
remote sensing  

Article

Dynamic Water Surface Detection Algorithm Applied
on PROBA-V Multispectral Data

Luc Bertels *, Bruno Smets and Davy Wolfs

Center for Remote Sensing and Earth Observation Processes, Flemish Institute for Technological
Research (VITO), Boeretang 200, B-2400 Mol, Belgium; bruno.smets@vito.be (B.S.); davy.wolfs@vito.be (D.W.)
* Correspondence: luc.bertels@vito.be; Tel.: +32-14-336-861

Academic Editors: Clement Atzberger, Magda Chelfaoui and Prasad S. Thenkabail
Received: 10 August 2016; Accepted: 1 December 2016; Published: 10 December 2016

Abstract: Water body detection worldwide using spaceborne remote sensing is a challenging task.
A global scale multi-temporal and multi-spectral image analysis method for water body detection was
developed. The PROBA-V microsatellite has been fully operational since December 2013 and delivers
daily near-global synthesis with a spatial resolution of 1 km and 333 m. The Red, Near-InfRared (NIR)
and Short Wave InfRared (SWIR) bands of the atmospherically corrected 10-day synthesis images
are first Hue, Saturation and Value (HSV) color transformed and subsequently used in a decision
tree classification for water body detection. To minimize commission errors four additional data
layers are used: the Normalized Difference Vegetation Index (NDVI), Water Body Potential Mask
(WBPM), Permanent Glacier Mask (PGM) and Volcanic Soil Mask (VSM). Threshold values on the
hue and value bands, expressed by a parabolic function, are used to detect the water bodies. Beside
the water bodies layer, a quality layer, based on the water bodies occurrences, is available in the
output product. The performance of the Water Bodies Detection Algorithm (WBDA) was assessed
using Landsat 8 scenes over 15 regions selected worldwide. A mean Commission Error (CE) of 1.5%
was obtained while a mean Omission Error (OE) of 15.4% was obtained for minimum Water Surface
Ratio (WSR) = 0.5 and drops to 9.8% for minimum WSR = 0.6. Here, WSR is defined as the fraction of
the PROBA-V pixel covered by water as derived from high spatial resolution images, e.g., Landsat 8.
Both the CE = 1.5% and OE = 9.8% (WSR = 0.6) fall within the user requirements of 15%. The WBDA
is fully operational in the Copernicus Global Land Service and products are freely available.

Keywords: PROBA-V; water body detection; color space transformation; HSV; decision tree
classification; occurrence estimation

1. Introduction

Inland water surface mapping is important to budget freshwater supply for human and
animals [1–3], and agriculture [4–6], but also to monitor ecological issues and to perform ecosystem
management [7–10]. However, water body detection worldwide using spaceborne remote sensing is a
challenging task because many objects on the Earth’s surface have similar spectral properties (within
the spectral range of the applied sensor) as water bodies. Nevertheless, several spaceborne missions
have been used to address this. The Moderate Resolution Imaging Spectrometer (MODIS) sensor was
used to create the 250 m land-water mask (MOD44W) for the year 2000 [11]. Recently, MODIS data
were used to assess global inland water body dynamics on a daily basis [12]. The SPOT VEGETATION
(VGT) sensor was first used to create the dynamic Small Water Bodies (SWB) monitoring product for
the African continent [13]. The same sensor is used to construct the global water bodies products
for the whole archive, years 1999 to 2014, based on the work presented in this paper and becoming
available by the end of 2016. The thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+)
sensors (Landsat 5 and Landsat 7, respectively), which allow high-resolution mapping of small water
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bodies, were used for water quality assessment [14] and water bodies extraction [15]. The latter were
also used for mapping inland surface water at global scale for the years 2000 and 2010 resulting in
the Global Land 30-water 2000 and Global Land 30-water 2010 datasets, respectively [16]. The Global
Land Survey (GLS) Landsat data collection was used to produce a global, 30-m-resolution inland
surface water body dataset (GIW) for circa-2000 [17], as well as to produce the Global 3 arc-second
Water Body Map (G3WBM) [18] and to study Earth’s surface water change over the past 30 years [19].
Progress was made with Landsat 8, containing the nine-band Operational Land Imager (OLI) sensor
and the Thermal InfraRed Sensor (TIRS) featuring two spectral bands. The cirrus band (band 9) allows
for a better cloud screening while the coastal band might improve water detection [20]. Recently,
all Landsat 8 acquisitions between June 2013 and June 2014 were processed using the Google Earth
Engine platform to map water surfaces at global scale [21]. Although these sensors have a high spatial
resolution (30 m), their revisit time is long (16 days), which makes near real-time water body mapping
at global scale impossible.

Medium resolution missions, like PROBA-V, with a near-daily revisit time are more suited for near
real-time water body mapping at global scale. The PROBA-V microsatellite was launched in May 2013
as a successor for the SPOT-VEGETATION missions. The instrument has been fully operational since
December 2013 and delivers daily near-global synthesis with a spatial resolution of 1 km and 333 m.
The high revisit time and the four spectral bands (Blue, Red, NIR and SWIR) make this instrument
ideal for climate impact assessments, agricultural monitoring, food security estimates and surface
water resources management.

Several techniques are available for water surface extraction. Supervised classification methods
make use of ground reference data [22], while unsupervised classification methods first search for
suitable endmembers [22,23]. Linear spectral unmixing uses endmembers to unravel the image spectra
and, in this case, decide on the fraction of water within each pixel spectrum [24]. Spectral indices
are the most frequently used. Well known is the normalized difference water index (NDWI) using
the reflectance of the green and NIR bands [25]. Bands thresholding makes use of thresholds that are
applied directly on the reflectance bands, on derived spectral indices or on transformed bands [1,26,27].
An overview of global-scale water body products developed in recent years using different techniques
is presented by Yamazaki [18].

The objective of the research presented was to develop a global, multi-temporal and multi-spectral
image analysis method for near real-time dynamic water body detection using PROBA-V 10-day
composite images and which is based on the approach developed by Pekel [28]. This algorithm, which
applies bands thresholding, was previously developed for MODIS and, after extensive validation,
proved to be very successful [28]. The final output product (i.e., “Area of Water Bodies detected
worldwide”) identifies the pixels covered by water on a global scale. The areas of water bodies are
understood here with respect to the instrument resolution, i.e., surfaces more or less covered by water
with a size of one PROBA-V pixel, about 1 km2 [29].

2. Materials and Methods

2.1. Overview

As shown by the general overview in Figure 1, the Water Body Detection Algorithm (WDBA) uses
five different sets of input data, which are processed in four different steps. Firstly, the PROBA-V daily
Top-Of-Canopy synthesis products (S1-TOC) are assembled into a 10-day mean composite (MC10).
During the mean compositing process, the MC10 Status Map (MC10-SM) is constructed, which, in turn,
is used as input for the water body detection algorithm. Secondly, the SWIR, NIR and Red bands
are transformed to HUE, SATURATION and VALUE using a RGB to HSV color transformation,
a technique often used in image processing. Thirdly, the application of specific threshold values on
HUE and VALUE applied per pixel allows water body detection. To minimize commission errors,
four additional data layers are taken into account, i.e., the MC10 Status Map, Water Body Potential
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Mask (WBPM), Permanent Glacier Mask (PGM) and the Volcanic Soils Mask (VSM). Finally, to obtain
qualitative information about the detected water bodies, an occurrence is calculated which is provided
in the output product as a quality layer. The input data and the different steps of the algorithm are
described in more detail in the subsequent paragraphs.
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Figure 1. General overview of the Water Bodies Detection Algorithm. Five sets of input data are
processed in four main steps to finally obtain two output layers, i.e., the detected water bodies and the
water bodies occurrence.

2.2. Input Data

2.2.1. Daily Top-Of-Canopy Synthesis Product (S1-TOC)

The PROBA-V instrument ensures a daily coverage between Lat. 35◦N and 75◦N, and 35◦S and
56◦S, and a full coverage every two days at the equator. The S1-TOC product is provided at 1 km
spatial resolution. Surface reflectance is available for four spectral bands: Blue, 0.447–0.493 µm,
Red, 0.610–0.690 µm; NIR, 0.770–0.893 µm; and SWIR, 1.570–1.650 µm. The atmospheric correction
is performed using SMAC 4.0 [30]. Standard input data layers includes Normalized Difference
Vegetation Index (NDVI), geometric viewing and illumination conditions, reference to date and time
of observations, status map (containing identification of snow, ice, clouds, land/sea for every pixel)
and four reflectance bands. More info can be found in the Products User Manual [31].

2.2.2. MC10 Status Map (MC10-SM)

At the final stage of the mean compositing step, a status map is created. The status map indicates
which observation type was used in the mean compositing step, i.e., un-obscured, cloud or snow.
It also has a flag that indicates if the observation was done above land or sea. Finally, it has for each
reflectance band an additional quality flag that is set to 0 in case no compositing is done. This is caused
when there was no valid observation to be used in the 10-day period. The water bodies detection
process only takes un-obscured land pixels into account.

2.2.3. Water Body Potential Mask (WBPM)

Pixels located in mountainous areas often have lowered reflectance values due to shadow or dark
vegetation and are as such confused with water bodies because their VALUE drops below the threshold
level. Moreover, water bodies cannot exist or appear for pixels located in hilly terrain having steep
slopes and a large height difference with their neighboring pixels. To minimize the commission errors
in hilly terrain a Water Bodies Potential Mask (WBPM), derived from the Global Land Survey Digital
Elevation Model (GLSDEM) [32] (data collected in the early 2000s), is used as an extra input in the
water bodies detection process. The GLSDEM has a 90 m spatial and 1 m vertical resolution. Compared
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to the PROBA-V 1 km product the spatial resolution of the GLSDEM is much higher. To prepare the
GLSDEM for use in water body detection, flat areas were considered and extracted as a WBPM. This
mask was constructed in three steps.

• First the pixels having the lowest elevation in their local neighborhood are located, i.e., a pixel is
indicated as a lowest point when its elevation is lower than or equal to its eight neighbors.

• Next, the detected lowest points are filtered and expanded depending on the topography in order
to obtain a 90 m spatial resolution potential water body mask. For each detected lowest point,
an imaginary water level is raised in steps of 1 m till the maximum rise of 5 m or the flooding
condition is reached. Flooding in this context means detection of a neighboring pixel having an
elevation that is lower than the rise level. As long as the edge of the potential water body is not
flooded, its area is extended according to the raised level, i.e., all neighboring pixels having the
additional elevation are added to the potential water body area. This is schematically shown
in a two dimensional representation in Figure 2. The initial detected lowest point contains two
pixels. Rising the water level 1 m will expand the potential water body with an additional 5 pixels.
Because no flooding occurs the water level is increased again with 1 m. Now, an additional
3 pixels are added to the potential water body. Further rising the water level will start flooding the
water body because the first pixel elevation right to the expanded water body is lower. If the size
of the final expanded water body is less than nine pixels, it is removed from further processing
and therefore not considered as a potential water body. Otherwise, the pixels initially detected as
lowest point and surrounded by eight neighbors of equal height are marked as level-1. The other
initially detected lowest points and the expanded pixels are marked as level-2. The two levels
are used in the last step when resizing the potential water body map to the PROBA -V spatial
resolution to obtain the final WBPM.

• In the last step, the 90 m spatial resolution potential water body mask is resampled to the PROBA-V
1 km spatial resolution. For each pixel in the georeferenced PROBA-V image, the corresponding
pixels in the georeferenced potential water body mask are located. The 1 km resized pixel is
indicated as a potential water body when at least one of the corresponding 90 m pixels is labeled
as level-1 or when at least nine of the corresponding 90 m pixels are labeled as level-2.
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Figure 2. Expanding the initially detected lowest point by systematically rising an imaginary water
level in steps of 1 m. The corresponding 90 m spatial resolution pixels are indicated by the dots at
the bottom.

An example of the final obtained WBPM, for the Rift Valley test area in Ethiopia (Table A1 in
Appendix A), is shown in Figure 3. A profile according to the red line on the images is shown in the
elevation plot. Seven potential water bodies are located along the transect and are indicated by the
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blue shaded boxes. Two of those potential water bodies are real lakes, Lake Abijato and Lake Langano,
and are indicated in Figure 3a.Remote Sens. 2016, 8, 1010 5 of 25 
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Figure 3. (a) PROBA-V mean composite for the dekad 21 October 2013 taken over the Rift Valley in
Ethiopia (SWIR, NIR and Red bands assigned to the Red, Green and Blue (RGB) channels, respectively).
Some of the larger lakes can be easily recognized. (b) The Water Body Probability Mask for the same
area. The white pixels indicate locations of potential water bodies. The plot shows the vertical profile
according to the red line. Marked with the blue boxes are the seven larger potential water bodies.
The arrows indicate the location of: Lake Abijato (1); and Lake Langano (2).

2.2.4. Permanent Glacier Mask (PGM)

To avoid commission errors due to confusion with permanent glaciers, which often have spectral
properties similar to water bodies, a permanent glacier mask was constructed. The most recent
permanent glacier data were downloaded from the National Snow and Ice Data Centre [33]. The data
were provided as a shape file, which was subsequently rasterized to the PROBA-V pixel size to obtain
the permanent glacier mask at global scale.

2.2.5. Volcanic Soil Mask (VSM)

Locations comprised of dark volcanic soils which are spread over wider flat areas are easily
confused with water bodies because their pixel VALUE drops below the threshold level. To account
for these commission errors, a volcanic soil mask was made. A list of volcanoes worldwide was
obtained from the Smithsonian Institution, National Museum of Natural History, Global Volcanism
Program. The Holocene Volcano List was used as a reference for the construction of a volcanic soil
mask. Volcanic soils could be easily located on Google Earth using the information from the Holocene
Volcano List. These areas were manually delineated on Google Earth and were subsequently exported
and converted to shape files from which a volcanic soil mask was made by rasterizing the shape files
to the PROBA-V pixel size at global scale.
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2.3. Mean Compositing

In the first processing step, temporal mean compositing over a 10-day window is performed to
obtain (to the degree possible) a cloud free image. The MC10 composites (SWIR, NIR, Red, and Blue)
are obtained using the mean compositing method [34] applied on the PROBA-V S1 daily reflectance
values over a 10-day window. The mean compositing algorithm improves the radiometric quality of the
temporal synthesis by averaging the reflectances and therefore reduces the random component of the
noise. The mean composite is calculated, pixel by pixel, across the four spectral band simultaneously.
For each pixel location, the input data over a time period of 10 days are handled sequentially. Only valid
reflectances of a given pixel for a given date in the 10-day period are considered in the computation.
These valid reflectances are determined using the actual reflectance value. The PROBA-V S1 input
images define a “No data” reflectance value for each spectral band. All four spectral bands must have
a valid reflectance value otherwise the given day does not contribute to the mean composition for that
pixel location. To achieve consistency with the SPOT-VGT sensor, and enable the creation of a large
time-series, a spectral correction is applied on the different spectral bands before calculating the mean
reflectance values. The mean compositing algorithm always tries to return the most optimal result.
To achieve this, it only composites the most optimal daily observations. For each day in the 10-day
period, a pixel’s observation class is first determined as depicted in Figure 4.
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Figure 4. The MC10 algorithm assigns an observation class to each pixel location each and every day
that is computed.

Un-obscured land pixels are preferred before pixels that are classified as snow or cloudy, with
cloudy pixels having the least priority. Input pixels not marked as land are not processed. To compute
the mean value of all reflectance bands and the SZA, the algorithm keeps track of the reflectance bands
and SZA sum of the corresponding pixel values and the number of pixels contributing to these sums,
for a given observation class. If a more preferred observation class is detected for a pixel location,
the sum and number of observation of the less preferred class are discarded and a new sum and
number of observations is calculated, containing only pixel values of the new class. Once all days in
the compositing window are computed, the reflectance band sum and SZA sum are divided by the
number of observations to obtain the mean reflectance values and an averaged SZA.

2.4. Water Bodies Detection by Decision Tree Classification

An essential step before the actual water bodies detection takes place is the transformation of the
Red, NIR and SWIR bands to the HSV (HUE, SATURATION and VALUE) color space as described
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by Pekel [28]. The detection of water bodies involves three main steps: (i) invalid data filtering;
(ii) incompatibility masking; and (iii) water body detection. The decisions made in these three steps
were implemented in a Decision Tree Classifier (DTC). Once water bodies are detected, the occurrence
of the detection is estimated. An overview of the water body detection algorithm is shown in Figure 5.Remote Sens. 2016, 8, 1010 7 of 25 
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2.4.1. Invalid Data Filtering

A low sun elevation causes elongated shadows, which are observed in the remote sensing imagery
as darkened Earth surfaces. These might be detected as water bodies when the VALUE drops below
the threshold level. A check on the MC10’s averaged Solar Zenith Angle (SZA) prohibits the detection
of invalid WBs, i.e., when a MC10 pixel has a SZA larger than 65◦ no WB detection is done and the
pixel is classified as “No Data”.

The next step in the WBDA is filtering the invalid data comprising snow, cloud and cloud shadow,
using the information from the MC10 Status Map. Each image pixel has a bit array assigned reflecting
its status, pixels indicated as cloud or snow are not considered in the WB detection algorithm. Cloud
shadow on the Earth’s surface often has similar spectral properties as WBs and is as such regularly
classified as WB. Therefore, to avoid confusion due to cloud shadow in the immediate neighborhood
of the initial defined cloud pixel, an additional dilate filtering is performed. In the case a pixel is
indicated as cloud, its twelve neighboring pixels (the circular neighborhood with radius 2 pixels) are
indicated as cloud as well and are therefore not taken into account for WB detection.
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2.4.2. Incompatibility Masking

In addition to glaciers, dark soils and shadows, vegetated surfaces are also often a cause of
confusion with WBs. Therefore, the NDVI value, computed as Equation (1) from the Red (ρRed) and
NIR (ρNIR) reflectances of MC10, is used to identify the vegetated areas.

NDVI =
ρNIR− ρRed
ρNIR + ρRed

, (1)

Pixels having an NDVI value higher or equal to 0.32 and having a WBPM pixel set (locating
lowland areas where holding a WB is possible) are considered to be “Lowland Vegetation”. Some
WBs have a high NDVI value (due to algae load or adjacency effect of the surrounding vegetation)
and could as such wrongly be classified as “Lowland Vegetation”. To avoid these omission errors an
additional check on VALUE is added, this threshold level is denoted as NV. If the VALUE of a pixel
which is designated as “Lowland Vegetation”, is less or equal to 0.11 (a value empirically defined) it is
classified as “Water”. These thresholds were empirically defined over the Rift Valley test area. The Rift
Valley area is unique in the sense that it contains some larger lakes with a wide variety of reflectance
values, some are bright blue, others are dark blue while others are almost black (see Figure 3). Besides,
these lakes are surrounded with different shades of green vegetation (especially after the rain season).
This situation easily allows observing how different thresholds levels influence the detection of WBs.

2.4.3. Water Body Detection

Threshold values on the HUE and VALUE bands are used for detecting WBs worldwide. The
thresholds were iteratively and empirically defined by decision tree classifications using different
settings for the thresholds levels. First, initial fixed thresholds were obtained by observing the HUE
and VALUE for the lakes in the Ethiopian Rift Valley test region shown in Figure 3a. The initial fixed
threshold for HUE and VALUE was set to 100 and 0.13, respectively. Subsequently, the threshold levels
were iteratively adapted in different steps (VALUE = 0.13, 0.14; HUE = 100, 95; NDVI = 0.32, 0.42;
and NV = 0.11, 0.13) while introducing an innovative refinement using quadratic functions, which
were empirically defined. The performance of the various cases were evaluated and the thresholds
were calibrated over 19 test regions worldwide (Table A2 of Appendix A) according to the Water
Surface Ratio (WSR) and the metrics Commission Error (CE) and Omission Error (OE) as defined
by Equations (C1)–(C3) in Appendix C. The choice of the final threshold levels is a balance between
omission and commission errors: the best settings in terms of fixed thresholds are VALUE = 0.14,
HUE = 100, NDVI = 0.32, and NV = 0.11 while the best quadratic functions (shown by the red lines in
Figure 6) are defined as:

1. The left part (for the HUE value = 0 till 34) can be written as:

ValueL =
(34− HueL)

2 × ScaleL
2

+ O f f setL, (2)

HueL = [0 . . . 34], (3)

ScaleL =
0.41
342 , (4)

O f f setL = 0.14, (5)

2. The right part (for the HUE value = 34 till 100) is a bit more complex because it is based on a
parabola rotated over 0.2◦ for which the rotated coordinates can be written as:

x = Hue× cos(α)− Hue2 × sin(α), (6)

y = Hue× sin(α) + Hue2 × cos(α), (7)
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This equation can be solved using the standard form:

x =
−b±

√
b2 − 4ac

2a
, (8)

From which, only one solution is used to calculate the corresponding VALUE threshold:

x =
−(−cos(α)) −

√
(−cos(α))2 − 4× sin(α)× HueR

2× sin(α)
, (9)

ValueR =

(
x× sin(α) + x2 × cos(α)

)
× ScaleR

2
+ O f f setR, (10)

with
α = 0.2◦, (11)

HueR = [34 . . . 360]− 28.5, (12)

ScaleL =
1

95000
, (13)

O f f setR = 0.14, (14)

The division by two in both Equation (2) and Equation (10) is done to lower the parabolic curve
in order to reduce the commission errors. The value 28.5 in Equation (12) was empirically defined, and
is used to broaden the parabolic curve (higher values will broaden the curve). The value 95,000 in the
scale factor was empirically deined, and defines the height of the parabolic curve (higher values will
lower the curve).
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The 2D scatter plot in Figure 6 gives a visual representation of the threshold levels. The fixed 
threshold levels (Hmin = 100, Vmax = 0.14) are indicated by the blue lines and the refined threshold 
levels are indicated by the red parabolic lines. The plot shows the reference WBs for the Vietnam test 
area indicated by the colored plus symbols and this for three ranges of Water Surface Ratio (WSR), 
i.e., blue for WSR = 0.95 to 1, cyan for WSR = 0.8 to 0.95 and magenta for WSR = 0.7 to 0.8. The other 
WSR ranges are not indicated as they would overrule the plot. The non-WB pixels, which are 
denoted as land, are indicated by the dark grey dot symbols. The refined thresholds allow the 
detection of WBs outside the fixed threshold levels as indicated by the blue arrow. Although the 
refined thresholds are tuned to detect as much WBs as possible, not all WBs can be detected because 
they are intermixed with land pixels as indicated by the red arrow. The 2D scatter plots of the eight 
first test areas are shown in Appendix B. 
  

Figure 6. 2D scatter plots of the Vietnam test area showing the final threshold levels. Land pixels are
indicated by the dark grey dots, reference WBs (obtained from Landsat 8) are indicated by the colored
plus symbols for different ranges of water surface ratios. The fixed threshold levels are indicated by
the blue lines (Vmax and Hmin). The refined threshold levels, indicated by the red parabolic lines, allow
the detection of WBs outside the fixed threshold levels as indicated by the blue arrow. The red arrow
locates the intermixed water and land pixels.
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The 2D scatter plot in Figure 6 gives a visual representation of the threshold levels. The fixed
threshold levels (Hmin = 100, Vmax = 0.14) are indicated by the blue lines and the refined threshold
levels are indicated by the red parabolic lines. The plot shows the reference WBs for the Vietnam test
area indicated by the colored plus symbols and this for three ranges of Water Surface Ratio (WSR), i.e.,
blue for WSR = 0.95 to 1, cyan for WSR = 0.8 to 0.95 and magenta for WSR = 0.7 to 0.8. The other WSR
ranges are not indicated as they would overrule the plot. The non-WB pixels, which are denoted as
land, are indicated by the dark grey dot symbols. The refined thresholds allow the detection of WBs
outside the fixed threshold levels as indicated by the blue arrow. Although the refined thresholds are
tuned to detect as much WBs as possible, not all WBs can be detected because they are intermixed with
land pixels as indicated by the red arrow. The 2D scatter plots of the eight first test areas are shown in
Appendix B.

2.5. Water Bodies Occurrence Estimation

To qualify the occurrence of the detected WBs, a Water Body Occurrence (WBO) is calculated for
each detected WB pixel in each dekad. This measure gives an idea about the permanency or seasonality
of the detected WBs. To obtain a WBO map for each dekad, per pixel statistics are calculated by
temporal-sequential processing of the available dekads. To get an idea of the WB occurrence, the
observation period over which the statistics are calculated has to be long enough. An observation
period over two years requires 72 dekads. However, for computational reasons, only 64 dekads are
observed; that is, information that can be stored in one “long word” (64 bits). If more than 64cloud free
MC10 composite observations are available, only the last 63 cloud free observations and the actual
observation are used for calculating the statistics. The per-pixel temporal-sequential statistics are
calculated over the available observation dekads (max 64) and can be summarized as:

• Total number of temporal cloud free observations (ntObs);
• Total number of temporal WB detections (ntWBs); and
• Maximum number of continuous temporal WB detections (mctWBs).

From these statistics, the frequency of detected WBs can be calculated as:

WB f =
ntWBs
ntObs

× 100(%), (15)

As shown in Figure 7, the calculated WB frequency (WBf ) and the maximum number of continuous
temporal WB detections (mctWBs) can be visualized in a 2D scatter plot, which, in turn, was used
for defining the occurrence threshold levels. The different occurrence levels are indicated by the
different colored regions in the figure. The slope and position of the four threshold lines, marked
L (Low), M (Medium), H (High) and VH (Very High), define the WBO threshold levels and were
empirically defined by observations of WB time series as shown in Section 3. WBs that appear with a
high frequency (WBf ) or with long continuous observation periods (mctWBs) are most likely stable WBs
that exist for a longer period and therefore have a higher occurrence than those with lower frequency
(WBf ) or shorter continuous observation periods (mctWBs). The defined occurrence threshold levels
can be expressed as:

Very Low = (mctWBs > 0) &
(

mctWBs <
(

2 + αL ×WB f
))

, (16)

Low =
(

mctWBs ≥
(

2 + αL ×WB f
))

&
(

mctWBs <
(

3 + αM ×WB f
))

, (17)

Medium =
(

mctWBs ≥
(

3 + αM ×WB f
))

&
(

mctWBs <
(

4 + αH ×WB f
))

, (18)

High =
(

mctWBs ≥
(

4 + αH ×WB f
))

&
(

mctWBs <
(

5 + αVH ×WB f
))

, (19)
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Very High = mctWBs ≥
(

5 + αVH ×WB f
)

, (20)

Permanent = WB f ≥ 95, (21)

where αx is the slope of the threshold line x, for example,

αVH =
5− 0
0− 60

, (22)

The red line (o1) in Figure 7 shows the minimum WBf in relation to the mctWBs. The slope
depends on the maximum number of observations (ntObs). The plot shows that a certain pixel is
classified as a “Very High” WBO if it is identified as WB in at least five consecutive dekads (point “m”
in the plot). Note that this number is independent of the ntObs. As an example, if a pixel was detected
as a WB in three consecutive dekads (with nObs = 31), its WBf will be 9.7% and therefore will have
a WBO “Medium” (point “a”). If this pixel would have subsequently four additional WB detections
in separate single dekads, its WBf will rise to 22.6% and its WBO will increase to “High” (point “b”).
Note also that if pixels have a WBf of at least 95% their WBO will be “Permanent”.Remote Sens. 2016, 8, 1010 11 of 25 
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The WB detection threshold levels were set fixed to HUE = 100 and VALUE = 0.14. By analyzing 
the HUE and VALUE of the mixed spectra in relation to the detection threshold levels, the minimum 
fraction of the pixel to be covered by water could be derived. Figure 9 summarizes the results 
obtained after the mixed pixel analysis. In general, the dark WBs (WB 1, WB 2) needs larger 

Figure 7. Example of a 2D scatter plot of the WB frequency (WBf ) and the number of continuous
temporal WB observations (mctWBs). The plus symbols belong to pixels of detected WBs for the Rift
Valley test area calculated for the 31 available dekads. The Water Body Occurrence threshold levels are
indicated by the different colored areas.

2.6. Minimum Size of Detectable Water Bodies

A WB has to have a minimum spatial size in order to be detected by the WB detection algorithm.
To find the minimum sub-pixel size of a detectable WB, linear spectral mixture analysis was used.
Therefore, five water spectra (Figure 8a) with an increasing reflectance level were spectrally mixed
with a dark and bright vegetation and soil spectrum (Figure 8b). Only the Red, NIR and SWIR bands
were used as these are transformed to HUE and VALUE after the mixture. The mixing was done by
increasing the sub-pixel fraction of the WB from 0 to 1 in steps of 0.05.
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Figure 8. Spectra used in the spectral mixture analysis to define the minimum WB size in relation to
the PROBA-V pixel size: (a) five water spectra with an increasing intensity; and (b) two vegetation and
two soil spectra having a low and high reflectance.

The WB detection threshold levels were set fixed to HUE = 100 and VALUE = 0.14. By analyzing
the HUE and VALUE of the mixed spectra in relation to the detection threshold levels, the minimum
fraction of the pixel to be covered by water could be derived. Figure 9 summarizes the results obtained
after the mixed pixel analysis. In general, the dark WBs (WB 1, WB 2) needs larger sub-pixel water
coverage than the bright WBs (WB 4, WB 5) in order to be detected. E.g., the dark WB 1 needs a water
coverage of 45% when mixed with “Dark Veg” and this increases to a water coverage of 85% when
mixed with the “Bright Soil”. The bright WB 5 needs a water coverage of 15% when mixed with “Dark
Veg” and 40% when mixed with “Bright Soil”. As could be observed on different WB detection results
worldwide, small (single pixel) WBs are mostly dark and therefore need a large sub-pixel coverage in
order to be detected.
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Figure 9. The minimum fraction of the pixel to be covered by water in order to be detected as WB.

3. Results

Figure 10 shows an example of the Decision Tree Classification (DTC) result using the final
threshold levels. The image shows the detection obtained for the 10-days composite of the first dekad
of December 2013 (MC10_20131201) over the Rift Valley test area in Ethiopia for which the visual
representation is given in Figure 3a. As shown in detail, some smaller lakes with size in the order of
one PROBA-V pixel are detected. Figure 11 shows the Water Body Occurrences (WBO) for the same
area. Because the larger lakes are detected in each cloud free dekad, they have a detection frequency of
more than 95% and are therefore indicated with a “Permanent” occurrence. As shown in the detail
window in Figure 11, the smaller lakes have a WBO ranging from “Very High” to “Very Low” due to
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temporal variability and are, as such, not detected in each dekad. This is indicated in the time series
analysis shown in Figure 12.
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Figure 10. Decision Tree Classification (DTC) result for the part of image MC10_20131201 taken over
Rift Valley in Ethiopia (center: 7◦11′31′ ′N, 38◦51′10′ ′E) for which the visual representation is given
in Figure 3a. Beside the larger lakes in the area, some smaller lakes are detected as shown by the
detail window.
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Figure 11. The Water Body Occurrence (WBO) for part of image MC10_20131201 taken over Rift Valley
in Ethiopia (center: 7◦11′31′ ′N, 38◦51′10′ ′E).

Figure 12 shows the time series analysis for several smaller lakes, some of them are indicated in
detail in Figure 11. Lake Wedecha consists of 2 pixels that have a “Very High” occurrence because they
were detected in more than five consecutive dekads. A “Very High” occurrence can also be found
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for several other lakes which have frequent WBs detected, i.e., K’oftu (pixel b), Chelekleka, Hora
and Bishoftu. One pixel (a) of Lake K’oftu has a “Very Low” occurrence because it was detected in
two non-consecutive dekads only. Lake Chilotes has a “High” occurrence because it was detected
in three and two consecutive dekads. Lake Budamada, indicated by the red arrow in Figure 11, is a
small lake of about 1 km diameter. It was detected in only one dekad and therefore has a “Very Low”
occurrence. Nevertheless, this crater lake is permanent, i.e., it will not dry up during the drought
period. Its irregular detection is due to its small size which is in the order of one PROBA-V pixel.
The small size causes mixed pixels, i.e., the water body spectral response is mixed with the spectral
response of the surroundings, and therefore it is not detected as WB. This phenomenon accounts for
all WBs with size in the order of one PROBA-V km pixel.
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Figure 12. Time series analysis for several small lakes showing the detections per dekad and the
resulting WB occurrence. Each row shows the behavior of one pixel of the water body during the
31 dekads starting from 21 October 2013 to 21 August 2014. The blue marked dekads show the dekads
where the pixel is detected as WB.

The rain season over the Ethiopian Rift Valley peaks in the months July and August while the
dry season appears in the period between mid-October and mid-March. This seasonal variation
can be observed in the appearance of some WBs as shown in Figure 13. The wetland area near
Wererso contains no WB pixels at the end of March, i.e., at the end of the dry season. In the next three
dekads, the number of detected WB pixels increases. In the last dekad of July and the first dekad of
August, an extremely large number of pixels indicate WBs for this wetland area and its neighborhood.
The two other lakes, Lake Boio and the Lake Koka, show a similar behavior, i.e., their size grows over
time, which is in accordance with the progression of the rain season.

Figure 14 shows the Water Body Occurrence (WBO) time series for the Rift Valley test area.
The plot shows per dekad the cumulated number of pixels for the occurrences ranging from “Very
Low” to “Very High”. The WBs with a “Permanent” occurrence are very large and would overrule
the plot, therefore they are not indicated. Note that cloud cover may mask WBs with the result
that those WBs are not accounted for in the plot and therefore the plot may show some irregularity.
Nevertheless, the plot shows some correlation with the seasonal variation as described before. From
the first observed dekad, end of October 2013, to mid-February 2014, there is a gradual decrease of
detected WB pixels which is in accordance with the dry season. The amount of detected WB pixels
with a “Very High” occurrence stays more or less stable. This period is followed by a more random
increase of detected WBs as a result of the upcoming rain season. The pixels that have a “Low” and
“Very Low” occurrences show the largest variability. In general the number of detected WBs clearly
correlates with the seasonal variability, i.e., the rain season, which also correlates with the cloud cover.
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Figure 13. Water body evolution for three WBs in the Rift Valley, the wetland near Wererso (Centre:
8◦52′46”N, 38◦22′46”E), Lake Boio (Centre: 7◦30′48”N, 38◦2′24”E) and Lake Koka (Centre: 8◦23′50”N,
39◦4′33”E). The water bodies grow in size during the rainy season, which peaks in the months July
and August.
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Figure 14. The Water Body Occurrence (WBO) time series for the Rift Valley test area. The “Permanent”
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4. Assessment of Algorithm Performance

To demonstrate the maturity of the PROBA-V WBDA, reference water bodies were extracted from
high spatial resolution Landsat 8 images over 15 regions selected worldwide (Table A3 of Appendix A).
The workflow and algorithm to derive the reference WBs from Landsat 8 images is described in
Appendix C.

The reference water bodies extracted from Landsat 8 imagery might also contain omission and
commission errors and might influence the PROBA-V performance analysis. The reference commission
errors occur at the Landsat 8 spatial resolution and it concerns groups of pixels ranging from one to
several tens. The corresponding calculated WSR is therefore very small (a PROBA-V pixel for which
the WSR is calculated comprises a few hundred Landsat 8 pixels). Typically, the WSR for the wrongly
detected WB is much lower than the minimum WSR of 0.5 used in the analysis. Omission errors are
much more difficult to quantify. Nevertheless, it can be said that these also concern small groups of
pixels resulting in a very small reference error not influencing the analysis.
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Table 1 shows the commission and omission errors on the PROBA-V images for six minimum
WSR ranges and this for the 15 test areas.

As seen in Table 1, the commission and omission errors vary for the different test areas. An average
commission error of 1.5% was obtained with an average omission error of 9.8% for minimum WSR
0.6 and 15.4% for minimum WSR 0.5. Notice that the user requirements define a maximum omission
and commission error of 15% [35]. The acceptable omission errors for the highest minimum WSR
are highlighted in the table. Though the Argentina test area shows the best results for the omission
errors it has the highest commission error of all test areas (10.7%). This high commission error is due
to dark soil pixels, which were wrongly detected as water bodies. The commission error of 4.9% for
the Zambia test area is also due to dark soil pixels while the commission error of 4.0% for the Canada
test area is due to dark vegetation pixels, which were detected as water bodies. The Finland test area
shows the worst performance for the omission error, i.e., an acceptable omission error of 13.6% for
minimum WSR 0.95. These high omission errors are due to the presence of many small and narrow
lakes, in the order of the size of a PROBA-V 1 km pixel, by which they were not detected. This effect
accounts for all other regions as well, i.e., for the Russian test area: 12.2% for minimum WSR 0.8; and,
for the USA test area: 14.9% for minimum WSR 0.7. The other test areas show the highest omission
errors for minimum WSR 0.6 and 0.5.

Table 1. Assessment results for the 15 test areas. The user requirements define a maximum omission
and commission error of 15%. All commission errors fall within the requirements. The acceptable
omission errors for the highest WSR are highlighted.

Area CE (%)

OE (%)

Minimum WSR

0.95 0.9 0.8 0.7 0.6 0.5

Argentina 10.7 0 0 0 0 0.4 0.8
Australia 1.4 0 0 0 0 0.8 1.1

Bolivia 0.7 0 0 0.1 0.7 2.8 9.4
Canada 4.0 0 0 0.2 0.3 1.5 5.0
China 0 0.1 0.2 0.4 1.2 3.3 7.3

Finland 1 13.6 17.3 26.8 36.3 46.6 56.2
India 0 0 0 0 1.3 7.6 16

New Zealand 0 0.2 0.2 1.4 3.9 8.1 12.3
Russia 0.1 5.3 6.9 12.2 19.0 27.6 39.8
Swiss 0 0.6 1.1 3.5 6.5 11.8 18.9

Thailand 0 0 0 0.4 2.2 7.4 16.9
Chad 0 0 0 0 0 0.5 1.7

Turkmenistan 0.3 0 0 0.1 0.8 2.6 6.5
USA 0 0.4 0.9 6.7 14.9 24.7 32.6

Zambia 4.9 0 0 0 0 1.8 7.1
Average 1.5 1.3 1.8 3.5 5.8 9.8 15.4

5. Discussion

The user requirements define a maximum omission and commission error of 15% [36]. As shown
in this work, a mean commission error of 9.8% is obtained for minimum WSR = 0.6 while the mean
omission error is 1.5%. Though minimization of omission and commission errors is achieved by the
use of additional data layers, WBPM, VSM, PGM and NDVI, they sometimes are inevitably. Small
sized WBs in the order of one PROBA-V 1km pixel and WBs with spectral properties that fall outside
the defined thresholds are the cause of omission errors. Commission errors are mostly caused by
anthropogenic structures having spectral signatures equal to WBs, e.g., some agricultural fields, green
houses, build-up areas, etc. In addition, natural surfaces like salt planes, dark soils, mining sites, etc.
might cause commission errors. An important source of commission errors are dark surfaces, e.g., due
to undetected cloud shadows, dark soils due to heavy industry, dark surfaces due to shadow of high
structures, etc. Therefore, to minimize confusion the user should use the water body product with
attention to the quality layer which reflects the history of the detected WBs.
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Special attention has to be paid to the three layers used during incompatibility masking.
The WBPM was made based on the GLSDEM for which data was collected in the early 2000s. Because
of the high resolution of the GLSDEM dataset (90 m spatial and 1 m vertical), the derived WBPM
(1 km spatial resolution) reveals the finest detail (as shown in Figure 3b). Although the Earth’s
topography changes only notably over large geological time scales, natural events (e.g., earthquakes)
or anthropogenic activities (e.g., dam building) can influence the topography on shorter time scales.
Therefore, when such events take place, the WBPM needs to be updated. Just to give an idea; the
PROBA-V 1 km world image contains 40,320 samples × 15,680 lines or 632.22 × 106 pixels. Of those,
29% (183.5 × 106 pixels) consist of landmass (i.e., not ocean), and 50.5% (92.7 × 106 pixels) of the
landmass is indicated as potential water body.

Because the extent of glaciers worldwide are strongly influenced by climate (global warming),
the PGM needs to be frequently updated. Frequent updates of the permanent glacier data are available
at the National Snow and Ice Data Center (NSIDC). The geological situation in the volcanic areas of
South America, i.e., Chili and Peru, is very complex and delineating the volcanic soils in these areas
was not always easy. It is therefore very well possible that some smaller regions in this area are still
missing in the VSM. On the other hand, future volcanic eruptions might produce new dark volcanic
soils leading to false detected WBs. In both cases, an update of the VSM is needed.

6. Conclusions

This water bodies detection algorithm is implemented in the operational processing chain of the
Copernicus Global Land Service (http://land.copernicus.eu/global/). It delivers 10-day global water
bodies detection maps accompanied by a quality layer map.

Although some minor artifacts were introduced during the algorithm assessment using Landsat 8
reference WBs, the assessment gives a good idea about the algorithm performance. The analysis,
performed over 15 test regions, shows that the product reaches a mean commission error of 1.5% while
the mean omission error for minimum WSR = 0.6 is 9.8%.

The developed methodology can easily be applied to the 333 m and 100 m PROBA-V products and
300 m Sentinel-3 products, by which smaller water bodies will be detected. Applying the methodology
on higher resolution sensors as Sentinel-2 is possible, but its dynamics will be hampered by the lower
temporal frequency of such sensors. The water bodies detection algorithm is also tuned to detect water
bodies on 1 km SPOT-VGT dataset. The whole SPOT-VGT archive is being processed and water body
detection maps from 1999 to 2014 will become available by the end of 2016. An exhaustive validation
exercise of the PROBA-V and SPOT/VGT 1 km WB products has been performed by independent entity
and the report is available on the Copernicus Global Land Service website. The water bodies products
can be downloaded from the Copernicus Global Land Service data portal: http://land.copernicus.vgt.
vito.be. Additional information is available at: http://land.copernicus.eu/global/products/wb.

Acknowledgments: The product was generated by the land service of Copernicus, the Earth Observation
programme of the European Commission. The research leading to the current version of the product has received
funding from various European Commission Research and Technical Development programmes. The product is
based on PROBA-V 1km data ((c) ESA and distributed by VITO).
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Appendix A

Table A1 lists the region for fixed thresholds definition, Table A2 lists the 19 test regions used for
refining the threshold levels, and Table A3 lists the 10 test regions selected worldwide to assess the
performance of the detection algorithm.

http://land.copernicus.eu/global/
http://land.copernicus.vgt.vito.be
http://land.copernicus.vgt.vito.be
http://land.copernicus.eu/global/products/wb
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Table A1. The Ethiopian Rift Valley test area used for fixed threshold definition, the upper left corner
coordinate and number of samples (ns) and lines (nl) are given.

Area Dekad
Upper Left Coordinate PROBA-V

Lat Lon ns nl

Rift Valley 20131201 8.96429722 37.08032222 400 400

Table A2. Landsat 8 scenes of the 19 test regions selected worldwide were used to refine the threshold
levels. As much as possible, cloud free scenes were selected. The corresponding PROBA-V dekad
and the upper left corner coordinate are given with the corresponding number of samples (ns) and
lines (nl).

Area Landsat 8 Scene Dekad
Upper Left Coordinate PROBA-V

Lat Lon ns nl

Argentina 1 LC82270862014111LGN00 20140421 −36.40625000 −63.94196429 299 239
Argentina 2 LC82310932014011LGN00 20140111 −46.29910714 −73.83482143 376 257

Australia LC81110782014131LGN00 20140511 −24.94196429 118.49553571 267 236
Bangladesh LC81380442014112LGN00 20140421 24.17410714 87.74553571 244 240

Bolivia LC82330692013310LGN00 20131101 −11.95089286 −66.85267857 232 239
Brazil LC82220742014028LGN00 20140121 −19.17410714 −51.55803571 248 237

Canada LC80180272014151LGN00 20140521 48.53125000 −80.06696429 332 246
China LC81210382014121LGN00 20140501 32.79910714 116.05803571 271 240
Congo LC81740662014140LGN00 20140521 −7.62053571 25.22767857 235 238
India LC81460422014072LGN00 20140311 27.04910714 76.05803571 249 240
Mali LC81950502013332LGN00 20131121 15.51339286 −2.25446429 234 239

Mexico LC80270422014118LGN00 20140421 27.04017857 −100.12053571 260 238
Poland LC81870222014087LGN00 20140401 55.60267857 21.60267857 393 250
Rusia LC81770212014129LGN00 20140501 56.99553571 37.60267857 426 248

South Africa LC81690802014121LGN00 20140501 −27.77232143 28.12946429 277 246
Spain LC82010332014121LGN00 20140501 39.95089286 −5.66517857 306 239

Turkey LC81730332013306LGN00 20131101 39.95982143 37.65625000 299 240
USA LC80430342014134LGN00 20140511 38.54017857 −121.87946429 281 242

Vietnam LC81240512014062LGN00 20140301 14.08482143 107.11160714 241 242

Table A3. Landsat 8 scenes of the 15 test regions selected worldwide were used to assess the water
bodies detection algorithm. As much as possible, cloud free scenes were selected. The corresponding
PROBA-V dekad and the upper left corner coordinate are given with the corresponding number of
samples (ns) and lines (nl).

Area Landsat 8 Scene Dekad
Upper Left Coordinate PROBA-V

Lat Lon ns nl

Argentina LC82310872014011LGN00 20140111 −37.83418611 −70.58413611 303 241
Australia LC80950832013304LGN00 20131021 −32.12027778 141.27138333 288 238

Bolivia LC82330692014233LGN00 20140821 −11.95757500 −66.85950000 233 239
Canada LC80180262014295LGN00 20141021 49.94476111 −79.54769167 340 247

Chad LC81830512014011LGN00 20140111 14.06290278 15.97345556 234 238
China LC81210392014121LGN00 20140501 31.35326944 115.68581667 270 239

Finland LC81920132014154LGN00 20140601 68.02264167 21.52997222 686 253
India LC81420442014028LGN00 20140121 24.16315278 81.55028611 247 239

New Zealand LC80750912014294LGN00 20141021 −43.52644444 168.42483889 329 243
Russia LC81100132014252LGN00 20140901 68.03188333 148.26286944 676 255
Swiss LC81950272014079LGN00 20140311 48.49976111 6.28843889 360 241

Thailand LC81280482014090LGN00 20140321 18.38631389 101.85821667 247 237
Turkmenistan LC81570332014133LGN00 20140511 39.95980833 62.34785278 298 242

USA LC80260372014207LGN00 20140721 34.21517222 −96.81486667 290 237
Zambia LC81730712014133LGN00 20140511 −14.84697222 25.17750000 240 238
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Appendix C

Figure C1 shows the workflow for extracting the reference WBs and for defining the Water Surface
Ratio (WSR).
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selected test areas worldwide. These test areas were selected based on visual observations using 
Google Earth (water bodies must be present). Subsequently one cloud free scene, or one which is as 
much as possible cloud free, was downloaded and unpacked. The data was subsequently 
pre-processed to convert the eleven bands to TOA radiance, the 9 OLI bands to TOA reflectance and 
the 2 TIRS bands to at-satellite brightness temperature. 

The “Automatic Cloud Cover Assessment–modified” (ACCAm) was used for cloud detection. 
ACCAm is a modified version of the ACCA [36] developed for Landsat 7. In this modified cloud 
detection algorithm only the spectral cloud identification is retained and an additional check on the 
cirrus band is added.  

In the next step the “SWIR 1”, “NIR” and “Red” bands are color transformed to the HSV-color 
system. This allows for an easy water bodies detection using thresholds on the HUE and VALUE 
band. As shown by the Decision Tree Classifier (DTC) in Figure C2, the class “No Data” is based on a 
zero value in the TIR 1, SWIR 1, NIR or Red band. The “Cloud” class is set according the cloud mask 
generated by ACCAm (1 means cloud detected). In the final step, water is separated from land by a 
threshold value on HUE (≥160) and VALUE (<0.4). 

Figure C1. Workflow for the extraction and definition of reference water bodies using Landsat 8 scenes.
TOA: Top Of Atmosphere; AS Temp: At satellite Brightness Temperature; ACCAm: Automatic Cloud
Cover Assessment–modified.

Appendix C.1. Building the Reference Dataset

The USGS “EarthExplorer” was used to search for Landsat 8 OLI/TIRS cloud free scenes over 19
selected test areas worldwide. These test areas were selected based on visual observations using Google
Earth (water bodies must be present). Subsequently one cloud free scene, or one which is as much
as possible cloud free, was downloaded and unpacked. The data was subsequently pre-processed to
convert the eleven bands to TOA radiance, the 9 OLI bands to TOA reflectance and the 2 TIRS bands
to at-satellite brightness temperature.

The “Automatic Cloud Cover Assessment-modified” (ACCAm) was used for cloud detection.
ACCAm is a modified version of the ACCA [36] developed for Landsat 7. In this modified cloud
detection algorithm only the spectral cloud identification is retained and an additional check on the
cirrus band is added.

In the next step the “SWIR 1”, “NIR” and “Red” bands are color transformed to the HSV-color
system. This allows for an easy water bodies detection using thresholds on the HUE and VALUE
band. As shown by the Decision Tree Classifier (DTC) in Figure C2, the class “No Data” is based on a
zero value in the TIR 1, SWIR 1, NIR or Red band. The “Cloud” class is set according the cloud mask
generated by ACCAm (1 means cloud detected). In the final step, water is separated from land by a
threshold value on HUE (≥160) and VALUE (<0.4).
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used to detect water bodies. 

Appendix C.2. Calculation of the Water Surface Ratio and Evaluation Metrics 

For each pixel (xy) of the PROBA-V WB product, the Water Surface Ratio (WSRxy) is calculated 
as the ratio of the number of Landsat 8 water pixels (DTC results) by the total number of valid 
Landsat 8 pixels contained in the PROBA-V pixel (Equation (C1)).  = ( ° )( ° ) , (C1) 

The WSRxy has a value greater than zero and less than or equal to one when the PROBA-V pixel 
has “Water” classified pixels present in the corresponding Landsat 8 DTC pixels. The WSRxy is not 
calculated when the cloud cover of the corresponding Landsat 8 DTC pixels is more than 10% or if 
more than 10% of the pixels contain no data. Pixels in the final WSR image are indicated as “Cloud” 
(WSR = 3) or “No Data” (WSR = 0), respectively. When no “Water” classified pixels are present in the 
corresponding DTC pixels (WSRxy = 0), the final WSR pixel is set to “Land” (WSR = 2).  

Figure C3a,c shows the Landsat 8 scene LC82270862014319LGN00, downloaded for test 
location Argentina1 (37°S, 63°W). Figure C3b,d shows the Decision Tree Classifier (DTC) result for 
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Figure C2. Decision Tree Classifier for WB detection on Landsat 8 images. A check on different bands
and on cloud cover removes incompatible pixels from the scene. A check on HUE and VALUE is used
to detect water bodies.

Appendix C.2. Calculation of the Water Surface Ratio and Evaluation Metrics

For each pixel (xy) of the PROBA-V WB product, the Water Surface Ratio (WSRxy) is calculated as
the ratio of the number of Landsat 8 water pixels (DTC results) by the total number of valid Landsat 8
pixels contained in the PROBA-V pixel (Equation (C1)).

WSRxy =
(N◦ o f water pixels)Kxy

(Total N◦ o f valid pixels)Kxy
, (C1)

The WSRxy has a value greater than zero and less than or equal to one when the PROBA-V pixel
has “Water” classified pixels present in the corresponding Landsat 8 DTC pixels. The WSRxy is not
calculated when the cloud cover of the corresponding Landsat 8 DTC pixels is more than 10% or if
more than 10% of the pixels contain no data. Pixels in the final WSR image are indicated as “Cloud”
(WSR = 3) or “No Data” (WSR = 0), respectively. When no “Water” classified pixels are present in the
corresponding DTC pixels (WSRxy = 0), the final WSR pixel is set to “Land” (WSR = 2).

Figure C3a,c shows the Landsat 8 scene LC82270862014319LGN00, downloaded for test location
Argentina1 (37◦S, 63◦W). Figure C3b,d shows the Decision Tree Classifier (DTC) result for the same
scene. The details in Figure C3c,d shows four corresponding PROBA-V pixels, indicated by the blue
squares. In this particular case, each PROBA-V pixel contains 858 pixels, however this number varies
depending on the latitude.

Figure C4a shows the corresponding PROBA-V WB product extracted for the second dekad of
November 2014. Figure C4b shows the calculated WSR. The detail in Figure C4c indicates the same
four pixels as in Figure C3c,d. These pixels have a WSR of: 0.7 (a); 0.03 (b); 0.02 (c); and 0.09 (d).
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(Argentina), was acquired on 15 November 2014. (b) Decision Tree Classifier (DTC) result for the 
same Landsat 8 scene. (c,d) Details showing in blue the four PROBA-V pixels overlaid, which are also 
indicated in Figure C4. 

 
Figure C4. (a) The PROBA-V WB area extracted from 2nd dekad of November 2014, which 
corresponds with the downloaded Landsat 8 area. (b) The Water Surface Ratio (WSR) (PROBA-V 
spatial resolution) which is calculated using the Landsat 8 DTC result. (c) The four indicated pixels 
have a different WSR: (a) 0.7; (b) 0.03; (c) 0.02; and (d) 0.09. These four pixels are also overlaid on the 
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Figure C3. (a) The Landsat 8 scene LC82270862014319LGN00, downloaded for location: 37◦S, 63◦W
(Argentina), was acquired on 15 November 2014. (b) Decision Tree Classifier (DTC) result for the
same Landsat 8 scene. (c,d) Details showing in blue the four PROBA-V pixels overlaid, which are also
indicated in Figure C4.
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corresponds with the downloaded Landsat 8 area. (b) The Water Surface Ratio (WSR) (PROBA-V 
spatial resolution) which is calculated using the Landsat 8 DTC result. (c) The four indicated pixels 
have a different WSR: (a) 0.7; (b) 0.03; (c) 0.02; and (d) 0.09. These four pixels are also overlaid on the 
images in the previous figure. 

Figure C4. (a) The PROBA-V WB area extracted from 2nd dekad of November 2014, which corresponds
with the downloaded Landsat 8 area. (b) The Water Surface Ratio (WSR) (PROBA-V spatial resolution)
which is calculated using the Landsat 8 DTC result. (c) The four indicated pixels have a different
WSR: (a) 0.7; (b) 0.03; (c) 0.02; and (d) 0.09. These four pixels are also overlaid on the images in the
previous figure.
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In the final step, the omission errors (OE) and commission errors (CE) are derived from the
confusion matrix [37,38]. The omission error is calculated per minimum WSR range, i.e., 0.95, 0.9, 0.8,
0.7, 0.6 and 0.5 (e.g., a minimum WSR of, e.g., 0.95 means only water body pixels with a WSR ≥ 0.95
are considered as reference water body) and per test area. The confusion matrix can be written as
shown in Table C1.

Table C1. Confusion matrix frim which the Commission and omission errors are calculated.

Reference

WB No WB

WBV2
WB p11 p12

No WB p21 p22

where

p11 = the number of pixels indicated as WB in both reference and WBV2 and having a WSR larger or
equal to the minimum WSR;

p12 = the number of pixels not indicated as WB in the reference but indicated as WB in WBV2 and
having a WSR larger or equal to the minimum WSR;

p21 = the number of pixels indicated as WB in the reference but not in WBV2 and having a WSR larger
or equal to the minimum WSR;

p22 = the number of pixels not indicated as WB in both reference and WBV2 and having a WSR larger
or equal to the minimum WSR.

From which, the CE and OE are calculated:

CE =
p12

p11 + p12
× 100, (C2)

OE =
p21

p11 + p21
× 100. (C3)
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