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Abstract:



Land Surface Temperature (LST) is an important measurement in studies related to the Earth surface’s processes. The Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) instrument onboard the Terra spacecraft is the currently available Thermal Infrared (TIR) imaging sensor with the highest spatial resolution. This study involves the comparison of LSTs inverted from the sensor using the Split Window Algorithm (SWA), the Single Channel Algorithm (SCA) and the Planck function. This study has used the National Oceanic and Atmospheric Administration’s (NOAA) data to model and compare the results from the three algorithms. The data from the sensor have been processed by the Python programming language in a free and open source software package (QGIS) to enable users to make use of the algorithms. The study revealed that the three algorithms are suitable for LST inversion, whereby the Planck function showed the highest level of accuracy, the SWA had moderate level of accuracy and the SCA had the least accuracy. The algorithms produced results with Root Mean Square Errors (RMSE) of 2.29 K, 3.77 K and 2.88 K for the Planck function, the SCA and SWA respectively.
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1. Introduction


Land Surface Temperature (LST) is the temperature of the surface of the Earth. LST is among the most important datasets collected by satellites from space. LST is used in many applications such as evapotranspiration, hydrology, climate change, geothermal energy related studies, Earth heat budget studies and many others [1,2,3]. LST varies rapidly with time and location [4], and, as a result, in order be able to acquire accurate LST measurements over time, there arises a need to estimate LST in a relatively higher spatial resolution. Due to the high variation of temperature over land, satellite derived LST provides researchers with a unique opportunity to acquire LST of the entire globe with a relatively high spatial resolution in average values rather than values in a point form [5]. Through LST derived from space, users of satellite imagery are now able to collect data, even from remote and inaccessible regions such as the poles and oceans.



On board the Terra satellite, The Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) instrument is equipped with Thermal Infrared (TIR) sensors that can detect long-wave thermal infrared radiation with wavelengths between 8 and 12 µm. On 1 April 2016, the National Aeronautics and Space Administration (NASA) and the Japanese Space Agency announced that ASTER data will be provided free of charge. This provides more researchers with an opportunity to study the Earth in a different perspective. Until then, ASTER had a total of more than 2.95 million individual scenes which cover almost 99% of the Earth [6]. Because of the free availability of ASTER data, it is expected that more users will make use of the data collected by the instrument.



Several algorithms have been developed to enable the extraction of LST from Visible, Near Infrared (VNIR) and TIR imagery acquired from the ASTER sensor [7,8,9]. These algorithms can be categorized in two main groups: algorithms based on one thermal channel (single channel algorithms) and algorithms based on more than one TIR channel (split window algorithms). This study has mainly focused on the examination of the algorithms which are used to derive LST from the ASTER instrument with the use of Land Surface Emissivities (LSEs) derived from the VNIR channels and the TIR channels onboard the ASTER instrument. Despite the presence of these algorithms today, their implementation in LST inversion is not an easy process. Due to the difficulties arising from the implementation of these algorithms in software already available in the market and the cost of acquisition of Remote Sensing (RS) and Geographic Information Systems (GIS) software, most users have not managed to make use of these algorithms. The availability of a ready-made solution for LST extraction not only promotes the use of these algorithms but also enables users from other fields to make use of the data obtained from the sensor.



This study involves the implementation of the Split Window Algorithm (SWA) [10], the Single Channel Algorithm (SCA) for ASTER [7] and the Planck function [11] in the form of a Python-Quantum GIS (PyQGIS) plugin in a free and open source software known as QGIS/Quantum GIS [12] to estimate land surface temperature from ASTER Visible, Near Infrared (VNIR) and TIR imagery. In addition to that, the plugin can also be used to calculate radiance, land surface emissivity and brightness temperature. The geoprocessing code used in this study has been provided as an update to a plugin which was developed for Landsat sensors [13]. It is free to modify, view and share, enabling more users to benefit from it.



NOAA Surface Radiation (SURFRAD) [14] data have been used in the accuracy assessment and modeling of the results obtained from the sensor. To develop the plugin, the Python programming language has been used because it can run on the most used operating systems, i.e., Linux, Windows and Mac OS, without the modification or recompilation of the code; Python is a free and open source programming language; and because the language has the ability to create Graphical User Interface (GUI) and, which eases the use of the plugin.




2. Data and Materials


2.1. ASTER Imagery


The ASTER instrument’s scene consists of fourteen channels which can detect electromagnetic radiation ranging from the visible region to the thermal infrared region of the electromagnetic spectrum. The sensor was launched in 1999 and it is one of the instruments carried by National Aeronautics and Space Administration’s (NASA) Terra spacecraft. Table 1 shows the technical specifications of the ASTER sensor. The ASTER data used in this study were acquired from the United States Geological Survey (USGS) Earth-Explorer website [15]. In this study, a total of 16 ASTER level 1T radiance at sensor imagery have been used. These scenes were collected in different periods of time, from different latitudes, land covers and topography. Table 2 shows the scenes that have been used in the study.



Table 1. ASTER instrument’s technical specifications.







	
Subsystem

	
Band

	
Spectral Range (µm)

	
Spatial Resolution

	
Quantization






	
Visible and Near Infrared (VNIR)

	
1

	
0.52–0.60

	
15 m

	
8 bits




	
2

	
0.63–0.69




	
3N

	
0.78–0.76




	
3B

	
0.78–0.76




	
Short Wave Infrared (SWIR)

	
4

	
1.60–1.70

	
30 m

	
8 bits




	
5

	
2.145–2.185




	
6

	
2.185–2.225




	
7

	
2.235–2.285




	
8

	
2.295–2.365




	
9

	
2.360–2.430




	
Thermal Infrared (TIR)

	
10

	
8.125–8.475

	
90 m

	
12 bits




	
11

	
8.475–8.825




	
12

	
8.925–9.275




	
13

	
10.25–10.95




	
14

	
10.95–11.65










Table 2. ASTER scenes used in the study.







	
Scene Acquisition Date

	
Scene Acquisition Time (UTC)

	
Path

	
Row

	
Scene ID






	
10 October 2000

	
17:07

	
22

	
32

	
4




	
10 October 2000

	
17:08

	
23

	
36

	
13




	
11 June 2001

	
18:13

	
35

	
26

	
7




	
30 August 2001

	
18:11

	
35

	
26

	
9




	
7 November 2001

	
16:51

	
23

	
32

	
2




	
27 February 2002

	
16:50

	
23

	
36

	
12




	
6 March 2003

	
16:54

	
23

	
32

	
1




	
31 December 2003

	
16:49

	
23

	
36

	
14




	
11 March 2004

	
16:55

	
22

	
36

	
10




	
19 September 2004

	
16:52

	
23

	
32

	
5




	
30 October 2004

	
16:45

	
23

	
32

	
6




	
14 June 2006

	
16:48

	
22

	
36

	
11




	
1 August 2006

	
16:46

	
23

	
32

	
3




	
14 October 2006

	
17:22

	
29

	
30

	
16




	
9 January 2007

	
14:29

	
29

	
30

	
15




	
18 April 2008

	
18:11

	
35

	
26

	
8











2.2. Surface Radiation Budget Network (SURFRAD) Data


This study employed data obtained from the National Oceanic and Atmospheric Administration’s (NOAA) Surface Radiation budget network (SURFRAD). The network was established in 1995 with four stations, which were later expanded to six in 1998. The purpose of the SURFRAD network is to provide correct, continuous and accurate measurements related to radiation budget for use in climatology, satellite related studies, weather forecasting and education. The choice of the locations of the establishment of SURFAD stations involved experts from NOAA, universities and NASA. The network has given special attention to satellite data validation as the stations are located in areas with a continuous span of homogeneous landforms and vegetation cover in order for the stations to be able to make measurements with a correct representation of the spatial resolution of a satellite’s pixel [14]. This study has made use of SURFRAD data, as they have been used successfully in numerous studies related to LST inversion from space [16,17,18]. Table 3 shows the information of the stations. The scenes used in the study and the SURFRAD stations they cover are also shown on Table 3. The scenes can be identified using the scene IDs shown from the table.



Table 3. SURFRAD Stations Information [19].







	
Station Name

	
Latitude, Longitude

	
Land Cover

	
Elevation (Meters)

	
U.S. State

	
Date of Installation

	
Station Code

	
Scene ID






	
Bondville

	
40.06°N, 88.37°W

	
Cropland

	
230

	
IL

	
January 1995

	
BON

	
1, 2, 3, 4, 5, 6




	
Fort Peck

	
48.31°N, 105.10°W

	
Grassland

	
634

	
MT

	
January 1995

	
FPK

	
7, 8, 9




	
Goodwin Creek

	
34.25°N, 89.87°W

	
Evergreen Needle Leaf Forest

	
98

	
MS

	
January 1995

	
GWN

	
10, 11, 12, 13, 14




	
Sioux Falls

	
43.73°N, 96.62°W

	
Cropland

	
473

	
SD

	
June 2003

	
SXFs

	
15, 16












3. Methodology


3.1. Conversion of Digital Numbers (DNs) to Radiance


Radiance at the sensor data is stored in ASTER thermal infrared imagery in the form of DNs. DNs are the values stored in raw satellite imagery which have not yet been processed. DNs are a way to represent different levels of intensities of electromagnetic radiation in a raster image [20]. To calculate LST from this imagery, DNs should be converted to radiance. To convert DNs to radiance, Equation (1) has been used in the study [20].
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(1)




where Lλ represents the top of atmosphere radiance in W/(m2∙sr∙µm), DN represents the ASTER thermal infrared band being used in the study and UCC stands for the Unit Conversion Coefficient of the thermal infrared band in use. Table 4 shows the UCCs of the thermal bands of the ASTER instrument [21].



Table 4. Unit Conversion Coefficients (UCC) of ASTER’s TIR bands [21].







	
Band

	
Band 10

	
Band 11

	
Band 12

	
Band 13

	
Band 14






	
UCC

	
0.006822

	
0.006780

	
0.006590

	
0.005693

	
0.005225











3.2. Conversion of Radiance to Brightness Temperature


Brightness temperature is a measurement that describes the amount of radiation in terms of the temperature of a hypothetical blackbody emitting the same amount of radiation at the same wavelength [22]. The application of the inverse of the Planck function to the measured radiation calculates the brightness temperature. Brightness temperature may be highly dependent or independent on the wavelength of the radiation depending on the properties of the source of radiation and any subsequent absorption [22]. After the DNs have been converted to radiance, the next step is to convert the radiance to brightness temperature (Equation (2)) [7,21,23]:
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(2)




where Tsen represents the top of atmosphere brightness temperature in Kelvin, Lλ represents the top of atmosphere radiance from Equation (1), K1 and K2 are the band specific thermal conversion constants which are based on the wavelength of the operation of a thermal infrared channel. K1 = C1/λ5 and K2 = C2/λ. Table 5 shows the K1, K2 coefficients of the TIR bands of the ASTER instrument.



Table 5. K1 and K2 coefficients of the TIR bands of the ASTER instrument [7].







	
Band

	
K1 (W·m2·sr−1·µm−1)

	
K2 (W·m2·sr−1·µm−1)






	
Band 10

	
3047.47

	
1736.18




	
Band 11

	
2480.93

	
1666.21




	
Band 12

	
1930.80

	
1584.72




	
Band 13

	
865.65

	
1349.82




	
Band 14

	
649.60

	
1274.49











3.3. Estimation of Land Surface Emissivity (LSE)


Emissivity is the ratio of the power emitted by a body at a known temperature to the power emitted if the body obeyed Planck’s law of radiation [24]. The emissivities of most terrestrial materials lies between 0.7 and 1 [1], however, surfaces that have emissivities less than 0.85 are likely to be found in deserts [1,25]. It is important to estimate LSE, as it reduces the errors during the estimation of LST from space [26]. Unlike the emissivity of water bodies such as oceans, the emissivity of land surfaces may significantly differ from one place to another [16]. Emissivity may differ according to the viewing angle, surface moisture, and roughness as well as with vegetation [16,27]. Notwithstanding the fact that there are many algorithms that have been proposed for the estimation of LSE [28,29,30,31], in this study, the estimation of LSE with prior known LSE has been used. This is because the algorithm is more practical and has a reasonable accuracy [16,32,33]. Previous studies have proven the presence of a relationship between the Normalized Difference Vegetation Index (NDVI) and the emissivities of terrestrial materials [9,34]. In this study, the NDVI based approach of LSE estimation has been used [9,35]. This algorithm has been applied in the estimation of LSE for various sensors [32,36,37,38,39] with the use of Visible and Near Infrared (VNIR) data. To calculate the NDVI, Equation (3) has been used in the study [40].
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(3)




where NIR represents the reflectance of the Near Infrared band and RED represents the reflectance of red band of the ASTER sensor.



In this study, Jimenez-Munoz and coworkers’ algorithm [9] has been used in the estimation of LSE from NDVI. This algorithm has been used as it has been tested with in situ data for ASTER. The algorithm is based on Equation (4) [9].
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(4)




where εi represents the emissivity of thermal infrared channel i; εvi and εsi represent the channel emissivities of vegetation and soil, respectively; and PV represents the proportion of vegetation (sometimes known as fractional vegetation cover). A cavity term is added to Equation (4) to take the geometric distribution of the surface into consideration during the LSE estimation. The cavity effect for an area with a mixed land cover in a near nadir angle is given by (1 − εs) εvF’ (1 − PV), where F’ is a geometric value which ranges between 0 and 1 [9]. The cavity term has been neglected because of its small effect in the estimation of LSE in areas with high soil emissivities. The proportion of vegetation is calculated from NDVI as shown in Equation (5) [41].
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(5)




where NDVIV and NDVIS are the NDVI values of vegetation and soil, respectively. These values are obtained from the histogram of the NDVI. According to Jimenez-Munoz et al. [9], the most sensitive issue in Equation (4) is the choice of the emissivity of soil. In order to get the values to apply on Equation (4), authors in [9] introduced Equations (6)–(10) for ASTER TIR band 10 to 14, respectively.
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(6)
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(7)
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(8)
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(9)
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(10)








3.4. Brightness Temperature Emissivity/Atmospheric Correction


To achieve accurate land surface temperature inversion from space, there arises a need to correct brightness temperatures with emissivity and other atmospheric parameters. Many algorithms have been designed to enable accurate inversion of temperatures from the ASTER instrument’s VNIR and TIR channels. This study has employed the Split Window Algorithm (SWA), the Single Channel Algorithm (SCA) for ASTER and the Planck function.



3.4.1. Single Channel Algorithm for ASTER


Jiménez-Muñoz and Sobrino adopted the single channel algorithm for the extraction of LST from the ASTER sensor [7]. As a result of the presence of high atmospheric transmission and the lower emissivity variations in the 10–12 µm spectral window as compared to the 8–9 µm spectral window, it was proposed that band 13 and band 14 were the most suitable channels to be used in the algorithm [7]. The algorithm is shown in Equation (11).
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(11)







In Equation (11), ε represents the LSE of an area, Lsen is the at-sensor radiance W/(m2∙sr∙𝜇m), 𝛾 and 𝛿 are variables which are based on the Planck function and 𝛹1, 𝛹2 and 𝛹3 are referred to as Atmospheric Functions (AFs) which are estimated using Equations (12)–(14), respectively [7].
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(12)
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(13)
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(14)




where τ is the atmospheric transmittance, L↑ is the upwelling radiance and L↓ is the down-welling atmospheric radiance in the spectral window of the thermal infrared channel in use. In this study, the empirical approach obtained from the second order polynomial fits against the atmospheric water vapor content has been used to determine the AFs (Equation (15)) [42,43]:
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(15)







In Equation (15), Cij are obtained from simulated data that are constructed from atmospheric profiles included in different databases and Moderate Resolution Atmospheric Transmission (MODTRAN4) radiative transfer code, and W is the atmospheric water vapor content of the thermal infrared channel in use. In this study, both TIGR61 and STD66 databases of the MODTRAN4 code were implemented in the plugin. Through them the number of cases have been reduced and a result reducing the amount of time required for simulation but are still applicable for global conditions [7]. Table 6 shows the coefficients for the atmospheric functions in a matrix organization [7].



Table 6. Coefficients of the AFs [7].







	
MODTRAN Atmospheric Database

	
ASTER TIR Band

	
Cij

	
i = 1

	
i = 2

	
i = 3






	
STD66

	
13

	
J = 1

	
0.06524

	
−0.05878

	
1.06576




	
J = 2

	
−0.55835

	
−0.75881

	
0.00327




	
J = 3

	
−0.00284

	
1.35633

	
−0.43020




	
TIGR61

	
13

	
J = 1

	
0.05327

	
−0.03937

	
1.05742




	
J = 2

	
−0.484444

	
−0.74611

	
−0.03015




	
J = 3

	
0.00764

	
1.24532

	
−0.39461




	
STD66

	
14

	
J = 1

	
0.10062

	
−0.13563

	
1.10559




	
J = 2

	
−0.79740

	
−0.39414

	
−0.17664




	
J = 3

	
−0.03091

	
1.60094

	
−0.56515




	
TIGR61

	
14

	
J = 1

	
0.07965

	
−0.09580

	
1.08983




	
J = 2

	
−0.66528

	
−0.48582

	
−0.17029




	
J = 3

	
−0.01578

	
1.46358

	
−0.52486










The gamma (γ) and delta (δ) parameters shown in Equation (11) are computed using Equations (16) and (17), respectively [7], where Tsen is obtained from Equation (2) and the values of K2 are shown in Table 5.
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(16)
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(17)








3.4.2. Split Window Algorithm (SWA)


The SWA was developed to enabling the extraction of LST from instruments that are equipped with more than one TIR channel. The algorithm was initially introduced for the estimation of Sea Surface Temperature (SST) and was later adopted for the extraction of LST. It takes advantage of the differences in absorption between two thermal infrared channels in the atmospheric window between 10.5 and 12.5 µm. Many SWA equations have been derived by numerous researchers for LST estimation [44,45,46]. With an exception of the way these algorithms calculate their parameters, they operate in the same manner [47]. In this study, Mao and coworkers’ SWA has been used [8]. The algorithm used is shown in Equation (18). The temperature derived from the equation is measured in Kelvin.
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(26)




where τ13 and τ14 stand for the atmospheric transmissions for band 13 and band 14, respectively; ε13 and ε14 stand for the land surface emissivities of band 13 and band 14, respectively; and Ts represents the land surface temperature.




3.4.3. Inversion of Planck Function.


The Planck function is used to compute the intensity of the thermal radiation. It is a function that shows the amount of thermal electromagnetic radiation which can be emitted by a blackbody under thermal equilibrium conditions at a known temperature. With the LSE of an area known, the LST of an area can be estimated through the inversion of the Planck function. The brightness temperature recorded by a sensor in space is calculated under the assumption that the land surface is a black body, i.e., an object with an emissivity of 1. The Planck function enables the emissivity correction of brightness temperature. The Planck function has been used in the estimation of LST in this study. Emissivity corrected land surface temperature is as shown in Equation (27) [48].


[image: there is no content]



(27)




where Ts is the land surface temperature in Kelvin, BT represents the brightness temperature of the thermal infrared band in use (obtained from Equation (2)), λ is the effective wavelength (in 𝜇m) of the thermal infrared channel in use, [image: there is no content] is the (h × c/σ) = 1.438 × 10−2 m·K and ε is the spectral emissivity. Table 7 shows the effective wavelengths of the TIR channels of the ASTER instrument [7].



Table 7. Effective wavelengths of the TIR channels of the ASTER instrument.







	
Band

	
Effective Wavelength (λ) in µm






	
Band 10

	
8.287




	
Band 11

	
8.685




	
Band 12

	
9.079




	
Band 13

	
10.659




	
Band 14

	
11.289












3.5. Derival of SURFRAD Land Surface Temperature (LST)


The LST values used in the study were derived from the radiances recorded by SURFRAD stations. SURFRAD LST can be derived from upwelling wave flux measurements during the satellite overpass time using Equation (28).
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(28)




where σ stands for the Stefan-Boltzmann constant (5.670367 × 10−8 kg·s−3·K−4), [image: there is no content] is the measured upwelling longwave flux, [image: there is no content] is the measured down-welling longwave flux and [image: there is no content] is the broadband longwave surface emissivity. The broadband longwave surface emissivity is not part of the measurements done by SURFRAD stations. This study has assumed a longwave broadband emissivity of 0.97. The value represents the findings as stipulated by a study done by Wang and Liang [18] where the broadband values were obtained through the application of a regression analysis using a SeeBor emissivity for the Moderate-Resolution Imaging Spectroradiometer (MODIS) channels with effective wavelengths of 8.5, 11 and 12 µm [17,18]. This value is only used in the SURFRAD estimate and not in the inversion of LST from the satellite imagery, which includes surface emissivities that vary with time and spatial resolution. In this study, LST of measured by the stations has been solved using Equation (29). Table 8 shows the LSTs derived from the SURFRAD stations used in the study.
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(29)







Table 8. LST values derived from the SURFRAD data.







	
Bondville

	
Fort Peck

	
Goodwin Creek

	
Sioux Falls




	
Date

	
LST (K)

	
Date

	
LST (K)

	
Date

	
LST (K)

	
Date

	
LST (K)






	
6 March 2002

	
286.04

	
11 June 2001

	
302.38

	
11 March 2004

	
296.85

	
9 January 2007

	
271.79




	
7 November 2001

	
292.61

	
18 April 2008

	
300.26

	
14 June 2006

	
308.63

	
14 October 2006

	
285.97




	
1 August 2006

	
306.15

	
30 August 2001

	
311.90

	
27 February 2002

	
280.85

	

	




	
10 October 2000

	
290.49

	

	

	
31 December 2003

	
268.86

	

	




	
19 September 2004

	
296.69

	

	

	
10 October 2000

	
305.92

	

	




	
30 October 2004

	
289.85

	

	

	

	

	

	











3.6. Estimation of Atmospheric Water Vapour


The atmospheric water vapor used in the study has been estimated from the measurements made by SURFRAD stations using the values of air temperature and relative humidity. Equation (30) shows the relation used in the estimation of atmospheric water vapor content from the SURFRAD data [49].
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(30)




where wi represents the atmospheric water vapor content of a thermal infrared channel, RH represents the relative humidity and T0 represents the near surface air temperature in Kelvin.




3.7. Estimation of Atmospheric Transmittance (τ)


To use SWA, the knowledge of the atmospheric transmission of band 13 and band 14 of the ASTER instrument is crucial. In this study, the method proposed by Mao et al. has been used [8]. The inputs required for the successful use of the method have been obtained from the measurements made by the SURFRAD stations. Through the method, the atmospheric transmittance of band 13 and band 14 of the ASTER instrument can be estimated as shown in Equations (31) and (32), respectively.
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(31)






[image: there is no content]



(32)




where w13 and w14 represent the atmospheric water vapor content while τ13 and τ14 represent the band atmospheric transmissions for ASTER band 13 and ASTER band 14, respectively. Figure 1 shows the summary of the methodology used in the study.


Figure 1. Methodology used in the study.
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4. Results and Discussion


This study has only made use of ASTER band 13 and band 14 for LST inversion. Band 10, 11 and 12 have not been used as has been previously recommended that for accurate LST estimation from the sensor. The optimum thermal infrared bands should then be chosen [7]. Accurate LST retrievals are said to be made at the atmospheric windows that lie between 10 and 12 µm in wavelength. This is because this window has a higher atmospheric transmittance and lower emissivity uncertainties as compared to the spectral window with wavelengths between 8 and 9 µm [7].



The VNIR imagery used in this study were resampled to a spatial resolution of 90 m and thereafter projected to the Universal Transfer Mercator (UTM) for them to match to the spatial resolution of the ASTER instrument’s TIR bands. The imagery used in the study were also clipped to the same extent before being processed. The bias between the LSTs estimated from the ASTER instruments was calculated by subtracting the LST obtained from the SURFRAD station from the LST inverted from the ASTER instrument.



4.1. Results from the Planck Function


The Planck function has been used in this study to derive the LST values from the imagery acquired from the ASTER instrument. The derived values have been compared to the actual land surface temperatures derived from the SURFRAD data. Table 9 and Table 10 show a detailed comparison between the different LSTs derived from band 13 and band 14 of the ASTER instrument and the LSTs obtained from SURFRAD stations. All temperatures are measured in Kelvin (K).



Table 9. Comparison of LST values derived from the SURFRAD stations and the LST inverted by the Planck function using band 13 of the ASTER instrument.







	
Bondville

	
Fort Peck

	
Goodwin Creek

	
Sioux Falls




	
Date

	
LST (K)

	
Bias (K)

	
Date

	
LST (K)

	
Bias (K)

	
Date

	
LST (K)

	
Bias (K)

	
Date

	
LST (K)

	
Bias (K)






	
6 March 2002

	
284.93

	
−1.10

	
11 June 2001

	
299.98

	
−2.40

	
11 March 2004

	
295.54

	
−1.31

	
9 January 2007

	
272.14

	
0.34




	
7 November 2001

	
295.50

	
2.89

	
18 April 2008

	
302.52

	
2.26

	
14 June 2006

	
305.08

	
−3.54

	
11 October 2006

	
285.39

	
−0.57




	
1 August 2006

	
302.18

	
−3.97

	
30 August 2001

	
311.41

	
−0.49

	
27 February 2002

	
279.87

	
−0.97

	

	

	




	
10 October 2010

	
291.89

	
1.41

	

	

	

	
10 October 2000

	
302.86

	
−3.05

	

	

	




	
19 September 2004

	
300.61

	
3.92

	

	

	

	

	

	

	

	

	




	
30 October 2004

	
290.61

	
0.76

	

	

	

	

	

	

	

	

	




	
Δ

	

	
0.65

	

	

	
−0.21

	

	

	
−2.22

	

	

	
−0.12




	
σ

	

	
1.66

	

	

	
1.21

	

	

	
1.57

	

	

	
0.32




	
RMSE

	

	
2.68

	

	

	
1.92

	

	

	
2.48

	

	

	
0.47








Δ: Bias, σ: Standard Deviation, RMSE: Root Mean Square Error.








Table 10. Comparison of LST values derived from the SURFRAD stations and the LST inverted by the Planck function using band 14 of the ASTER instrument.







	
Bondville

	
Fort Peck

	
Goodwin Creek

	
Sioux Falls




	
Date

	
LST (K)

	
Bias (K)

	
Date

	
LST (K)

	
Bias (K)

	
Date

	
LST (K)

	
Bias (K)

	
Date

	
LST (K)

	
Bias (K)






	
6 March 2002

	
284.94

	
−1.10

	
11 June 2001

	
299.73

	
−2.66

	
11 March 2004

	
295.15

	
−1.70

	
9 January 2007

	
272.10

	
0.22




	
7 November 2001

	
295.15

	
2.54

	
18 April 2008

	
302.10

	
1.84

	
14 June 2006

	
305.10

	
−3.53

	
11 October 2006

	
285.62

	
0.25




	
1 August 2006

	
301.16

	
−4.99

	
30 August 2001

	
311.02

	
−0.88

	
27 February 2002

	
280.06

	
−0.79

	

	

	




	
10 October 2010

	
292.01

	
1.53

	

	

	

	
10 October 2000

	
305.39

	
−0.53

	

	

	




	
19 September 2004

	
300.62

	
3.93

	

	

	

	

	

	
−1.64

	

	

	




	
30 October 2004

	
290.05

	
0.20

	

	

	

	

	

	

	

	

	




	
Δ

	

	
0.35

	

	

	
−0.56

	

	

	
−1.64

	

	

	
−0.02




	
σ

	

	
1.66

	

	

	
1.27

	

	

	
1.16

	

	

	
0.23




	
RMSE

	

	
2.90

	

	

	
1.94

	

	

	
2.02

	

	

	
0.33








Δ: Bias, σ: Standard Deviation, RMSE: Root Mean Square Error.








In this study, ASTER band 13 and band 14 produced negative bias values in comparison to the ones derived from SURFRAD data. The average bias values of all scenes used in the study for ASTER band 13 and band 14 were −0.39 K and −0.41 K, respectively. The standard deviation of the LST values obtained from ASTER band 13 and band 14 for all the scenes involved in the study were 1.37 K and 1.26 K, respectively. There was a high correlation between the LSTs derived from the two bands and the LSTs derived from the SURFRAD data. Both bands produced LST values with regression coefficients (R2) of above 0.95. Figure 2 shows the scatter plots produced to show the relationship between the LSTs derived from ASTER band 13 and 14 from the Planck function with SURFRAD data.


Figure 2. Comparison of scatter plots of LST inverted from ASTER data and LST derived from SURFRAD station at four SURFRAD stations: (a) scatter plot for LST values derived from ASTER band 13 using the Planck function and the LSTs derived from SURFRAD measurements; and (b) scatter plot for LST values derived from ASTER band 14 using the Planck function and the LSTs derived from SURFRAD measurements.
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4.2. Results from the Single Channel Algorithm (SCA)


The SCA has been used in this study to derive the LST values from the VNIR and TIR imagery obtained from the ASTER sensor. The inverted LST values were thereafter compared to the actual land surface temperatures derived from the SURFRAD data. Table 11 and Table 12 show the comparisons between the different LSTs derived from band 13 and band 14 of the ASTER instrument and the LSTs obtained from SURFRAD stations. All temperatures are measured in Kelvin.



Table 11. Comparison of LST values derived from the SURFRAD stations and the LST inverted by the SCA using band 13 of the ASTER instrument.







	
Bondville

	
Fort Peck

	
Goodwin Creek

	
Sioux Falls




	
Date

	
LST (K)

	
Bias (K)

	
Date

	
LST (K)

	
Bias (K)

	
Date

	
LST (K)

	
Bias (K)

	
Date

	
LST (K)

	
Bias (K)






	
6 March 2002

	
285.92

	
−0.12

	
11 June 2001

	
301.75

	
−0.64

	
11 March 2004

	
297.08

	
0.23

	
9 January 2007

	
272.43

	
0.63




	
7 November 2001

	
297.19

	
4.58

	
18 April 2008

	
304.30

	
4.04

	
14 June 2006

	
309.12

	
0.49

	
11 October 2006

	
286.35

	
0.38




	
1 August 2006

	
309.15

	
3.01

	
30 August 2001

	
313.88

	
1.98

	
27 February 2002

	
280.56

	
−0.29

	

	

	




	
10 October 2010

	
293.24

	
2.76

	

	

	

	
10 October 2000

	
305.23

	
−0.69

	

	

	




	
19 September 2004

	
302.99

	
6.31

	

	

	

	

	

	

	

	

	




	
30 October 2004

	
291.92

	
2.07

	

	

	

	

	

	

	

	

	




	
Δ

	

	
3.10

	

	

	
1.79

	

	

	
−0.06

	

	

	
0.51




	
σ

	

	
1.68

	

	

	
1.57

	

	

	
0.30

	

	

	
0.36




	
RMSE

	

	
3.69

	

	

	
2.62

	

	

	
0.46

	

	

	
0.52








Δ: Bias, σ: Standard Deviation, RMSE: Root Mean Square Error.








Table 12. Comparison of LST values derived from the SURFRAD stations and the LST inverted by the SCA using band 14 of the ASTER instrument.







	
Bondville

	
Fort Peck

	
Goodwin Creek

	
Sioux Falls




	
Date

	
LST (K)

	
Bias (K)

	
Date

	
LST (K)

	
Bias (K)

	
Date

	
LST (K)

	
Bias (K)

	
Date

	
LST (K)

	
Bias (K)






	
6 March 2002

	
289.15

	
3.12

	
11 June 2001

	
304.35

	
1.97

	
11 March 2004

	
299.64

	
2.79

	
9 January 2007

	
275.68

	
0.31




	
7 November 2001

	
299.80

	
7.19

	
18 April 2008

	
306.68

	
6.43

	
14 June 2006

	
311.75

	
3.13

	
11 October 2006

	
289.71

	
−0.35




	
1 August 2006

	
312.32

	
6.17

	
30 August 2001

	
316.11

	
4.21

	
27 February 2002

	
283.84

	
3.00

	

	

	




	
10 October 2010

	
296.37

	
5.89

	

	

	

	
10 October 2000

	
307.72

	
1.80

	

	

	




	
19 September 2004

	
305.84

	
9.16

	

	

	

	

	

	

	

	

	




	
30 October 2004

	
294.43

	
4.59

	

	

	

	

	

	

	

	

	




	
Δ

	

	
6.02

	

	

	
4.20

	

	

	
2.68

	

	

	
3.81




	
σ

	

	
2.22

	

	

	
2.97

	

	

	
1.89

	

	

	
2.70




	
RMSE

	

	
6.31

	

	

	
4.58

	

	

	
2.73

	

	

	
3.81








Δ: Bias, σ: Standard Deviation, RMSE: Root Mean Square Error.








The LST values obtained from the SCA band 13 and band 14 produced positive bias values in comparison to LSTs derived from the SURFRAD measurements. The bias values of the values derived from ASTER band 13 and 14 were 1.65 K and 4.47 K, respectively, for all scenes used in the study. According to the regression analysis, which was performed to determine the relationship between the LST values obtained from the SCA and the LST obtained from the SURFRAD data, a high correlation was obtained between the values: a correlation coefficient of 0.9676 was observed using the SCA and ASTER band 13 and a correlation coefficient of 0.9666 was observed using the SCA and ASTER band 14. The SCA produced LST values with standard deviations of 1.11 K and 2.35 K for ASTER band 13 and band 14, respectively. Figure 3 shows the scatter plots produced to show the relationship between the LSTs derived from ASTER band 13 and 14 from the SCA with SURFRAD data. The SCA produced the best results when band 13 was used.


Figure 3. Comparison of scatter plots of LST inverted from ASTER data and LST derived from SURFRAD station at four SURFRAD stations: (a) scatter plot for LST values derived from ASTER band 13 using the SCA and the LSTs derived from SURFRAD measurements; and (b) scatter plot for LST values derived from ASTER band 14 using the SCA and the LSTs derived from SURFRAD measurements.
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4.3. Results from the Split Window Algorithm (SWA)


This study has involved the SWA to derive LST from ASTER band 13 and band 14. The accuracy of the LSTs derived from the sensor though the use of the algorithm. The derived values were thereafter compared to the actual land surface temperatures derived from the SURFRAD data. Table 13 shows the comparison between the different LSTs derived from band 13 and band 14 of the ASTER instrument and the LSTs obtained from SURFRAD stations. All temperatures are measured in Kelvin.



Table 13. Comparison of LST values derived from the SURFRAD stations and the LST inverted by the SWA using band 13 and band 14 of the ASTER instrument.







	
Bondville

	
Fort Peck

	
Goodwin Creek

	
Sioux Falls




	
Date

	
LST (K)

	
Bias (K)

	
Date

	
LST (K)

	
Bias (K)

	
Date

	
LST (K)

	
Bias (K)

	
Date

	
LST (K)

	
Bias (K)






	
6 March 2002

	
285.47

	
−0.57

	
11 June 2001

	
299.33

	
−3.06

	
11 March 2004

	
294.11

	
−2.74

	
9 January 2007

	
271.59

	
−0.21




	
7 November 2001

	
294.24

	
1.63

	
18 April 2008

	
301.66

	
1.40

	
14 June 2006

	
308.95

	
0.33

	
11 October 2006

	
285.57

	
−0.40




	
1 August 2006

	
306.78

	
0.64

	
30 August 2001

	
309.98

	
−1.92

	
27 February 2002

	
279.89

	
−0.96

	

	

	




	
10 October 2010

	
292.56

	
2.07

	

	

	

	
10 October 2000

	
302.21

	
−3.71

	

	

	




	
19 September 2004

	
305.28

	
8.59

	

	

	

	

	

	

	

	

	




	
30 October 2004

	
287.53

	
−2.32

	

	

	

	

	

	

	

	

	




	
Δ

	

	
1.67

	

	

	
−1.19

	

	

	
−1.77

	

	

	
−0.30




	
σ

	

	
4.26

	

	

	
1.50

	

	

	
1.37

	

	

	
0.21




	
RMSE

	

	
3.80

	

	

	
2.23

	

	

	
2.36

	

	

	
0.32








Δ: Bias, σ: Standard Deviation, RMSE: Root Mean Square Error.








In this study, the LST values obtained from the SWA produced a negative bias value in comparison to the LSTs derived from SURFRAD data. The algorithm produced a bias value of −0.08 K and a standard deviation of 2.40 K. It produced a regression coefficient of 0.9314 in relation to the data obtained from the SURFRAD stations. Figure 4 shows the scatter plots of the LSTs derived from ASTER using the SWA, ASTER band 13 and ASTER band 14 in relation to SURFRAD data.


Figure 4. Comparison of scatter plots of LST inverted from ASTER data using the SWA and LST derived from SURFRAD station at four SURFRAD stations.
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4.4. Comparison of the Three Algorithms


Unlike the Planck function, which does not require atmospheric parameters when inverting LST from the ASTER instrument’s VNIR and TIR bands, the SWA and the SCA algorithms are heavily reliant on the atmospheric parameters of water vapor and transmittance. The accuracy of the SWA is high, but the algorithm is mostly limited due to the need to have prior knowledge of the atmospheric transmittance. According to tests which were done by Jimenez-Munoz and Sobrino, SWA have the ability to provide results with similar accuracies as the Thermal Emission Separation (TES) algorithm [50]. The main advantage of SWA algorithms is the ability to include atmospheric correction within the algorithms themselves.



This study has revealed that the SCA has an ability to produce the best results when ASTER band 13 is used. This has been observed in this study as band 13 produced the lowest values of standard deviation, Root Mean Square Error (RMSE) and bias in comparison to the SURFRAD measurements. The SCA band 14 produced the largest bias at the Fort Feck SURFRAD station where band 14 produced LST values with a RMSE of 4.58 K.



The Planck function produced results with an average bias of 2.29 K when ASTER band 13 and band 14 were applied in all the scenes involved in the study while the SCA produced results with an average RMSE of 3.77 K using band 13 and band 14 for all scenes used in the study. The SWA produced results with a RMSE of 2.88 K with the use of band 13 and band 14 in all the scenes involved in the study.





5. Conclusions


In this study, three LST inversion algorithms from data obtained from the ASTER instrument were compared. To enable more users to make use of the algorithms, the Python script used in the Geoprocessing of the algorithms has been shared as a plugin for a free and open source software known as Quantum GIS (QGIS). The script is provided as an update to a script written in a previous study [13].



From the scenes used in the study, the results show that the Planck function can produce the best results in comparison to the other algorithms, while the SWA algorithm has a moderate accuracy and the SCA algorithm has the lowest accuracy. All algorithms used in the study have shown an ability to produce land surface temperature values with an accuracy of up to 4 K. It is expected that through this study more users of ASTER data from different areas of specialization such as hydrology, energy studies and climate related sciences will manage to derive LST from ASTER imagery in an easy and automated way.
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The following abbreviations are used in this manuscript:



	ASTER
	Advanced Space-borne Thermal Emission and Reflection Radiometer



	K
	Kelvin



	LSE
	Land Surface Emissivity



	MODTRAN
	MODerate resolution atmospheric TRANsmission



	MODIS
	Moderate-Resolution Imaging Spectroradiometer



	NASA
	National Aeronautics and Space Administration



	NOAA
	National Oceanic and Atmospheric Administration



	NDVI
	Normalized Difference Vegetation Index



	NIR
	Near Infrared



	SCA
	Single Channel Algorithm



	SURFRAD
	Surface Radiation budget network



	SWA
	Split Window Algorithm



	TIR
	Thermal Infrared



	UCC
	Unit Conversion Coefficients



	USGS
	United States Geological Survey



	VNIR
	Visible and Near Infrared
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