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Abstract: Land Surface Temperature (LST) is an important measurement in studies related to the
Earth surface’s processes. The Advanced Space-borne Thermal Emission and Reflection Radiometer
(ASTER) instrument onboard the Terra spacecraft is the currently available Thermal Infrared
(TIR) imaging sensor with the highest spatial resolution. This study involves the comparison of
LSTs inverted from the sensor using the Split Window Algorithm (SWA), the Single Channel
Algorithm (SCA) and the Planck function. This study has used the National Oceanic and Atmospheric
Administration’s (NOAA) data to model and compare the results from the three algorithms. The data
from the sensor have been processed by the Python programming language in a free and open
source software package (QGIS) to enable users to make use of the algorithms. The study revealed
that the three algorithms are suitable for LST inversion, whereby the Planck function showed the
highest level of accuracy, the SWA had moderate level of accuracy and the SCA had the least accuracy.
The algorithms produced results with Root Mean Square Errors (RMSE) of 2.29 K, 3.77 K and 2.88 K
for the Planck function, the SCA and SWA respectively.

Keywords: land surface temperature (LST); split window algorithm (SWA); single channel algorithm
(SCA); thermal infrared (TIR); Planck function; python

1. Introduction

Land Surface Temperature (LST) is the temperature of the surface of the Earth. LST is among the
most important datasets collected by satellites from space. LST is used in many applications such as
evapotranspiration, hydrology, climate change, geothermal energy related studies, Earth heat budget
studies and many others [1–3]. LST varies rapidly with time and location [4], and, as a result, in
order be able to acquire accurate LST measurements over time, there arises a need to estimate LST
in a relatively higher spatial resolution. Due to the high variation of temperature over land, satellite
derived LST provides researchers with a unique opportunity to acquire LST of the entire globe with a
relatively high spatial resolution in average values rather than values in a point form [5]. Through
LST derived from space, users of satellite imagery are now able to collect data, even from remote and
inaccessible regions such as the poles and oceans.

On board the Terra satellite, The Advanced Space-borne Thermal Emission and Reflection
Radiometer (ASTER) instrument is equipped with Thermal Infrared (TIR) sensors that can detect
long-wave thermal infrared radiation with wavelengths between 8 and 12 µm. On 1 April 2016, the
National Aeronautics and Space Administration (NASA) and the Japanese Space Agency announced
that ASTER data will be provided free of charge. This provides more researchers with an opportunity
to study the Earth in a different perspective. Until then, ASTER had a total of more than 2.95 million
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individual scenes which cover almost 99% of the Earth [6]. Because of the free availability of ASTER
data, it is expected that more users will make use of the data collected by the instrument.

Several algorithms have been developed to enable the extraction of LST from Visible, Near
Infrared (VNIR) and TIR imagery acquired from the ASTER sensor [7–9]. These algorithms can be
categorized in two main groups: algorithms based on one thermal channel (single channel algorithms)
and algorithms based on more than one TIR channel (split window algorithms). This study has mainly
focused on the examination of the algorithms which are used to derive LST from the ASTER instrument
with the use of Land Surface Emissivities (LSEs) derived from the VNIR channels and the TIR channels
onboard the ASTER instrument. Despite the presence of these algorithms today, their implementation
in LST inversion is not an easy process. Due to the difficulties arising from the implementation of these
algorithms in software already available in the market and the cost of acquisition of Remote Sensing
(RS) and Geographic Information Systems (GIS) software, most users have not managed to make use
of these algorithms. The availability of a ready-made solution for LST extraction not only promotes
the use of these algorithms but also enables users from other fields to make use of the data obtained
from the sensor.

This study involves the implementation of the Split Window Algorithm (SWA) [10], the Single
Channel Algorithm (SCA) for ASTER [7] and the Planck function [11] in the form of a Python-Quantum
GIS (PyQGIS) plugin in a free and open source software known as QGIS/Quantum GIS [12] to estimate
land surface temperature from ASTER Visible, Near Infrared (VNIR) and TIR imagery. In addition
to that, the plugin can also be used to calculate radiance, land surface emissivity and brightness
temperature. The geoprocessing code used in this study has been provided as an update to a plugin
which was developed for Landsat sensors [13]. It is free to modify, view and share, enabling more
users to benefit from it.

NOAA Surface Radiation (SURFRAD) [14] data have been used in the accuracy assessment and
modeling of the results obtained from the sensor. To develop the plugin, the Python programming
language has been used because it can run on the most used operating systems, i.e., Linux, Windows
and Mac OS, without the modification or recompilation of the code; Python is a free and open source
programming language; and because the language has the ability to create Graphical User Interface
(GUI) and, which eases the use of the plugin.

2. Data and Materials

2.1. ASTER Imagery

The ASTER instrument’s scene consists of fourteen channels which can detect electromagnetic
radiation ranging from the visible region to the thermal infrared region of the electromagnetic spectrum.
The sensor was launched in 1999 and it is one of the instruments carried by National Aeronautics
and Space Administration’s (NASA) Terra spacecraft. Table 1 shows the technical specifications of the
ASTER sensor. The ASTER data used in this study were acquired from the United States Geological
Survey (USGS) Earth-Explorer website [15]. In this study, a total of 16 ASTER level 1T radiance at
sensor imagery have been used. These scenes were collected in different periods of time, from different
latitudes, land covers and topography. Table 2 shows the scenes that have been used in the study.
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Table 1. ASTER instrument’s technical specifications.

Subsystem Band Spectral Range (µm) Spatial Resolution Quantization

Visible and Near
Infrared (VNIR)

1 0.52–0.60

15 m 8 bits
2 0.63–0.69

3N 0.78–0.76
3B 0.78–0.76

Short Wave
Infrared (SWIR)

4 1.60–1.70

30 m 8 bits

5 2.145–2.185
6 2.185–2.225
7 2.235–2.285
8 2.295–2.365
9 2.360–2.430

Thermal Infrared
(TIR)

10 8.125–8.475

90 m 12 bits
11 8.475–8.825
12 8.925–9.275
13 10.25–10.95
14 10.95–11.65

Table 2. ASTER scenes used in the study.

Scene Acquisition Date Scene Acquisition Time (UTC) Path Row Scene ID

10 October 2000 17:07 22 32 4
10 October 2000 17:08 23 36 13

11 June 2001 18:13 35 26 7
30 August 2001 18:11 35 26 9

7 November 2001 16:51 23 32 2
27 February 2002 16:50 23 36 12

6 March 2003 16:54 23 32 1
31 December 2003 16:49 23 36 14

11 March 2004 16:55 22 36 10
19 September 2004 16:52 23 32 5

30 October 2004 16:45 23 32 6
14 June 2006 16:48 22 36 11

1 August 2006 16:46 23 32 3
14 October 2006 17:22 29 30 16
9 January 2007 14:29 29 30 15
18 April 2008 18:11 35 26 8

2.2. Surface Radiation Budget Network (SURFRAD) Data

This study employed data obtained from the National Oceanic and Atmospheric Administration’s
(NOAA) Surface Radiation budget network (SURFRAD). The network was established in 1995 with
four stations, which were later expanded to six in 1998. The purpose of the SURFRAD network is
to provide correct, continuous and accurate measurements related to radiation budget for use in
climatology, satellite related studies, weather forecasting and education. The choice of the locations
of the establishment of SURFAD stations involved experts from NOAA, universities and NASA.
The network has given special attention to satellite data validation as the stations are located in areas
with a continuous span of homogeneous landforms and vegetation cover in order for the stations to
be able to make measurements with a correct representation of the spatial resolution of a satellite’s
pixel [14]. This study has made use of SURFRAD data, as they have been used successfully in numerous
studies related to LST inversion from space [16–18]. Table 3 shows the information of the stations.
The scenes used in the study and the SURFRAD stations they cover are also shown on Table 3.
The scenes can be identified using the scene IDs shown from the table.
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Table 3. SURFRAD Stations Information [19].

Station
Name

Latitude,
Longitude Land Cover Elevation

(Meters)
U.S.

State
Date of

Installation
Station
Code

Scene
ID

Bondville 40.06◦N,
88.37◦W Cropland 230 IL January 1995 BON 1, 2, 3, 4,

5, 6

Fort Peck 48.31◦N,
105.10◦W Grassland 634 MT January 1995 FPK 7, 8, 9

Goodwin
Creek

34.25◦N,
89.87◦W

Evergreen Needle
Leaf Forest 98 MS January 1995 GWN 10, 11,

12, 13, 14

Sioux Falls 43.73◦N,
96.62◦W Cropland 473 SD June 2003 SXFs 15, 16

3. Methodology

3.1. Conversion of Digital Numbers (DNs) to Radiance

Radiance at the sensor data is stored in ASTER thermal infrared imagery in the form of DNs. DNs
are the values stored in raw satellite imagery which have not yet been processed. DNs are a way to
represent different levels of intensities of electromagnetic radiation in a raster image [20]. To calculate
LST from this imagery, DNs should be converted to radiance. To convert DNs to radiance, Equation (1)
has been used in the study [20].

Lλ = (DN− 1)×UCC, (1)

where Lλ represents the top of atmosphere radiance in W/(m2·sr·µm), DN represents the ASTER
thermal infrared band being used in the study and UCC stands for the Unit Conversion Coefficient
of the thermal infrared band in use. Table 4 shows the UCCs of the thermal bands of the ASTER
instrument [21].

Table 4. Unit Conversion Coefficients (UCC) of ASTER’s TIR bands [21].

Band Band 10 Band 11 Band 12 Band 13 Band 14

UCC 0.006822 0.006780 0.006590 0.005693 0.005225

3.2. Conversion of Radiance to Brightness Temperature

Brightness temperature is a measurement that describes the amount of radiation in terms
of the temperature of a hypothetical blackbody emitting the same amount of radiation at the
same wavelength [22]. The application of the inverse of the Planck function to the measured
radiation calculates the brightness temperature. Brightness temperature may be highly dependent or
independent on the wavelength of the radiation depending on the properties of the source of radiation
and any subsequent absorption [22]. After the DNs have been converted to radiance, the next step is
to convert the radiance to brightness temperature (Equation (2)) [7,21,23]:

Tsen =
K2

ln(K1
Lλ

+ 1)
(2)

where Tsen represents the top of atmosphere brightness temperature in Kelvin, Lλ represents the top of
atmosphere radiance from Equation (1), K1 and K2 are the band specific thermal conversion constants
which are based on the wavelength of the operation of a thermal infrared channel. K1 = C1/λ5 and
K2 = C2/λ. Table 5 shows the K1, K2 coefficients of the TIR bands of the ASTER instrument.
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Table 5. K1 and K2 coefficients of the TIR bands of the ASTER instrument [7].

Band K1 (W·m2·sr−1·µm−1) K2 (W·m2·sr−1·µm−1)

Band 10 3047.47 1736.18
Band 11 2480.93 1666.21
Band 12 1930.80 1584.72
Band 13 865.65 1349.82
Band 14 649.60 1274.49

3.3. Estimation of Land Surface Emissivity (LSE)

Emissivity is the ratio of the power emitted by a body at a known temperature to the power
emitted if the body obeyed Planck’s law of radiation [24]. The emissivities of most terrestrial materials
lies between 0.7 and 1 [1], however, surfaces that have emissivities less than 0.85 are likely to be found
in deserts [1,25]. It is important to estimate LSE, as it reduces the errors during the estimation of LST
from space [26]. Unlike the emissivity of water bodies such as oceans, the emissivity of land surfaces
may significantly differ from one place to another [16]. Emissivity may differ according to the viewing
angle, surface moisture, and roughness as well as with vegetation [16,27]. Notwithstanding the fact
that there are many algorithms that have been proposed for the estimation of LSE [28–31], in this
study, the estimation of LSE with prior known LSE has been used. This is because the algorithm is
more practical and has a reasonable accuracy [16,32,33]. Previous studies have proven the presence
of a relationship between the Normalized Difference Vegetation Index (NDVI) and the emissivities
of terrestrial materials [9,34]. In this study, the NDVI based approach of LSE estimation has been
used [9,35]. This algorithm has been applied in the estimation of LSE for various sensors [32,36–39]
with the use of Visible and Near Infrared (VNIR) data. To calculate the NDVI, Equation (3) has been
used in the study [40].

NDVI =
NIR− RED
NIR + RED

(3)

where NIR represents the reflectance of the Near Infrared band and RED represents the reflectance of
red band of the ASTER sensor.

In this study, Jimenez-Munoz and coworkers’ algorithm [9] has been used in the estimation of
LSE from NDVI. This algorithm has been used as it has been tested with in situ data for ASTER. The
algorithm is based on Equation (4) [9].

εi = εviPv + εsi (1− Pv) (4)

where εi represents the emissivity of thermal infrared channel i; εvi and εsi represent the channel
emissivities of vegetation and soil, respectively; and PV represents the proportion of vegetation
(sometimes known as fractional vegetation cover). A cavity term is added to Equation (4) to take the
geometric distribution of the surface into consideration during the LSE estimation. The cavity effect
for an area with a mixed land cover in a near nadir angle is given by (1 − εs) εvF’ (1 − PV), where F’ is
a geometric value which ranges between 0 and 1 [9]. The cavity term has been neglected because of its
small effect in the estimation of LSE in areas with high soil emissivities. The proportion of vegetation
is calculated from NDVI as shown in Equation (5) [41].

Pv =

[
NDVI−NDVIs

NDVIv −NDVIs

]2
(5)

where NDVIV and NDVIS are the NDVI values of vegetation and soil, respectively. These values are
obtained from the histogram of the NDVI. According to Jimenez-Munoz et al. [9], the most sensitive
issue in Equation (4) is the choice of the emissivity of soil. In order to get the values to apply on
Equation (4), authors in [9] introduced Equations (6)–(10) for ASTER TIR band 10 to 14, respectively.
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ε10 = 0.946 + 0.044Pv, (6)

ε11 = 0.949 + 0.041Pv, (7)

ε12 = 0.941 + 0.049Pv, (8)

ε13 = 0.968 + 0.022Pv, (9)

ε14 = 0.970 + 0.020Pv. (10)

3.4. Brightness Temperature Emissivity/Atmospheric Correction

To achieve accurate land surface temperature inversion from space, there arises a need to correct
brightness temperatures with emissivity and other atmospheric parameters. Many algorithms have
been designed to enable accurate inversion of temperatures from the ASTER instrument’s VNIR and
TIR channels. This study has employed the Split Window Algorithm (SWA), the Single Channel
Algorithm (SCA) for ASTER and the Planck function.

3.4.1. Single Channel Algorithm for ASTER

Jiménez-Muñoz and Sobrino adopted the single channel algorithm for the extraction of LST from
the ASTER sensor [7]. As a result of the presence of high atmospheric transmission and the lower
emissivity variations in the 10–12 µm spectral window as compared to the 8–9 µm spectral window, it
was proposed that band 13 and band 14 were the most suitable channels to be used in the algorithm [7].
The algorithm is shown in Equation (11).

Ts = γ

[
1
ε
(ΨLsen + Ψ2) + Ψ3

]
+ δ (11)

In Equation (11), ε represents the LSE of an area, Lsen is the at-sensor radiance W/(m2·sr·µm),
γ and δ are variables which are based on the Planck function and Ψ1, Ψ2 and Ψ3 are referred to as
Atmospheric Functions (AFs) which are estimated using Equations (12)–(14), respectively [7].

Ψ1 =
1
τ

(12)

Ψ2 = −L↓ − L↑

τ
(13)

Ψ3 = L↓ (14)

where τ is the atmospheric transmittance, L↑ is the upwelling radiance and L↓ is the down-welling
atmospheric radiance in the spectral window of the thermal infrared channel in use. In this study, the
empirical approach obtained from the second order polynomial fits against the atmospheric water
vapor content has been used to determine the AFs (Equation (15)) [42,43]: Ψ1

Ψ2

Ψ3

 =

 C11 C12 C13

C21 C22 C23

C31 C32 C33


 w2

w
1

 (15)

In Equation (15), Cij are obtained from simulated data that are constructed from atmospheric
profiles included in different databases and Moderate Resolution Atmospheric Transmission
(MODTRAN4) radiative transfer code, and W is the atmospheric water vapor content of the thermal
infrared channel in use. In this study, both TIGR61 and STD66 databases of the MODTRAN4 code
were implemented in the plugin. Through them the number of cases have been reduced and a result
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reducing the amount of time required for simulation but are still applicable for global conditions [7].
Table 6 shows the coefficients for the atmospheric functions in a matrix organization [7].

Table 6. Coefficients of the AFs [7].

MODTRAN
Atmospheric Database

ASTER TIR
Band

Cij i = 1 i = 2 i = 3

STD66 13
J = 1 0.06524 −0.05878 1.06576
J = 2 −0.55835 −0.75881 0.00327
J = 3 −0.00284 1.35633 −0.43020

TIGR61 13
J = 1 0.05327 −0.03937 1.05742
J = 2 −0.484444 −0.74611 −0.03015
J = 3 0.00764 1.24532 −0.39461

STD66 14
J = 1 0.10062 −0.13563 1.10559
J = 2 −0.79740 −0.39414 −0.17664
J = 3 −0.03091 1.60094 −0.56515

TIGR61 14
J = 1 0.07965 −0.09580 1.08983
J = 2 −0.66528 −0.48582 −0.17029
J = 3 −0.01578 1.46358 −0.52486

The gamma (γ) and delta (δ) parameters shown in Equation (11) are computed using Equations (16)
and (17), respectively [7], where Tsen is obtained from Equation (2) and the values of K2 are shown in
Table 5.

γ ≈ T2
sen

K2Lsen
(16)

δ ≈ Tsen −
T2

sen
K2

(17)

3.4.2. Split Window Algorithm (SWA)

The SWA was developed to enabling the extraction of LST from instruments that are equipped
with more than one TIR channel. The algorithm was initially introduced for the estimation of
Sea Surface Temperature (SST) and was later adopted for the extraction of LST. It takes advantage
of the differences in absorption between two thermal infrared channels in the atmospheric window
between 10.5 and 12.5 µm. Many SWA equations have been derived by numerous researchers for
LST estimation [44–46]. With an exception of the way these algorithms calculate their parameters,
they operate in the same manner [47]. In this study, Mao and coworkers’ SWA has been used [8].
The algorithm used is shown in Equation (18). The temperature derived from the equation is measured
in Kelvin.

Ts =
{[C14 (D13 + B13)]− [C13 (D14 + B14)]}

C14A13 −C13A14
(18)

A13 = 0.145236× ε13 × τ13 (19)

B13 = 0.145236× T13 + 33.685× ε13 × τ13 − 33.685 (20)

C13 = (1− τ13)× [1 + (1− ε13)× τ13]× 0.145236 (21)

D13 = (1− τ13)× [1 + (1− ε13)× τ13]× 33.685 (22)

A14 = 0.13266× ε14 × τ14 (23)

B14 = 0.13266× T14 + 30.273× ε14 × τ14 − 30.273 (24)

C14 = (1− τ14)× [1 + (1− ε14)× τ14]× 0.13266 (25)

D14 = (1− τ14)× [1 + (1− ε14)× τ14]× 30.273 (26)
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where τ13 and τ14 stand for the atmospheric transmissions for band 13 and band 14, respectively; ε13

and ε14 stand for the land surface emissivities of band 13 and band 14, respectively; and Ts represents
the land surface temperature.

3.4.3. Inversion of Planck Function.

The Planck function is used to compute the intensity of the thermal radiation. It is a function that
shows the amount of thermal electromagnetic radiation which can be emitted by a blackbody under
thermal equilibrium conditions at a known temperature. With the LSE of an area known, the LST of
an area can be estimated through the inversion of the Planck function. The brightness temperature
recorded by a sensor in space is calculated under the assumption that the land surface is a black
body, i.e., an object with an emissivity of 1. The Planck function enables the emissivity correction of
brightness temperature. The Planck function has been used in the estimation of LST in this study.
Emissivity corrected land surface temperature is as shown in Equation (27) [48].

Ts =
BT{

1 +
[
λ.BT
ρ

]
.lnε

} (27)

where Ts is the land surface temperature in Kelvin, BT represents the brightness temperature of the
thermal infrared band in use (obtained from Equation (2)), λ is the effective wavelength (in µm) of the
thermal infrared channel in use, ρ is the (h × c/σ) = 1.438 × 10−2 m·K and ε is the spectral emissivity.
Table 7 shows the effective wavelengths of the TIR channels of the ASTER instrument [7].

Table 7. Effective wavelengths of the TIR channels of the ASTER instrument.

Band Effective Wavelength (λ) in µm

Band 10 8.287
Band 11 8.685
Band 12 9.079
Band 13 10.659
Band 14 11.289

3.5. Derival of SURFRAD Land Surface Temperature (LST)

The LST values used in the study were derived from the radiances recorded by SURFRAD stations.
SURFRAD LST can be derived from upwelling wave flux measurements during the satellite overpass
time using Equation (28).

F↑lw = εsfcσT4
sfc + (1− εsfc) F↓LW (28)

where σ stands for the Stefan-Boltzmann constant (5.670367 × 10−8 kg·s−3·K−4), F↑lw is the measured
upwelling longwave flux, F↓LW is the measured down-welling longwave flux and εsfc is the
broadband longwave surface emissivity. The broadband longwave surface emissivity is not part
of the measurements done by SURFRAD stations. This study has assumed a longwave broadband
emissivity of 0.97. The value represents the findings as stipulated by a study done by Wang and
Liang [18] where the broadband values were obtained through the application of a regression analysis
using a SeeBor emissivity for the Moderate-Resolution Imaging Spectroradiometer (MODIS) channels
with effective wavelengths of 8.5, 11 and 12 µm [17,18]. This value is only used in the SURFRAD
estimate and not in the inversion of LST from the satellite imagery, which includes surface emissivities
that vary with time and spatial resolution. In this study, LST of measured by the stations has been
solved using Equation (29). Table 8 shows the LSTs derived from the SURFRAD stations used in
the study.

LST =

{
[F↑LW − (1− εsfc)F

↓
LW]

(εsfcσ)

} 1
4

(29)
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Table 8. LST values derived from the SURFRAD data.

Bondville Fort Peck Goodwin Creek Sioux Falls

Date LST (K) Date LST (K) Date LST (K) Date LST (K)

6 March 2002 286.04 11 June 2001 302.38 11 March 2004 296.85 9 January 2007 271.79
7 November 2001 292.61 18 April 2008 300.26 14 June 2006 308.63 14 October 2006 285.97

1 August 2006 306.15 30 August 2001 311.90 27 February 2002 280.85
10 October 2000 290.49 31 December 2003 268.86

19 September 2004 296.69 10 October 2000 305.92
30 October 2004 289.85

3.6. Estimation of Atmospheric Water Vapour

The atmospheric water vapor used in the study has been estimated from the measurements made
by SURFRAD stations using the values of air temperature and relative humidity. Equation (30) shows
the relation used in the estimation of atmospheric water vapor content from the SURFRAD data [49].

wi = 0.0981×
{

10× 0.6108× exp
[

17.27× (T0 − 273.15)
237.3 + (T0 − 273.15)

]
× RH

}
+ 0.1679 (30)

where wi represents the atmospheric water vapor content of a thermal infrared channel, RH represents
the relative humidity and T0 represents the near surface air temperature in Kelvin.

3.7. Estimation of Atmospheric Transmittance (τ)

To use SWA, the knowledge of the atmospheric transmission of band 13 and band 14 of the ASTER
instrument is crucial. In this study, the method proposed by Mao et al. has been used [8]. The inputs
required for the successful use of the method have been obtained from the measurements made by the
SURFRAD stations. Through the method, the atmospheric transmittance of band 13 and band 14 of
the ASTER instrument can be estimated as shown in Equations (31) and (32), respectively.

τ13 = 1.02− 0.104×w13 (31)

τ14 = 1.04− 0.113×w14 (32)

where w13 and w14 represent the atmospheric water vapor content while τ13 and τ14 represent the
band atmospheric transmissions for ASTER band 13 and ASTER band 14, respectively. Figure 1 shows
the summary of the methodology used in the study.

4. Results and Discussion

This study has only made use of ASTER band 13 and band 14 for LST inversion. Band 10, 11 and
12 have not been used as has been previously recommended that for accurate LST estimation from the
sensor. The optimum thermal infrared bands should then be chosen [7]. Accurate LST retrievals are
said to be made at the atmospheric windows that lie between 10 and 12 µm in wavelength. This is
because this window has a higher atmospheric transmittance and lower emissivity uncertainties as
compared to the spectral window with wavelengths between 8 and 9 µm [7].

The VNIR imagery used in this study were resampled to a spatial resolution of 90 m and thereafter
projected to the Universal Transfer Mercator (UTM) for them to match to the spatial resolution of
the ASTER instrument’s TIR bands. The imagery used in the study were also clipped to the same
extent before being processed. The bias between the LSTs estimated from the ASTER instruments was
calculated by subtracting the LST obtained from the SURFRAD station from the LST inverted from the
ASTER instrument.
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4.1. Results from the Planck Function

The Planck function has been used in this study to derive the LST values from the imagery
acquired from the ASTER instrument. The derived values have been compared to the actual land
surface temperatures derived from the SURFRAD data. Tables 9 and 10 show a detailed comparison
between the different LSTs derived from band 13 and band 14 of the ASTER instrument and the LSTs
obtained from SURFRAD stations. All temperatures are measured in Kelvin (K).
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Table 9. Comparison of LST values derived from the SURFRAD stations and the LST inverted by the Planck function using band 13 of the ASTER instrument.

Bondville Fort Peck Goodwin Creek Sioux Falls

Date LST (K) Bias (K) Date LST (K) Bias (K) Date LST (K) Bias (K) Date LST (K) Bias (K)

6 March 2002 284.93 −1.10 11 June 2001 299.98 −2.40 11 March 2004 295.54 −1.31 9 January 2007 272.14 0.34
7 November 2001 295.50 2.89 18 April 2008 302.52 2.26 14 June 2006 305.08 −3.54 11 October 2006 285.39 −0.57

1 August 2006 302.18 −3.97 30 August 2001 311.41 −0.49 27 February 2002 279.87 −0.97
10 October 2010 291.89 1.41 10 October 2000 302.86 −3.05

19 September 2004 300.61 3.92
30 October 2004 290.61 0.76

∆ 0.65 −0.21 −2.22 −0.12
σ 1.66 1.21 1.57 0.32

RMSE 2.68 1.92 2.48 0.47

∆: Bias, σ: Standard Deviation, RMSE: Root Mean Square Error.

Table 10. Comparison of LST values derived from the SURFRAD stations and the LST inverted by the Planck function using band 14 of the ASTER instrument.

Bondville Fort Peck Goodwin Creek Sioux Falls

Date LST (K) Bias (K) Date LST (K) Bias (K) Date LST (K) Bias (K) Date LST (K) Bias (K)

6 March 2002 284.94 −1.10 11 June 2001 299.73 −2.66 11 March 2004 295.15 −1.70 9 January 2007 272.10 0.22
7 November 2001 295.15 2.54 18 April 2008 302.10 1.84 14 June 2006 305.10 −3.53 11 October 2006 285.62 0.25

1 August 2006 301.16 −4.99 30 August 2001 311.02 −0.88 27 February 2002 280.06 −0.79
10 October 2010 292.01 1.53 10 October 2000 305.39 −0.53

19 September 2004 300.62 3.93 −1.64
30 October 2004 290.05 0.20

∆ 0.35 −0.56 −1.64 −0.02
σ 1.66 1.27 1.16 0.23

RMSE 2.90 1.94 2.02 0.33

∆: Bias, σ: Standard Deviation, RMSE: Root Mean Square Error.
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In this study, ASTER band 13 and band 14 produced negative bias values in comparison to the
ones derived from SURFRAD data. The average bias values of all scenes used in the study for ASTER
band 13 and band 14 were −0.39 K and −0.41 K, respectively. The standard deviation of the LST
values obtained from ASTER band 13 and band 14 for all the scenes involved in the study were 1.37 K
and 1.26 K, respectively. There was a high correlation between the LSTs derived from the two bands
and the LSTs derived from the SURFRAD data. Both bands produced LST values with regression
coefficients (R2) of above 0.95. Figure 2 shows the scatter plots produced to show the relationship
between the LSTs derived from ASTER band 13 and 14 from the Planck function with SURFRAD data.
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Figure 2. Comparison of scatter plots of LST inverted from ASTER data and LST derived from
SURFRAD station at four SURFRAD stations: (a) scatter plot for LST values derived from ASTER band
13 using the Planck function and the LSTs derived from SURFRAD measurements; and (b) scatter plot
for LST values derived from ASTER band 14 using the Planck function and the LSTs derived from
SURFRAD measurements.

4.2. Results from the Single Channel Algorithm (SCA)

The SCA has been used in this study to derive the LST values from the VNIR and TIR imagery
obtained from the ASTER sensor. The inverted LST values were thereafter compared to the actual
land surface temperatures derived from the SURFRAD data. Tables 11 and 12 show the comparisons
between the different LSTs derived from band 13 and band 14 of the ASTER instrument and the LSTs
obtained from SURFRAD stations. All temperatures are measured in Kelvin.
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Table 11. Comparison of LST values derived from the SURFRAD stations and the LST inverted by the SCA using band 13 of the ASTER instrument.

Bondville Fort Peck Goodwin Creek Sioux Falls

Date LST (K) Bias (K) Date LST (K) Bias (K) Date LST (K) Bias (K) Date LST (K) Bias (K)

6 March 2002 285.92 −0.12 11 June 2001 301.75 −0.64 11 March 2004 297.08 0.23 9 January 2007 272.43 0.63
7 November 2001 297.19 4.58 18 April 2008 304.30 4.04 14 June 2006 309.12 0.49 11 October 2006 286.35 0.38

1 August 2006 309.15 3.01 30 August 2001 313.88 1.98 27 February 2002 280.56 −0.29
10 October 2010 293.24 2.76 10 October 2000 305.23 −0.69

19 September 2004 302.99 6.31
30 October 2004 291.92 2.07

∆ 3.10 1.79 −0.06 0.51
σ 1.68 1.57 0.30 0.36

RMSE 3.69 2.62 0.46 0.52

∆: Bias, σ: Standard Deviation, RMSE: Root Mean Square Error.

Table 12. Comparison of LST values derived from the SURFRAD stations and the LST inverted by the SCA using band 14 of the ASTER instrument.

Bondville Fort Peck Goodwin Creek Sioux Falls

Date LST (K) Bias (K) Date LST (K) Bias (K) Date LST (K) Bias (K) Date LST (K) Bias (K)

6 March 2002 289.15 3.12 11 June 2001 304.35 1.97 11 March 2004 299.64 2.79 9 January 2007 275.68 0.31
7 November 2001 299.80 7.19 18 April 2008 306.68 6.43 14 June 2006 311.75 3.13 11 October 2006 289.71 −0.35

1 August 2006 312.32 6.17 30 August 2001 316.11 4.21 27 February 2002 283.84 3.00
10 October 2010 296.37 5.89 10 October 2000 307.72 1.80

19 September 2004 305.84 9.16
30 October 2004 294.43 4.59

∆ 6.02 4.20 2.68 3.81
σ 2.22 2.97 1.89 2.70

RMSE 6.31 4.58 2.73 3.81

∆: Bias, σ: Standard Deviation, RMSE: Root Mean Square Error.
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The LST values obtained from the SCA band 13 and band 14 produced positive bias values in
comparison to LSTs derived from the SURFRAD measurements. The bias values of the values derived
from ASTER band 13 and 14 were 1.65 K and 4.47 K, respectively, for all scenes used in the study.
According to the regression analysis, which was performed to determine the relationship between the
LST values obtained from the SCA and the LST obtained from the SURFRAD data, a high correlation
was obtained between the values: a correlation coefficient of 0.9676 was observed using the SCA and
ASTER band 13 and a correlation coefficient of 0.9666 was observed using the SCA and ASTER band 14.
The SCA produced LST values with standard deviations of 1.11 K and 2.35 K for ASTER band 13 and
band 14, respectively. Figure 3 shows the scatter plots produced to show the relationship between the
LSTs derived from ASTER band 13 and 14 from the SCA with SURFRAD data. The SCA produced the
best results when band 13 was used.Remote Sens. 2016, 8, 993 12 of 19 
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Figure 3. Comparison of scatter plots of LST inverted from ASTER data and LST derived from
SURFRAD station at four SURFRAD stations: (a) scatter plot for LST values derived from ASTER
band 13 using the SCA and the LSTs derived from SURFRAD measurements; and (b) scatter
plot for LST values derived from ASTER band 14 using the SCA and the LSTs derived from
SURFRAD measurements.

4.3. Results from the Split Window Algorithm (SWA)

This study has involved the SWA to derive LST from ASTER band 13 and band 14. The accuracy of
the LSTs derived from the sensor though the use of the algorithm. The derived values were thereafter
compared to the actual land surface temperatures derived from the SURFRAD data. Table 13 shows the
comparison between the different LSTs derived from band 13 and band 14 of the ASTER instrument
and the LSTs obtained from SURFRAD stations. All temperatures are measured in Kelvin.
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Table 13. Comparison of LST values derived from the SURFRAD stations and the LST inverted by the SWA using band 13 and band 14 of the ASTER instrument.

Bondville Fort Peck Goodwin Creek Sioux Falls

Date LST (K) Bias (K) Date LST (K) Bias (K) Date LST (K) Bias (K) Date LST (K) Bias (K)

6 March 2002 285.47 −0.57 11 June 2001 299.33 −3.06 11 March 2004 294.11 −2.74 9 January 2007 271.59 −0.21
7 November 2001 294.24 1.63 18 April 2008 301.66 1.40 14 June 2006 308.95 0.33 11 October 2006 285.57 −0.40

1 August 2006 306.78 0.64 30 August 2001 309.98 −1.92 27 February 2002 279.89 −0.96
10 October 2010 292.56 2.07 10 October 2000 302.21 −3.71

19 September 2004 305.28 8.59
30 October 2004 287.53 −2.32

∆ 1.67 −1.19 −1.77 −0.30
σ 4.26 1.50 1.37 0.21

RMSE 3.80 2.23 2.36 0.32

∆: Bias, σ: Standard Deviation, RMSE: Root Mean Square Error.
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In this study, the LST values obtained from the SWA produced a negative bias value in comparison
to the LSTs derived from SURFRAD data. The algorithm produced a bias value of −0.08 K and a
standard deviation of 2.40 K. It produced a regression coefficient of 0.9314 in relation to the data
obtained from the SURFRAD stations. Figure 4 shows the scatter plots of the LSTs derived from ASTER
using the SWA, ASTER band 13 and ASTER band 14 in relation to SURFRAD data.
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Figure 4. Comparison of scatter plots of LST inverted from ASTER data using the SWA and LST
derived from SURFRAD station at four SURFRAD stations.

4.4. Comparison of the Three Algorithms

Unlike the Planck function, which does not require atmospheric parameters when inverting
LST from the ASTER instrument’s VNIR and TIR bands, the SWA and the SCA algorithms are
heavily reliant on the atmospheric parameters of water vapor and transmittance. The accuracy of
the SWA is high, but the algorithm is mostly limited due to the need to have prior knowledge of the
atmospheric transmittance. According to tests which were done by Jimenez-Munoz and Sobrino, SWA
have the ability to provide results with similar accuracies as the Thermal Emission Separation (TES)
algorithm [50]. The main advantage of SWA algorithms is the ability to include atmospheric correction
within the algorithms themselves.

This study has revealed that the SCA has an ability to produce the best results when ASTER band
13 is used. This has been observed in this study as band 13 produced the lowest values of standard
deviation, Root Mean Square Error (RMSE) and bias in comparison to the SURFRAD measurements.
The SCA band 14 produced the largest bias at the Fort Feck SURFRAD station where band 14 produced
LST values with a RMSE of 4.58 K.

The Planck function produced results with an average bias of 2.29 K when ASTER band 13 and
band 14 were applied in all the scenes involved in the study while the SCA produced results with
an average RMSE of 3.77 K using band 13 and band 14 for all scenes used in the study. The SWA
produced results with a RMSE of 2.88 K with the use of band 13 and band 14 in all the scenes involved
in the study.

5. Conclusions

In this study, three LST inversion algorithms from data obtained from the ASTER instrument
were compared. To enable more users to make use of the algorithms, the Python script used in the
Geoprocessing of the algorithms has been shared as a plugin for a free and open source software
known as Quantum GIS (QGIS). The script is provided as an update to a script written in a previous
study [13].
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From the scenes used in the study, the results show that the Planck function can produce the best
results in comparison to the other algorithms, while the SWA algorithm has a moderate accuracy and
the SCA algorithm has the lowest accuracy. All algorithms used in the study have shown an ability to
produce land surface temperature values with an accuracy of up to 4 K. It is expected that through
this study more users of ASTER data from different areas of specialization such as hydrology, energy
studies and climate related sciences will manage to derive LST from ASTER imagery in an easy and
automated way.

Acknowledgments: This study was supported by Anadolu University Scientific Research Projects Commission
under the grant number 1601F031. We sincerely appreciate the research funding which was provided by Anadolu
University for this article. The authors would like to express their high gratitude to the ASTER science team and
the National Oceanic and Atmospheric Administration (NOAA) for providing SURFRAD ground data free of
charge. Special thanks go to the United States Geological Survey (USGS) for providing the image archives. Finally,
the authors would like to thank the QGIS development team for creating an API which allows users to make use
of the QGIS software for Python Geoprocessing.

Author Contributions: In this manuscript, Milton Isaya Ndossi wrote the Python Geoprocessing script used
in the data analysis and wrote the manuscript; and Ugur Avdan evaluated the study and contributed in the
methodology and revisions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ASTER Advanced Space-borne Thermal Emission and Reflection Radiometer
K Kelvin
LSE Land Surface Emissivity
MODTRAN MODerate resolution atmospheric TRANsmission
MODIS Moderate-Resolution Imaging Spectroradiometer
NASA National Aeronautics and Space Administration
NOAA National Oceanic and Atmospheric Administration
NDVI Normalized Difference Vegetation Index
NIR Near Infrared
SCA Single Channel Algorithm
SURFRAD Surface Radiation budget network
SWA Split Window Algorithm
TIR Thermal Infrared
UCC Unit Conversion Coefficients
USGS United States Geological Survey
VNIR Visible and Near Infrared
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