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Abstract: The segmentation of point clouds is an important aspect of automated processing tasks
such as semantic extraction. However, the sparsity and non-uniformity of the point clouds gathered
by the popular 3D mobile LiDAR devices pose many challenges for existing segmentation methods.
To improve the segmentation results of point clouds from mobile LiDAR devices, we propose an
optimized segmentation method based on Scanline Continuity Constraint (SLCC) in this work.
Unlike conventional scanline-based segmentation methods, SLCC clusters scanlines using the
continuity constraints in terms of the distance as well as the direction of two consecutive points.
In addition, scanline clusters are agglomerated not only into primitive geometrical shapes but also
irregular shapes. Another downside to existing segmentation methods is that they are not capable of
incremental processing. This causes unnecessary memory and time consumption for applications
that require frame-wise segmentation or when new point clouds are added. In order to address this,
we propose an incremental scheme—the Incremental Recursive Segmentation (IRIS), that can be
easily applied to any segmentation method. IRIS is achieved by combining the segments of newly
added point clouds and the previously segmented results. Furthermore, as an example application,
we construct a processing pipeline consisting of plane fitting and surface reconstruction using the
segmentation results. Finally, we evaluate the proposed methods on three datasets acquired from a
handheld Velodyne HDL-32E LiDAR device. The experimental results verify the efficiency of IRIS for
any segmentation method and the advantages of SLCC for processing mobile LiDAR data.

Keywords: point clouds; LiDAR; surface reconstruction; incremental processing; automatic 3D
modeling; 3D segmentation; sparsity; planar simplification

1. Introduction

3D mobile LiDAR devices are becoming rapidly popular due to their long effective range,
wide Field of View (FOV) and high accuracy. They are widely used in many fields, such as civil
engineering [1,2], autonomous driving and robotics. In these applications, automated processing
of the point cloud, such as semantic extraction, object recognition and 3D reconstruction is usually
performed to improve the efficiency of reconstruction and the modeling or accuracy of recognition.
Consequently, segmentation—the first step in most of these processes—is a very important and
indispensable operation.

There exist many segmentation algorithms, such as Region Growing [3] and RANSAC [4].
However, two main challenges are encountered when these are applied to LiDAR data. The first issue
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arises because of the sparsity and non-uniformity of the point cloud acquired by mobile LiDAR devices
when compared with the point cloud generated by depth sensors or static LiDAR devices. Sparsity and
non-uniformity greatly increase the rate of over-segmentation and miss-segmentation. The second issue
is associated with the ability to process the point cloud incrementally. The segmentation time increases
drastically as the scale of the point cloud increases. Furthermore, the time-consuming computation has
to be performed again if a new point cloud is added. This can be avoided if incremental segmentation
is available.

In order to address the first challenge, we propose a Scanline Continuity Constraint (SLCC)
segmentation method that is optimized for segmenting point clouds from 3D mobile LiDAR devices.
SLCC takes full advantage of the characteristics of scanlines. Each scanline is divided into several
clusters according to the continuity constraints imposed due to the distance and direction change
between two consecutive points. The clustered scanlines are then agglomerated into 3D segments of
arbitrary shapes. To address the second challenge, we propose a solution inspired by the frame-wise
processing of point clouds in autonomous driving and robotics applications. We propose the
Incremental RecursIve Segmentation (IRIS) method, which makes use of the previous segmentation
results. In this, a newly added set of point clouds is segmented first and then the new segments are
combined directly with the segments that are processed previously.

Three main contributions are described in this work. We propose a novel segmentation method
that is able to overcome the sparsity and non-uniformity of a point cloud from mobile LiDAR devices.
Our second contribution is an incremental scheme that can be easily adapted to any segmentation
algorithm. An example using Region Growing with and without applying our proposed incremental
scheme demonstrates the efficiency. Finally, as a segmentation application, we construct a processing
pipeline that performs plane fitting and surface reconstruction segment by segment in parallel. The final
processing results (Figure 1b,d) of point clouds (Figure 1a,c) acquired from a handheld Velodyne
HDL-32E LiDAR sensor verify the feasibility of the proposed methods.

(a) (b)

(c) (d)

Figure 1. Automatic segmentation and modeling for a single frame of a point cloud or multiple frames.
Left (a,c) show the single frame of spare point cloud input and multiple frames of sparse point
cloud input respectively; Right (b,d) are output results; the surface is reconstructed using segmented
information. Different segments are visualized using different colors.

The rest of this paper is structured as follows. Related work and open challenges are discussed
in Section 2. An overview of the proposed approach, SLCC segmentation and IRIS to final surface



Remote Sens. 2016, 8, 967 3 of 22

reconstruction, is provided in Section 3. The improved segmentation algorithm for mobile LiDAR
data SLCC is presented in Section 4. The details of the incremental scheme IRIS for application
in any segmentation algorithm are described in Section 5. The pipeline to implement automated
refined surface reconstruction is explained in Section 6. The efficiency of IRIS and the advantages
of SLCC for LiDAR data are evaluated and verified in Section 7. As an application of the proposed
segmentation method, surface reconstruction results of mobile LiDAR data are also shown in Section 7.
Finally, the conclusion and future work are presented in Section 8.

2. Related Work

With the increasing popularity of 3D scanning devices, there is a need for efficient semantic
extraction and surface reconstruction from raw unorganized point clouds. We mainly focus on mobile
LiDAR devices such as Velodyne HDL-32E utilized in this work, which usually generates sparse and
non-uniform point clouds every frame, unlike the ones generated by depth sensors or static LiDAR
devices. In this section, we only list research related to the segmentation and surface reconstruction of
mobile LiDAR data.

The first step in the recognition process involves the segmentation of the point cloud. For a dense
and uniformly distributed point cloud, Region Growing in [3,5] is a representative method. For every
point in the point cloud, the algorithm estimates their curvature value and the normal vector of the
approximate plane constructed by its kNN points. The recursion process starts from the point with
the least curvature and the point cloud is segmented according to the intersection angle of the points’
normal vectors. However, as sparsity and non-uniformity of a point cloud increases, it becomes harder
to perform the segmentation [6]. Model fitting based on Random Sample Consensus (RANSAC) [7,8]
is another popular method for segmentation in which the point cloud is fitted to primitive geometrical
models, such as a plane, sphere, or cylinder. This approach performs well when detecting shapes
from a point cloud that can be represented by several primitive shape models. However, it becomes
inefficient as the number of primitive shapes increases. In this work, we apply RANSAC to detect
whether a segment could be represented by a planar model.

Voxelization of a point cloud is also applied for segmentation [9]. Papon et al. [10] propose a
method that segments the point cloud according to the connectivity of the voxels into a supervoxel,
which is similar to a superpixel for image segmentation. This method could be applied for segmenting
all shapes. Nevertheless, memory consumption is a serious problem for a large-scale point cloud.
In contrast to depth sensors, LiDAR devices scan the environment and obtain the 3D points one-by-one.
Based on the features of scanlines, many methods have been proposed for different purposes, such as
people detection, segmentation and point cloud registration [11–15].

The usual way to reconstruct large-scale environments with mobile LiDAR data is by mapping
several sparse point clouds acquired from different positions and angles into a single point cloud.
Although there are many excellent methods to map them with minimal drift [12,16,17], measurement
noise and registration errors are inevitable. These make the planar surface look foggy and thick.
To regularize the point cloud, planar shapes are estimated using Region Growing or RANSAC
and the points on the estimated planes are redirected using preset regularity relationships, such
as parallel, orthogonal or coplanar [18,19]. These methods are mainly used to process dense and
uniform point cloud.

Redundant points consume storage, memory and computation unnecessarily. Downsampling
is often used to preprocess the point cloud data, and most of the points can be represented
by primitive shapes. Especially, point clouds that can be represented by planar shapes, planar
decimation [20], or polygon boundary extraction [1,21] permit drastic removal of redundant data.
Although convex boundary extraction works for most cases, concave boundary represents the shapes
better [22].

Triangulation-based surface reconstruction is a classic and intuitive method [23]. Delaunay
triangulation [24] and its variant, the constrained Delaunay triangulation [25], are widely applied in
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3D games or movies for surface reconstruction. To improve the efficiency and robustness to noise,
quadtree-based triangulation has also been proposed [26,27] for planar surface reconstruction.

Automatic surface reconstruction and modeling also attracts interest due to utility in applications
such as VR games, virtual interior design and so on. There have been some studies for automatic room
detection and modeling from very dense point clouds [2,28]. In [2,28], wall boundaries are extracted
from a dense point cloud acquired using static LiDAR and mapped onto a 2D floor plane to construct
a cell complex. This enables the modeling of the room polyhedra. In this work, we aim to implement
surface reconstruction with semantic segmentation for sparse and non-uniform point clouds.

3. Notations and System Overview

3.1. Notations

To explain the proposed method in detail, we use the point cloud obtained using a Velodyne
HDL-32 LiDAR device as a sample and define the following notations (see Figure 2).

• A complete 360◦ sweep by the LiDAR is denoted as one frame F .
• The point cloud acquired in the i-th frame Fi is denoted as Pi.
• The scanline in Pi is denoted as L(i,j). In the case of Velodyne HDL-32, scanlines are {L(i,1), L(i,2),

. . . , L(i,32)}.
• All the scanlines of Pi are divided into several clusters line by line, denoted by {C(i,1), C(i,2),

. . . , C(i,k)}.
• Clustered scanlines are then agglomerated into final segments {S(i,1), S(i,2), . . . , S(i,l)} of Pi.

P i
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�
�
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C (i,1) C (i,2)
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i 
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Figure 2. Notations defined in this paper.

3.2. System Overview

The pipeline of our proposed system is shown in Figure 3. When the environment is perceived by
a LiDAR device, a series of continuous frames {P1, P2, . . . } are generated. The generated point clouds
are processed using the following three steps.

• SLCC Segmentation

Frame-wise segmentation is often required for applications such as autonomous robots to
recognize objects for route generation, manipulation and interaction with humans. In the case of 3D
mobile LiDAR, we propose an enhanced scanline-based method to optimize the segmentation results
for a sparse and non-uniform point cloud in a frame of mobile LiDAR devices. Details of clustering for
scanlines and agglomerating scanline clusters are presented in Section 4.
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• IRIS Segmentation

As the scale of point clouds increases gradually, the computation time and memory consumption of
segmentation increase drastically. On the other hand, when point clouds of new areas or details are
added, the newly registered point cloud has to be segmented again. This results in extra time and
memory consumption. Hence, we consider increasing the efficiency of segmentation by introducing
an incremental scheme for segmentation as explained in Section 5.

• Surface Reconstruction

To demonstrate the segmentation performance and present an application example, surfaces
are reconstructed using segmentation information. Once the point cloud has been segmented,
surface reconstruction is performed for each segment independently shown as the right part in Figure 3,
to which parallel processing can be easily applied. In Section 6, reconstruction based on plane fitting
and alpha shape is described in detail.

LiDAR Frames

Frame1

Frame2

Frame3

FrameM

�
�
�

Transformation
  matrix

Transformation
  matrix

Transformation
  matrix

���

���

���

�
�
�

3D Segment1

3D Segment2

3D Segment3

3D SegmentN

�
�
�

Planar model 
representable?

Map all points
 to plane

Extract concave
boundary

3D alpha shape
reconstruction

YES

NO

���

���

���

(Section 6.1)

(Section(6.2)

3D 
Segmentation

 Segments 

combination

 Segments 

combination

 Segments 

combination

3D Segment1

3D Segment2

3D Segment3

3D SegmentN

�
�
�

Planar model 
representable?

Map all points
 to plane

Extract concave
boundary

3D alpha shape
reconstruction

YES

NO

���

���

���

(Section 6.1)

(Section(6.2)

(Section 4) 

(Section 5) 

Figure 3. Block diagram of the pipeline for a processing point cloud.

4. Scanline Continuity Constraint (SLCC) Segmentation

In this section, we introduce the SLCC segmentation method for sparse and non-uniform
point clouds. We explain the method of Scanline clustering and then agglomeration of these clusters.

4.1. Clustering of Scanlines

Omnidirectional LiDAR devices usually obtain 360◦ range information in a horizontal direction
by spinning laser beams along the vertical axis. We cluster the scanlines based on the observations
discussed next (illustrated in Figure 4). The distance between two consecutive points when observed
from a particular object does not change drastically along the direction of scanning. The change of
the angle between two vectors formed by two groups of consecutive points from an object maintains
continuity. The second observation has special implications when segregating two adjacent but
perpendicular parts, such as two intersecting walls of a corner.

Based on these two observations, we divide the scanlines from different objects into different
segments. The pseudocode of the process is shown in Algorithm 1.
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Algorithm 1: Scanline clustering
Input :The point cloud Pi generated by the i-th frame Fi

cth: coefficient for jumping’s threshold (cth = 5 in this work)
∆θ: horizontal angular resolution of device (∆θ is 0.165◦ for Velodyne HDL-32 LiDAR)
θth: threshold for intersection angle of two vectors (θth = 80◦ in this work)

Output :The set of clustered Scanlines
1 Scanline cluster {c}← ∅
2 list of Scanline clusters {C} ← ∅
3 divide Pi into {L(i,1), L(i,2), . . . , L(i,j)}

4 foreach L in L(i,j) do
5 foreach pm in L do
6 dth ← CalcDisThre(pm, ∆θ, cth)

7 d← CalcDistance (pm)
8 θ ← CalcAngle (pm)
9 if d < dth and θ > θth then

10 add point pm to {c}
11 else
12 add {c} to {C}
13 {c} ← ∅
14 add point pm to {c}
15 end
16 end
17 end
18 return {C}

θ

d

Figure 4. Two constraints of Scanline continuity. 1. d : distance of two consecutive points (green lines
show the distance of two consecutive points from the same object, black lines show the same from
different objects); 2. θ: the angle between two vectors of two groups of consecutive points. Two points
are considered to be from two objects if either d or θ exceeds the user-defined thresholds.

First, we divide every frame of the point cloud Pi into scanlines {L(i,1) . . . , L(i,j)} where j equals
the number of laser beams of the 3D LiDAR. For each scanline L, we perform clustering by judging
whether two consecutive points belong to a same object along the scanning direction. For a point pm

in L, if the Euclidean distance (function CalcDistance(pm) in Algorithm 1) between pm and its next
point pm+1 is less than the distance threshold d and the intersection angle (function CalcAngle(pm) in
Algorithm 1) between the vectors (pm−1− pm) and (pm+1− pm+2) is less than the angular threshold θth,
the points pm and pm+1 are considered to have been scanned from the same object and are clustered
into the same scanline segment. In order to make the algorithm more robust, more consecutive points
can be selected to estimate the vectors.

With respect to the distance threshold parameter, we notice that the theoretical interval between
two consecutive points changes as the angular resolution or measurement range changes (Figure 5).
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Hence, we introduce an adaptive distance threshold (function CalcDisThre(pm, ∆θ, cth) in Algorithm 1)
by multiplying the theoretical interval with a user-defined constant cth. Furthermore, while calculating
the theoretical interval, the effect of the incident angle between the laser and the scanned object is also
considered (See Figure 6). The final dth is approximately calculated as:

dth ≈
r·∆θ·cth

sin α
(1)

where the incident angle α is estimated to be the first principal vector when the first principal
component ratio of {pm−n, . . . , pm} is greater than 0.9 after the Principal Component Analysis (PCA).
Otherwise it is set to 90◦.
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Figure 5. Theoretical interval of two consecutive points for different angular resolution and ranges.
We can see that the distance of consecutive points increases greatly as range increases. This is the
reason why we introduce an adaptive threshold for clustering scanlines.
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Figure 6. The effect of the incident angle to the theoretical interval of point pm. ∆θ is the resolution
angle in a horizontal direction. r is the range from point pm to the LiDAR. α is the incident angle. di

represents the theoretical interval.

There are mainly two differences between the proposed method and the method of scanline
clustering proposed in [14]. The first difference is that the threshold for the Jump Distance Cluster
(JDC) is empirically decided as a fixed value in [14], while we also consider the fact that the distance
between two consecutive points increases as the scanning range increases. To take this into account,
we introduce the adaptive threshold which is especially significant for a large-scale scene. The
second difference is that we consider not only continuity in distance, but also in the directional sense.
This ensures that scanlines from adjacent but irrelevant objects will be divided separately, decreasing
the possibility of under-segmentation.

4.2. Agglomeration of Scanline Clusters

Scanline clusters are processed individually to train an AdaBoost classifier for people detection
in [14]. In our work, we agglomerate these clusters for 3D segmentation using a method that can be
adapted for arbitrary 3D object classification and recognition.
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Two criteria are used to decide whether two scanline clusters belong to a single segment. The first
one is the Euclidean distance between the centroids of the two clusters. The centroid point pc of a
cluster C is calculated using Equation (2).

pc =
∑n

i=1(pi)

n
(2)

where pi = (xi, yi, zi) ∈ R3 and n is the number of points in the scanline cluster C. As in the case of
scanline clustering, we apply an adaptive threshold to judge the distance between two centroids with
the only difference being that the angular resolution is in the vertical direction.

The other criterion is the similarity of two clusters. This is decided using the PCA results of
the two clusters. By decomposing all the 3D points in one scanline cluster on the three principal
basis with PCA, we compute the components’ ratio vector λ = (λ1, λ2, λ3)

T on the basis vectors
M = (µ1, µ2, µ3)

T , where λ1 to λ3 represent the first to the third component ratio on the base µ1 to
µ3 respectively.

Any two clusters Cj and Ck are considered to be from the same object if their PCA results satisfy
the following conditions. 

|λj − λk| < sr

∑3
i=1

λ
j
i+λk

i
2 · <µ

j
i ,µ

k
i >

|µj
i |·|µ

k
i |

> sb
(3)

Here, sr and sb represent user-defined thresholds related to the similarity of two clusters on the
basis of the component ratio vectors and the basis vectors respectively. Algorithm 2 shows the process
of agglomeration of the scanline clusters in detail.

Algorithm 2: Agglomeration of Scanline clusters
Input : {C(i,k)}: Set of clustered Scanlines of Pi

cth_g: coefficient of distance’s threshold for agglomeration (cth_g = 5 in this work)
sr: ratios’ threshold for similarity (sa = 0.2 in this work)
sb: basis vectors’ threshold for similarity (sb = 0.9 in this work)

Output : The set of 3D segments for Pi
1 list of segments {S}← ∅

2 while {C(i,k)} is not empty do
3 segment {s}← ∅
4 take one cluster out from {C(i,k)} and add it into {s}
5 foreach Scanline cluster Ca in {C(i,k)} do
6 pc_a ← CalcCentroid(Ca)

7 foreach scan lin cluster Cb in {s} do
8 pc_b ← CalcCentroid (Cb)
9 dth_g ← cth_g ∗ |pc_a|

10 dg ← CalcDistance(pc_a, pc_b)

11 if dg < dth_g and IsSimilar(Ca, Cb, sr, sb) then
12 add Cb to segment
13 remove Cb from {C(i,k)}
14 end
15 end
16 end
17 add {s} to {S}
18 end
19 return {S}
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5. Incremental Recursive Segmentation (IRIS)

By applying the processes described in previous sections, we can segment a point cloud Pa

into {Sa,l}. When a point cloud with new spatial information or details Pb is acquired, the segmentation
of the combined point cloud ofPa andPb is performed. The conventional approach used to achieve this
consists of aligning and combining the two point clouds into a single new point cloud and performing
segmentation on the new combined point cloud. As stated previously, this procedure is not efficient
in terms of time and memory consumption, especially for applications that require the point cloud
to be frame-wise segmented or updated frequently. We propose an incremental scheme to address
this drawback. As the first step, the transformation matrix from Pb to Pa needs to be estimated.
There are many existing methods, such as ICP [29], Generalized-ICP [30], LOAM [12] and semantic
alignment [31] to calculate the transformation matrix. To simplify the explanation, Pb represents the
point cloud that has been transformed. In practical environments, point clouds of dynamic objects,
such as pedestrians, can be removed to get a clear reconstruction either by tightening the thresholds of
the proposed method or identifying them with the method in [32].

5.1. Combination of Segments from Different Point Clouds

Pb is segmented into {S(b,l)} first. Next, we randomly pick out one segment Sa from {P(a,j) } and
check its relation to each segment of {P(b,j)} successively. If Sa and some segment Sb from Pb are judged
as being from the same object by the method in Section 5.3, we add Pb to Pa. If there is no paired
segment for Sa found after traversing all the segments in {S(b,j)}, Sa is considered to be a segment
of the final output. The same process is repeated until {P(a,j) } is empty. The final result consists of
the unpaired segments of {S(a,j)} and the expanded {S(b,j)}. Algorithm 3 shows the pseudocodes of
this procedure.

5.2. Recursive Process for a More General Situation

Algorithm 3 only explains the case of two point clouds. This method can also be extended
to recursively process more general situations. For a series of continuous point clouds {P1, . . . ,Pj},
the last point cloud P is segmented and combined with segments of the combined point cloud
of {P1, . . . ,P(j−1)} once they have been segmented. Otherwise, we keep searching forward until
the segmented point cloud is available. The function IRIS in Algorithm 4 represents the recursion
of Algorithm 4.

5.3. Similarity of 3D Segments

To combine segments from different point clouds, quantitative criteria are needed to decide
whether two segments belong to the same object (function IsSameObject(Sa,Sb) in Algorithm 3).
Examples of intuitive criteria are the range overlap of two segments or the distance between two
segment centroids. However, in actual situations, it is very difficult to arrive at a decision based only
on these conditions because of the sparsity and non-uniformity of point clouds and the presence of
measurement and mis-registration errors. We thus introduce a linear classifier to solve this problem.
Its principle is explained in the following.

An object can be scanned into different point clouds generated by different frames swept in
different positions. After these point clouds are registered, the points that present the same object
will have a high degree of overlap. We use the degree of overlap of points from the segments to
judge whether the segments are from the same object. An example is illustrated in Figure 7. The grey
pyramid on the left side represents a real object. It is scanned by three frames (denoted by Frame 1, 2,
and 3) in different positions. Then, three point clouds generated by these frames are segmented with
the proposed SLCC method independently. Three groups of points in the middle column show the
segments that represent the pyramid in the three point clouds. After the registration of these point
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clouds, three segments are mapped to the same coordinate system and shown as the right point cloud.
As they fully overlap each other, we consider these segments as representing the same object.

Algorithm 3: Combine segments of two point clouds for IRIS
Input : {S(a,l)}: Segments of point cloud Pa

Pb: Newly acquired point cloud
Output : Segments of the combined point cloud

1 The set of segments {S} ← ∅

2 Segment Pb into {S(b,l)}
3 while {S(a,l)} is not empty do
4 foreach Sa in {S(a,l)} do
5 foreach Sb in {S(b,l)} do
6 if IsSameObject(Sa,Sb) then
7 Sb ← MergeTwoSegments (Sa,Sb)
8 remove Sa from {S(a,l)}
9 break

10 end
11 end
12 if not break then
13 add Sa to {S}
14 remove Sa from {S(a,l)}
15 end
16 end
17 end
18 {S} ← {S} ∪ {S(b,j)}
19 return {S}

Algorithm 4: IRIS
Input :A series of continuous point clouds {P1, . . . ,Pj}
Output : Segments of the combined point cloud from P1 to Pj

1 if the number of point clouds equals to 1 then
2 return SegmentPointCloud (P1)
3 else
4 if the combined point cloud of {P1, . . . ,Pj−1} is segmented then
5 return CombineSegments (IRIS ({P1, . . . ,Pj−1}),SegmentPointCloud (Pj))
6 else
7 return IRIS ({P1, . . . ,Pj−1})
8 end
9 end
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Frame1

Frame2

Frame3

Figure 7. Example for combining segments. The middle red, green, blue point clouds are three scanned
frames of the left object from different positions and angles, the right one shows the combined segment.

However, unlike polygons in 2D or polyhedrons in 3D, it is not easy to define the rate of overlap
of 3D point clouds. We utilize the concept of the linear classifier to quantify this factor. If there
exists a 3D plane that separates the two segments completely, we consider no overlap present (refer
to Figure 8a). Otherwise, they are considered as being overlapped with each other (for example in
Figure 8b). The degree of overlap is defined as mT+nT

m+n , where m, n are the numbers of m + n points in
two segments and mT , nT represent the number of points distinctly separated by the plane. The optimal
3D plane that maximizes the rate of overlay is estimated with a perceptron classifier. Coordinates of
the 3D point are used as features. For two segments that consist of m and n points, respectively, m
samples labeled as 0 and n samples labeled as 1 are input to train the perceptron. The training score
indicates the degree of overlap. For example, if the score equals 1, it means there exists a 3D plane
that completely separates the two segments with the rate of the overlay being 0. If the score of the
training is less than the threshold defined by max (0.99, m

m+n , n
m+n ) in this study, the two segments are

considered to belong to the same object.

(a) (b)

Figure 8. Linear classifier to judge whether two segments should be combined. (a) A separating plane
exists between the red and blue point cloud, so we consider them as derived from different objects;
(b) No plane could completely separate them, so we consider them as being from the same object.

In practical situations, a registration error of multiple sets of point clouds is inevitable. Figure 9
illustrates a situation affected by a registration error. In Figure 9, the red and blue points represent
segments of the same planar object such as a wall, in two different point clouds. They are supposed
to be mapped to the same plane as in Figure 8a and considered as being from the same object after
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registering the point clouds. Nevertheless, a tiny “crevice” is generated due to such a registration
error. As a result, there exists a plane that completely separates the two segments, which are judged as
belonging to different objects. To ensure robustness to the registration error, we impose a prerequisite
on the shapes of the two segments before sending them to the perceptron classifier. If two segments
are fitted to two parallel planes, they are still considered to belong to the same object if the distance
between the two planes is less than a certain tolerance (0.5 m in this study).

Figure 9. A challenge caused by registration error. The red and blue point clouds show scanned data of
a plane such as a wall or roof, and they should be intersecting as in Figure 8b. However, a separating
plane exists in the gap caused by registration errors, which indicates that they are from different
objects. For this situation, we map the red and blue points into the same plane and then judge with a
linear classifier.

6. Surface Reconstruction

Surface reconstruction makes the point cloud appear more real and plays an important role in
applications such as VR games, 3D games, and 3D animation. The quality of surface reconstruction
relates to the density of the point cloud, with more points increasing the memory and time consumption.
The process of modeling results in the best reconstruction with the least points for surfaces that can be
represented by primitive shapes.

In this section, we describe the processing procedure after performing combination of segments
from different frames. For each combined segment, we use RANSAC to detect whether a segment is a
planar shape and estimate the parameters of the plane if it is. A segment is considered to be a planar if
the percentage of inlier points exceeds a threshold. For segments that are not planar, the surface is
reconstructed based on the 3D alpha shape.

6.1. Planar Fitting and Polygon Boundary Extraction

For each combined segment, we try to estimate whether it is a plane by using the RANSAC
planar model. If the percentage of detected inlier points exceeds the threshold, we process this segment
as a planar shape. We consider the outliers to be caused by measurement or registration errors.
To preserve more geometrical details and eliminate the effects of registration errors, we first map all
the points including outliers to the estimated plane. Then the original 3D segment is converted into a
2D segment and the boundary points are extracted by detecting its concave hull based on the alpha
shape as shown in Figure 10.

6.2. Surface Reconstruction for Non-Planar Shapes with Alpha Shape

If the percentage of detected inlier points is less than the threshold value, we consider the
segment to be a non-planar shape. Because the points obtained by LiDAR devices are not uniformly
distributed, it is difficult to generate the mesh with one point and its kNN points. Therefore, for these
non-planar segments, we reconstruct the surface based on the 3D alpha shape [33,34] implemented
by a Visualization Toolkit (VTK) [35]. An intuitive understanding of the alpha shape is that it uses
circles or spheres with an alpha-value-related radius to find the hull of a set of unorganized 2D or
3D points. The alpha shape prevents unnecessary surface reconstruction as opposed to the Delaunay
triangulation method, as show in Figure 11.
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(a) (b) (c)

Figure 10. Processing for planar segments. (a) An input point cloud segment that is detected as a
planar shape; (b) All points are mapped in the detected plane, and boundary points are extracted;
(c) Planar surface is reconstructed.

(a) (b)

Figure 11. Surface reconstruction comparison. Green points represents vertexes of the point cloud.
(a) Shows the reconstructed surface by 3D Delaunay triangulation, where a 3D convex hull is
constructed; (b) shows the result based on alpha shape. We can see that surfaces are better reconstructed
based on alpha shape rather than Delaunay triangulation.

7. Results and Discussion

We evaluate our method with a series of datasets collected from a handheld Velodyne HDL-32E
LiDAR sensor. It is possible to collect data from places that are narrow or have obstacles (such as stairs,
places after disasters and in the crowd) using this method of data acquisition. However, such scenarios
introduce more challenges in data processing. The characteristics of each dataset (listed in Table 1) and
experimental results on each dataset are shown in this chapter. On account of space limitation, only
representative segmentation results and surfaces results are shown and discussed in this section. All
evaluations were performed on a workstation running Ubuntu 16.04 with an Intel Xeon E5-2609 CPU
@ 2.40GHz and 16GB of RAM.

7.1. Datasets

Three datasets were collected for evaluating our proposed method. According to the area
under consideration, they are labeled as Corridor, Lobby and Underground shopping mall, and
represent small, medium and large-scale environments respectively. All the three datasets generate
approximately 70,000 3D points per frame. A sample point cloud and panoramic image of each of the
datasets is shown in Figure 12.

7.2. Time Performance of IRIS

We apply the Region Growing and IRIS Region Growing algorithms on all three datasets.
Time consumption is tested from one frame of point cloud to sixteen frames of point clouds. The time
of transforming the point cloud is not considered for both methods. For example, if n frames of point
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clouds are processed, the time consumption in the case of Region Growing is the time taken to segment
the combined point cloud of n frames with Region Growing. For IRIS Region Growing, it consists of
the time taken to segment the n-th frame of the point cloud and the time taken to combine segments of
the n-th frame and the previous n− 1 frames. The results are shown in Figure 13. We can see that the
processing time increases drastically for Region Growing as the number of frames increases, while it
increases slowly for IRIS Region Growing, which effectively utilizes the previous segmentation results.
It is interesting that for some frames, as the number of frames increases, the processing time decreases
instead (for example, 11 frames in Figure 13c). That is because the number of segments in the last
frame is relatively small, and consequently the combination time of segments decreases.

(a) (b) (c)

(d) (e) (f)

Figure 12. Three datasets are used in this work. (a–c) Point clouds of the Corridor, Lobby and
Underground shopping mall dataset respectively; (d–f) Panoramic images of the three datasets.

(a) (b) (c)

Figure 13. Time performance of IRIS . Both Region Growing and IRIS Region Growing are applied
to the three datasets from one frame to sixteen frames of point clouds. (a–c) Results of the Corridor,
Lobby and Underground shopping mall are shown respectively. The time consumption of IRIS Region
Growing is calculated without considering the computation time of previous frames.

Table 1. Statistics of the evaluated datasets

Dataset Corriodr Lobby Underground Shopping Mall

Area (m3) 13.7 × 16.4 × 3.2 73.8 × 60.5 × 6.0 137.8 × 37.4 × 16.1
mean (m) 1.9 6.5 7.8
std. (m) 1.8 4.5 4.8

Points per frame 70,000
Number of frames 24 12 16
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7.3. Segmentation Performance

7.3.1. Scanlines Clustering

We compare the result of clustering scanlines for a single frame using the method in [14] and our
proposed method. The results of clustering are shown in Figure 14. The left part in Figure 14b will
cause under-segmentation after the agglomeration of scanline clusters, while the left part in Figure 14d
will not, by virtue of having taken the continuity in direction into consideration. The right part in
Figure 14b will cause under-segmentation after the agglomeration of scanline clusters, while the right
part in Figure 14d will not. This is because of using an adaptive threshold and considering the incident
angle. In general, our proposed method clusters scanlines more appropriately and suppresses over-
and under-segmentation of the point cloud.

1 
 

 

(a) (b) 

(c) (d) 

Figure 14. Scanline clustering comparison. (a,b) show the result of the method in [14], and (c,d) show
the result of our proposed method for Scanline clustering. Magnified images are shown in (b,d).
Compared with the left part in (d), the left part in (b) will cause under-segmentation after the
agglomeration of Scanline clusters. Compared with the right part in (d), the right part in (b) will
cause over-segmentation after the agglomeration of scanline clusters (see the red dash line ).

7.3.2. Segmentation

In the next step, the scanlines clustered in the last step are agglomerated into 3D segments.
We compare the segmentation results of the Region Growing algorithm and our proposed SLCC for a
frame of the point cloud (see Figure 15). Some example results of irregularly shaped objects segmented
by SLCC are shown in Figure 16. For multiple frames of point cloud, the results of Region Growing,
IRIS Region Growing and IRIS SLCC are compared in Figure 17.

From Figure 15, we can see that our proposed SLCC segmentation method performs better than
the Region Growing method in terms of over-segmentation (bound by blue lines in Figure 15b) and
miss-segmentation (the magnified images in Figure 15d). For the case of multiple frames of point clouds,
on comparing Figure 17a,c, we observe that Region Growing is prone to over-segmentation mainly
due to the non-uniformity of the point cloud. The incremental scheme IRIS is able to suppress the
over-segmentation besides increasing the efficiency as shown in Section 7.2. This is because the process
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(Algorithm 3) of combining segments compresses the previous segments ({S(a,l)} in Algorithm 3) into
new segments ({S(b,l)} in Algorithm 3). Thus, the number of final segments is comparable to the
number of new segments. However, over-segmentation (upper rows in Figure 17b,d,f ) increases for
all three methods, as the number of frames increases.

As we stated in Section 4, the SLCC segmentation method agglomerates the scanline clusters
according to their relative similarity. Compared with conventional scanline based methods, SLCC is
able to segment not only objects of primitive geometrical shapes but also irregularly shaped objects.
The thresholds in Algorithms 1 and 2 can be adjusted accordingly to adapt for the desired segmentation
in different environments. For example, for the constraint of direction, the continuity in direction can
be relaxed to segment pedestrians in the scanlines clustering step.

1 
 

 

(a) (b) 

(c) (d) 
Figure 15. Segmentation results for one frame of point cloud. (a,b) show results with Region Growing,
and (c,d) show results with our proposed SLCC. From the magnified images in the right column, our
proposed SLCC performs better in avoiding miss-segmentation (marked by boxes with black, red and
magenta lines) and over-segmentation (marked by the box with blue lines).

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 16. Examples of irregularly shaped objects segmented by SLCC. (a–d) Pedestrian, pedestrian,
two pedestrians side by side, pedestrian segmented from the Underground shopping mall dataset;
(e–h) cyclist, cyclist, pedestrian, car segmented from the KITTI dataset [36].
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1 
 

 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 17. Comparison of segmentation results on multiple frames. Results of Region Growing,
IRIS Region Growing and SLCC are shown from upper to lower rows respectively. Magnified images
are shown in the right column. (a,b) Region Growing is prone to over-segmentation due to the
sparsity and non-uniformity; (c,d) Over-segmentation of Region Growing is also suppressed by IRIS;
(e,f) A small car is well segmented by IRIS SLCC (marked by the box with magenta lines).

7.4. Surface Reconstruction

We fit every individual segment to the plane model for segments that are planar and reconstruct
the surface based on the alpha shape for segments that are not planar. The results are visualized using
the open source software Visualization Toolkit (VTK) [35].

Surface reconstruction of the frame point cloud is shown in Figure 18. We observe, from
Figure 18b, that there are many creases when the surface is constructed directly without surface fitting.
On implementing the process discussed in Section 6.1, the creases are flatter, as shown in Figure 18d.
Surface reconstruction of the segments of multiple frames is shown in Figure 19. Multiple colors on
the planar surface of magnified images are examples of over-segmentation due to registration error.
More results of surface reconstruction can be found in Figure 20.
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1 
 

 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 18. Surface reconstruction of a single frame point cloud without regularization. (a,b) show
surface reconstruction based on alpha shape without plane regularization for comparison. (c,d) show
the result after plane regularization. We can see that creases are flatter.

1 
 

 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 19. Surface reconstruction results for a multiple point cloud of LiDAR. Different colors of the
plane indicate over-segmentation. (a,b) Region Growing; (c,d) IRIS Region Growing; (e,f) IRIS SLCC.
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(a) (b)

(c) (d)

(e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 20. (a–l) More surface reconstruction results on three datasets. (a,c,e) Results using Region
Growing for one frame on three datasets; (b,d,f) results using SLCC for one frame on three datasets;
(g–l) results using Region Growing, IRIS Region Growing and IRIS SLCC for the Corridor and
Entrance datasets.
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7.5. Limitations

Scanlines from two different objects that are very close may not be appropriately separated with
the proposed SLCC method. For instance, the scanline of the left foot is agglomerated into the segment
of the ground as shown in Figure 16a and the wheels of the bicycle are also agglomerated into the
segment of the ground as shown in Figure 16e,f. On the other hand, the object with a wide range is
prone to being over-segmented. For example, the ground is over-segmented into several segments as
shown in Figures 15c and 17e. Both of these two situations mostly occur on the segmentation related
to the ground. A preprocessing for detecting and removing of the ground plane with methods such as
RANSAC can be applied to improve the segmentation result.

8. Conclusions and Future Work

In this work, we present an optimized segmentation method, SLCC, customized for sparse and
non-uniform mobile LiDAR data and an incremental scheme, IRIS, which can be adapted for any
segmentation algorithm. SLCC segments the point cloud based on the continuity of consecutive
points in terms of distance and direction. We utilize an adaptive threshold and take into account the
incident angle to help overcome challenges related to the sparsity and non-uniformity of the point
cloud. This minimized the possibility of miss-segmentation and over-segmentation. The incremental
scheme IRIS can be adapted for any segmentation algorithm to combine the segments of different
point clouds. It can also be used to segment a series of continuous frames of the point cloud recursively.
IRIS utilizes the previous segmented results, thereby increasing the efficiency of segmentation.

We evaluated the effectiveness of IRIS and the segmentation performance of SLCC for a single
frame and that of IRIS SLCC for multiple frames of point clouds on three datasets of different scales.
In order to obtain a comparative study, we also performed segmentation using Region Growing.
In terms of the time consumption, our proposed IRIS scheme shows an increase in the efficiency
of segmentation when the segmentation results of the previous point cloud are available. As for
segmentation, Region Growing possesses very good generality for segmenting a variety of point
clouds. However, Region Growing becomes prone to over- and under-segmentation for the point
cloud of mobile LiDAR data due to the sparsity and non-uniformity of the data, while our proposed
SLCC exhibits better segmentation results. Despite the increased density of the point cloud obtained
by combining multiple frames, over-segmentation is observed using Region Growing. Interestingly,
over-segmentation is greatly suppressed by implementing Region Growing with IRIS. As an application
example, the automatically refined surface of each segment is reconstructed, which demonstrates the
quality of the segmentation results. From the reconstructed surfaces of multiple frames of point clouds,
over-segmentation of planar objects by all three segmentation methods can be seen. This is caused by
the registration error and can be improved by making the drift of registration smaller.

LiDAR devices are often used together with RGB panoramic cameras. Our future research efforts
will focus on two subjects. One is the derivation of the calibration matrix between LiDAR and the
panoramic camera. The correspondence of segmentation in both a 3D point cloud and a 2D image can
be used to find the solution. The other is automatic texture extraction from panoramic images and
automatic mapping onto the reconstructed surfaces that can be generated by the method proposed in
this work.
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