 0, b2 = 0.023.
Among these, a2 was set to a value of 0 since the relationship of the intercepts with NDVI is considered
very weak. As Equation (10) shows, this formula has two roots. In actual retrieval, only one reasonable
root would be obtained because NDVI should be within the range of−1 to 1 and the other root exceeds
this range. Using the estimated aerosol-free NDVI in Equation (7), the surface reflectance at 0.67 µm
can be estimated and used to retrieve the AOD.

3.6. The Look-Up Table

The AOD can be determined by solving the radiative transfer equation with the relevant
atmospheric parameters. For faster processing, we created a look-up table using the 6S radiative
transfer code that has been widely used in different remote-sensing applications and sensors; for
example, it is used to calculate the look-up table for MODIS atmospheric correction algorithm [61,70].
This look-up table includes pre-computed atmospheric parameters (RPath, TdTu and S) with given
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combinations of aerosol models, geometrical conditions and AODs. By using the look-up table, the
appropriate atmospheric parameter combinations for solving the radiative transfer equation, can be
rapidly selected, thereby improving retrieval efficiency.

The 6S model is applicable for calculating atmospheric radiative transfer with a solar reflection
range of 0.25 to 4.0 µm, and a 2.5 nm step used for spectral integration [61]. Before using the 6S
model, the spectral condition of GOSAT TANSO-CAI was defined band by band with the interpolated
TANSO-CAI Spectral Response Function. The look-up table was constructed using the following
parameters: geometrical conditions, atmosphere model, aerosol models, AOD and atmospheric
parameters (RPath, TdTu and S). The geometrical conditions include twenty-one solar zenith angles
from 0◦ to 60◦ with a step of 3◦, six satellite zenith angles from 0◦ to 60◦ with a step of 12◦, eight
relative azimuth angles from 0◦ to 168◦ with a step of 24◦, and one relative azimuth angle at 180◦.
Three different atmosphere models, Tropical, Midlatitude Summer and Midlatitude Winter, were
taken into account. Because the previous atmospheric correction was performed with the continental
aerosol model, we selected the continental aerosol model as the aerosol model for the look-up table
construction [16,61]. AOD values in the look-up table were set: the smallest with a value of 0.001, and
others in the range of 0.01 to 2.00 with an increment of 0.01.

3.7. AOD Retrieval

In this paper we use the TANSO-CAI 1.6 µm band to estimate the surface reflectance of 0.67 µm
band to retrieve the AOD. According to the observation geometry parameters (solar zenith angle,
azimuth angle, satellite zenith angle, and azimuth angle) in the satellite data files, the relevant
observation geometry parameters that are equal or closest to the values in the established look-up table
can be selected. Corresponding to the selected geometric parameters, there are multiple sets of RPath,
TdTu and S values with different AOD values. We input every parameter set and the surface reflectance
into Equation (1) to calculate the theoretical apparent reflectance in the 0.67 µm band. Then we could
obtain multiple sets of theoretical apparent reflectances. Comparing the apparent reflectance of the
TANSO-CAI data with these theoretical apparent reflectances, the one closest to the actual apparent
reflectance and its corresponding AOD was selected as the retrieved AOD of this pixel.Remote Sens. 2016, 8, x FOR PEER  12 of 22 
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Figure 6. TOA reflectance as a function of AOD and surface reflectance at 0.67 µm. Simulation is
performed under the observation geometric conditions with solar zenith angle = 45◦, satellite zenith
angle = 2◦ and relative azimuth angles = 45◦.

However, due to the limitations of the instruments and algorithm, not all pixels can be used
for retrieval. For example, when using the DT algorithm, the dark pixels should be preselected.
We simulated the relationship between the TOA reflectance in the TANSO-CAI 0.67 µm band and
the AOD for different surface reflectances using the 6S code. Figure 6 demonstrates that the higher
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surface reflectance has smaller TOA reflectance changes as AOD increases. Namely, the higher surface
reflectance areas are not sensitive to the AOD changes. It is noted that when the surface reflectance
increases from 0.01 to 0.1, the TOA reflectance still responds to the increase in the AOD. To reduce
the simulation difference, even with other observed geometric conditions, the pixels with surface
reflectance values that are higher than 0.085 should not be selected to perform AOD retrieval [23].
In addition, based on the results presented in Section 3.4, to ensure the AOD retrieval accuracy, the
thresholds of TOA reflectance of red band and estimated aerosol-free NDVI were set, when the TOA
reflectance of red band is lower than 0.225, or the estimated aerosol-free NDVI is out the range of 0.375
to 0.825, it should not be taken into account during the retrieval.

4. Results and Discussion

4.1. Case Study over South Asia

An example of the AOD retrieval over the South Asian region from TANSO-CAI using our
algorithm is shown in Figure 7. Figure 7a,b shows the TANSO-CAI RGB composite images (shown in
true color) of 4 and 7 November 2011, and their retrieved AOD distributions are shown in Figure 7c,d,
respectively. The Southwestern part of China, Nepal and the Northern part of India are covered in
this scene. The area between lines A and B is the North of Indo-Gangetic basin, one of the world’s
largest drainage basins [71]. It is bordered by the Himalayas, which are located on the border between
Nepal and Tibet, China. Rapidly growing industrialization and expanding urbanization has led to high
pollution in these regions, and as such it has become a regional aerosol hot spot [71,72]. Comparing
Figure 7a,b, the air condition of Figure 7a in the region between lines A and B seems highly polluted.
This could be attributed to the burning of biomass. We used MODIS Thermal Anomalies/Fire products
(MOD14A1) [73] to detect the occurrence of fire. A large patch of clustered burning spots out of and
near the scene was extracted on 4 November 2011, and burning spots were apparently decreased on
7 November 2011. As shown in Figure 7c,d, the relatively higher AOD dominates in the area between
lines A and B; in contrast, very low AOD is distributed in the area between lines B and C. This is due
to the unique topography (Figure 7e), with the mighty Himalayan peaks [74] of acting like a barrier
and blocking the transfer of biomass-burning aerosols, causing the aerosols to accumulate in the area
between lines A and B surrounding the peaks. Our retrieval result successfully illustrated the contrast
in AOD between areas of AB (line A to line B) and BC (line B to line C). Additionally, as the terrain
gradually increases from the foot of a hill to the top (near the area of line B), the influx of aerosols
decreases and becomes rare. Our results also reflected this detailed gradual change in AOD: over the
area of the peak slope, there is a long and narrow zone with smoothly changing color. We can see that
there is only a small retrieval result in the China area (the area north of line C). This is mainly because
the surface over western China is relatively bright [26], and when the estimated surface reflectance is
higher than 0.085, those pixels are not taken into account in the AOD retrieval. The absence of AOD
retrieval in the area between lines A and B is also caused by the high estimated surface reflectance and
the influence of cloud cover. The AERONET station Pokhara, located in the southeastern part of the
image, provided the AOD measurements within ± 15 min of the satellite observation time, and the
mean AOD on 4 and 7 November are 1.98 and 0.57, respectively. The results of our algorithm show
that the retrieved AOD near the Pokhara station are 1.95 and 0.65 on corresponding date, very close to
the AERONET measurements. The details of validation using ground-level measurements from global
sites are shown in Section 4.2. As shown in this case study, one of the deficiencies as well as challenges
in the retrieval performance is that there are some retrieved spots at the edges of clouds.
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4.2. Comparison of Retrieved AOD with AERONET Measurements

For quantitative validation, ground-based Sun photometer measurements are widely used
to evaluate the accuracy of AOD satellite retrievals. All ground-based AOD measurements
from AERONET that are within 15 min of the GOSAT observation are considered for validation.
The TANSO-CAI/AERONET collocation criteria [75–77] for validation are more stringent in space.
AOD results retrieved within a radius of 7.5 km of the AERONET site are averaged and then
evaluated by comparison with a total of 300 collocated data points, provided from 16 AERONET
sites for the period from April 2009 to August 2014. The 16 AERONET sites are located in East Asia
(XiangHe, DRAGON_Mt_Rokko and XiangHe), Southeast Asia (Chiang_Mai_Met_Sta, Vientiane and
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Gandhi_College), South Asia (Dhaka_University), North Asia (Tomsk_22 and Ussuriysk), South Africa
(Gorongosa and Ilorin), Europe (Belsk and Timisoara), South America (Alta_Floresta) and North
America (Appalachian_State and Harvard_Forest) (green points in Figure 1).

The scatter plots of TANSO-CAI versus AERONET AOD are shown in Figure 8. The linear
regression analysis shows that the TANSO-CAI-retrieved AOD has high agreement on the AERONET
AOD with an r-value of 0.91. The regression line lies close to the one-to-one line with a slope of 1.10 and
an intercept of 0.02. In addition to the linear regression analysis, some additional statistical indicators,
including root mean square error (RMSE), mean bias error (MBE) and expected error (EE), were used
to evaluate this algorithm. The RMSE [50,78,79] is sensitive to systematic and random errors. It is an
absolute criterion and is commonly used to determine differences between satellite-retrieved AODs
and ground-measured AODs. The RMSE (Equation (11)) is defined as follows.

RMSE =

√
1
n ∑n

i (AOD(TANSO−CAI)i − AOD(AERONET)i)
2. (11)
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The MBE [80] (Equation (12)) is used here to measure the mean error magnitude and calculated as

MBE =
1
n ∑n

i (AOD(TANSO−CAI)i − AOD(AERONET)i). (12)

EE [81] can denote the expected uncertainty of retrieval and is the major target of the validation
studies. It is a confidence envelope that encompasses the sum of the absolute (dominating at low AOD)
and relative (dominating at high AOD) AOD errors. The definition of EE (Equation (13)) is based on a
single criterion: at least 66% (approximately one standard deviation) of the collocated AOD match-ups
fall within the corresponding envelope that is described as

AOD(AERONET) − |EE| ≤ AOD(TANSO−CAI) ≤ AOD(AERONET) + |EE| . (13)

Many studies have estimated the uncertainties of satellite-retrieved AOD and attempted to define
EE to validate a related algorithm or product [81]. Prior to the Terra launch, Kaufman et al. (1997)
estimated the EE (± 0.05 ± 0.2AOD(AERONET)) of MODIS-retrieved AOD by sensitivity studies [17].
After the launch of Terra (later renamed Aqua), Chu et al. (2002) estimated the MODIS-measured
AOD with the EE (± 0.05 ± 0.2AOD(AERONET)) [82]. MODIS Collection 5 (C005) DT aerosol products is
reported EE for land to ± 0.05 ± 0.15AOD(AERONET) [83]. In addition, Mei et al. (2014) defined EE with
a different envelope of ± 0.1 ± 0.15AOD(AERONET) for an AVHRR retrieval algorithm [26]. We tried
three different EEs (EE1: ± 0.05 ± 0.15AOD(AERONET), EE2: ± 0.05 ± 0.2AOD(AERONET), EE3: ± 0.10
± 0.15AOD(AERONET)) mentioned above to estimate AOD retrieval uncertainty. The analysis of the
results of our algorithm (for total retrieval) shows that the RMSE and MBE between the TANSO-CAI
and AERONET AOD are 0.196 and 0.052. The proportion of retrievals agreeing within EE1 of the
AERONET measurements is 48.0%. For the relaxed criteria with EE3, there are 67.7% match-ups within
the EE3.

Although a good level of agreement was found for the total set of retrieved AOD from the
globally distributed sites, we had no idea how the algorithm would behave over different regions [84].
To study more detailed situations than the descriptions for the total data in Figure 8a, it is instructive to
regionally compare the TANSO-CAI and AERONET according to the locations of the AERONET sites.
Based on the previous analysis methods, the following statistics are shown in the Table 2: number of
experimental points (N), regression line, correlation coefficient (r), RMSE (AOD unit), MBE and EEs
(EE1, EE2 and EE3) for each region (East Asia, Southeast Asia, South Asia, North Asia, South Africa,
Europe, South America and North America). The comparisons of TANSO-CAI versus AERONET
AOD for each region are shown in Figure 8b–i. For all regions except South Asia, which has a high
ground-truth AOD, the RMSE and the MBE are always below 0.22 and 0.12, respectively (in absolute
terms). The TANSO-CAI AOD obtained very high r-value (more than 0.85) in East Asia, Southeast
Asia, South Asia and North Asia. Among them, South Asia has the poorest RMSE and MBE in all
regions. The proportions of the points within EEs are only with 35.5%, 54.8% and 51.6% for EE1, EE2
and EE3, respectively. This could be explained by the complicated surface-cover types around the
Dhaka_University AERONET site, which lead to improper estimations of surface reflectance during
certain seasons, because for two consecutive years we found that most of the outliers were obtained
during the period from February to April. On the other hand, the high ground-truth AOD (with a
mean value of 0.915) can also bring uncertainties due to the effect of multiple scattering. Contrary to
South Asia, the results for North America show a low r-value of 0.377, but a large proportion of data
within EEs. As shown in Figure 8i, the ground-truth AOD was very low (with a mean value of 0.102).
The retrieval errors and the insufficient observation of high AOD experimental data lead to the low
statistical r-value; however, the low RMSE and MBE (in absolute terms), and the match-up rate of 66%
within EE1 indicate that our algorithm achieved good performance in North America.
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Table 2. Summary statistics for the entire dataset and each individual region: number of samples (N),
correlation coefficients (r), RMSE, MBE and EEs.

Region N Mean AERONET AOD r RMSE MBE EE1 EE2 EE3

East Asia 49 0.282 0.927 0.178 0.055 36.7% 38.8% 59.2%
Southeast Asia 76 0.646 0.911 0.159 0.018 56.6% 65.8% 77.6%

South Asia 31 0.915 0.857 0.343 0.264 35.5% 54.8% 51.6%
North Asia 26 0.307 0.949 0.129 −0.073 38.5% 42.3% 61.5%

South Africa 11 0.283 0.578 0.167 −0.119 9.1% 36.4% 54.5%
Europe 45 0.217 0.753 0.213 0.114 46.7% 51.1% 60.0%

South America 9 0.067 0.639 0.102 0.091 33.3% 33.3% 66.7%
North America 53 0.102 0.377 0.164 −0.018 66.0% 71.7% 83.0%

Total 300 0.381 0.912 0.196 0.052 48.0% 55.0% 67.7%

Although the mean ground-truth AOD in Southeast Asia were measured with a high value of
0.646, good retrieval is still observed over this region with low RMSE and MBE, high r-value, a large
proportion of experimental data within EEs, and a regression line that is very close to the one-to-one
line. This is not surprising as the Chiang_Mai_Met_Sta, Vientiane and Gandhi_College AERONET
sites are typical rural vegetated sites, which have relatively lower surface reflectances and are ideal
for AOD retrieval [85]. The experimental data for Europe are from the Belsk and Timisoara sites.
The Belsk site is a vegetated rural site, and the Timisoara site is located in the center of one of the most
developed towns in Romania [86]. It can clearly be seen in Figure 8g that the retrieved AOD for this
region is easily overestimated, compared with the ground-level measured data. In the analysis, we
found that almost all the outliers with large errors are from Timisoara. It is possible that uncertainty
arises from the complicated reflectance relationship between the 0.67 vs. 1.6 over urban areas and high
local emissions, such as aerosol pollution from roads and power plants [85,86], both of which pose a
huge challenge to the satellite retrieval of aerosol properties.

The sites in North Asia, South Africa and North America all have negative MBE values (−0.073,
−0.119 and −0.018, respectively). We found that the AERONET sites in these regions, which have very
high vegetation backgrounds, tend to underestimate AOD in very light loading conditions. Similarly,
the MODIS DT algorithm also tends to underestimate dark-target sites with small AOD [81,87]. This
error may result from the systematic overestimation of the surface reflectance, since the parameters
in the regression function for estimating surface reflectance are determined by the experimental data
over the selected areas (in Section 3), and high-quality estimations are concentrated on a certain
range of surface-type variation. When the algorithm is applied to an extremely highly vegetated or
bare-surface area, the factual parameters for estimating surface reflectance would be biased toward
the parameters presumed by these overall experimental data, and the biases would become intrinsic
systematic errors [87].

Only two regions (Southeast Asia and North America) had more than 55% of match-ups fall in
EE1. Even excluding the two regions (South Africa and South America) that have very small volumes
of collocated data, only 35.5%~46.7% of match-ups fell in EE1 for the other regions. Obviously, EE1 is
an overly strict criterion with which to evaluate the accuracy of the current algorithm. For the relaxed
EEs, at least 51% of match-ups fell into EE3 for each region. Comparing the results for EE2 and EE3,
more match-ups were virtually contained in EE3 for all regions (except for South Asia). The statistics in
Table 3 show that the proportions of match-ups that fell well within EEs are higher for the observations
with higher ground-truth AOD [16], and most of the match-ups that fell below the EEs were for lower
aerosol loading conditions.
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Table 3. Proportions of match-ups below, within and above the EEs for AOD < 0.6 and > 0.6.

AODs N
EE1 EE2 EE3

Below Within Above Below Within Above Below Within Above

AOD < 0.6 238 23.1% 44.5% 32.4% 21.0% 48.3% 30.7% 12.2% 64.7% 23.1%
AOD > 0.6 62 3.2% 61.3% 33.9% 0% 80.6% 19.4% 0% 79.0% 20.9%

5. Conclusions

We introduced a new aerosol retrieval algorithm for land from the observation of the GOSAT
TANSO-CAI sensor. Based upon the preliminary analysis from selected TANSO-CAI/AERONET
collocations, we found that the relationship between surface reflectance in the red band and TOA
reflectance in the SWIR 1.6 µm band varies with surface conditions. The NDVI was successfully utilized
as a key factor to interpret the variety of 0.67 vs. 1.6 ratios with different surface properties. A regression
function dependent on NDVI to estimate the surface reflectance of red band from the TOA reflectance
of the 1.6 µm band for clear-sky conditions (AOD at 0.55 µm less than 0.1) was summarized. We
compared the estimated surface reflectance against the atmospherically corrected surface reflectance,
and the results show that the estimated surface reflectance has a very good agreement with the
theoretical surface reflectance. The results also confirmed that the correlations between the 0.67 vs. 1.6
are vegetation dependent and proved that the regression function is practical and accurate for this
application. The main problem in aerosol retrieval is that the NDVI itself can be affected by aerosols.
Therefore, by combining the advantages of AFRI, which can resist the influences from atmospheric
aerosols, with our regression function, which can preserve the correlations of 0.67 vs. 1.6 with different
vegetation amounts, a modified AFRI1.6 algorithm for estimating aerosol-free NDVI and surface
reflectance of 0.67 µm was developed. This modified AFRI1.6 algorithm-based AOD retrieval was
tested by comparing its results with the collocated AERONET AOD from 16 AERONET sites located
in different global regions. The results show that the retrieved AOD has very high consistency with
the AERONET measurements, with an r-value of 0.912, and a regression line (with an equation of
y = 1.101x + 0.021) that lies close to the one-to-one line. There are 67.7% experimental match-ups
falling within the EE of ± 0.1 ± 0.15AOD(AERONET). Due to fewer spectral bands being available in
GOSAT TANSO-CAI, only one visible band was used for aerosol retrieval, and its accuracy and ability
has been limited. Because the single-band retrieval algorithm does not have the degree of freedom
to choose aerosol type [88], the current algorithm used the continental aerosol model to describe the
aerosol condition. Although the continental aerosol model is an often used assumption over land
surfaces, it is obviously not satisfactory for all aerosols conditions. Improperly assuming aerosol type
can lead to errors in retrieval. In addition, as a typical vegetation-dependent algorithm (similar with
MODIS DT algorithm Collection 5), this algorithm does not aim to work for bright surface (e.g., desert
or urban).

This algorithm demonstrates a new approach to retrieve AOD from an onboard satellite sensor
that can only pick up the 1.6 µm and the NDVI (red and NIR) bands. In theory, this algorithm can be
implemented for any satellite sensor if provide reflectances in the appropriate bands. For other sensors,
however, because the specification (such as center wavelength, bandwidth and spectral responses) of
corresponding bands may be different with TANSO-CAI, the difference in the specification of bands
must be corrected when applying to other satellites. The proposed algorithm is the first step towards
the application of GOSAT data for the retrieval of AOD over land. We expect existing errors and
the uncertainties in the algorithm to be improved in further studies by expanding experimental data,
diversifying aerosol models in look-up tables, considering the effects of scattering angle, correcting
elevated surface targets, and improving cloud detection algorithms.
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