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Abstract: The objective of this paper is to propose a new semi-empirical radar backscattering model
for bare soil surfaces based on the Dubois model. A wide dataset of backscattering coefficients
extracted from synthetic aperture radar (SAR) images and in situ soil surface parameter measurements
(moisture content and roughness) is used. The retrieval of soil parameters from SAR images
remains challenging because the available backscattering models have limited performances. Existing
models, physical, semi-empirical, or empirical, do not allow for a reliable estimate of soil surface
geophysical parameters for all surface conditions. The proposed model, developed in HH, HV, and
VV polarizations, uses a formulation of radar signals based on physical principles that are validated
in numerous studies. Never before has a backscattering model been built and validated on such an
important dataset as the one proposed in this study. It contains a wide range of incidence angles
(18◦–57◦) and radar wavelengths (L, C, X), well distributed, geographically, for regions with different
climate conditions (humid, semi-arid, and arid sites), and involving many SAR sensors. The results
show that the new model shows a very good performance for different radar wavelengths (L, C, X),
incidence angles, and polarizations (RMSE of about 2 dB). This model is easy to invert and could
provide a way to improve the retrieval of soil parameters.

Keywords: new backscattering model; Dubois model; SAR images; soil parameters

1. Introduction

Soil moisture content and surface roughness play important roles in meteorology, hydrology,
agronomy, agriculture, and risk assessment. These soil surface characteristics can be estimated using
synthetic aperture radar (SAR). Today, several high-resolution SAR images can be acquired on a given
study site with the availability of SAR data in the L-band (ALOS-2), the C-band (Sentinel-1), and the
X-band (TerraSAR-X, COSMO-SkyMed). In addition, it is possible to obtain SAR and optical data for
global areas at high spatial and temporal resolutions with free and open access Sentinel-1/2 satellites
(six days with the two Sentinel-1 satellites and five days with the two Sentinel-2 satellites at 10 m
spatial resolution). This availability of both Sentinel-1 satellites and Sentinel-2 sensors, in addition to

Remote Sens. 2016, 8, 920; doi:10.3390/rs8110920 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 920 2 of 14

Landsat-8 (also free and open access), allows the combination of SAR and optical data to estimate soil
moisture and vegetation parameters in operational mode.

The retrieval of soil moisture content and surface roughness requires the use of radar backscatter
models capable of correctly modelling the radar signal for a wide range of soil parameter values.
This estimation from imaging radar data implies the use of backscattering electromagnetic models,
which can be physical, semi-empirical, or empirical. The physical models (e.g., integral equation
model “IEM”, small perturbation model “SPM”, geometrical optic model “GOM”, physical optic
model “POM”, etc.), based on physical approximations corresponding to a range of surface conditions
(moisture and roughness), provide site-independent relationships, but have limited validity depending
upon the soil roughness. As for semi-empirical or empirical models, they are often difficult to apply
to sites other than those on which they were developed and are generally valid only for specific
soil conditions. The empirical models are often favored by users because the models are easier to
implement and invert [1–7].

Among the numerous semi-empirical models reported in the literature, the most popular are
those developed over bare soils by Oh et al. [8–11] and Dubois et al. [12]. The Oh model uses the ratios
of the measured backscatter coefficients HH/VV and HV/VV to estimate volumetric soil moisture (mv)
and surface roughness (Hrms), while the Dubois model links the backscatter coefficients in HH and
VV polarizations to the soil’s dielectric constant and surface roughness. Extensive studies evaluated
various semi-empirical models, but mixed results have been obtained. Some studies show good
agreement between measured backscatter coefficients and those predicted by the models, while others
have found great discrepancies between them (e.g., [13–16]). The discrepancy between simulations
and measurements often reach several decibels, making soil parameter estimates unusable.

The objective of this paper is to propose a robust, empirical, radar backscattering model based
on the Dubois model. First, the performance of the Dubois model is analyzed using a large dataset
acquired at several worldwide study sites by numerous SAR sensors. The dataset consists of SAR
data (multi-angular and multi-frequency) and measurements of soil moisture and surface roughness
over bare soils. Then, the different terms of Dubois equations that describe the dependence between
the SAR signal and both sensor and soil parameters have been validated or modified to improve
the modelling of the radar signal. Ultimately, a new semi-empirical backscattering model has been
developed for radar scattering in the HH, VV, and HV polarization from bare soil surfaces.

After a description of the dataset in Section 2, Section 3 describes and analyzes the potential
and the limitations of the Dubois model in radar signal simulations over bare soils. In Section 4,
the new model is described and its performance is evaluated for different available SAR data (L-, C-
and X-bands, incidence angles between 20◦ and 45◦). Conclusions are presented in Section 5.

2. Dataset Description

A wide experimental dataset was used, consisting of SAR images and ground measurements
of soil moisture content and roughness collected over bare soils at several agricultural study sites
(Table 1). SAR images were acquired by various airborne and spaceborne sensors (AIRSAR, SIR-C,
JERS-1, PALSAR-1, ESAR, ERS, RADARSAT, ASAR, and TerraSAR-X). The radar data were available
in L-, C-, and X-bands (approximately 1.25 GHz, 5.3 GHz, and 9.6 GHz, respectively); with incidence
angles between 18◦ and 57◦; and in HH, VV, and HV polarizations. For several reference plots, the
mean backscatter coefficients have been obtained from radiometrically and geometrically calibrated
SAR images by averaging backscatter coefficient values for each plot for all pixels within the plot.

In addition, in situ measurements of soil moisture (mv) were available for each reference plot.
The soil water content was collected from the top 5–10 cm of each reference plot at several locations
using the gravimetric method and a calibrated time domain reflectometry (TDR) probe. In practice, the
soil moisture for each reference plot was assumed to be equal to the mean of all measurements carried
out on the reference plot within a few hours of the SAR overpasses. In our experimental dataset,
the soil moisture ranged from 2–47 vol%.
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Table 1. Description of the dataset used in this study. “Fr”: France, “It”: Italy, “Ge”: Germany, “Be”:
Belgium, “Lu”: Luxembourg, “Ca”: Canada, “Tu”: Tunisia.

Site SAR Sensor Freq Year Number of Data Measurements

Orgeval (Fr) [17]
Orgeval (Fr) [17–19]

Orgeval (Fr) [19]
Orgeval (Fr) [20]

SIR-C
SIR-C, ERS, ASAR

PALSAR-1
TerraSAR-X

L
C
L
X

1994
1994; 1995; 2008; 2009;

2010
2009

2008, 2009, 2010

â HH: 1569 measurements
- 144 in L-band
- 997 in C-band
- 428 in X-band

â VV: 930 measurements
- 71 in L-band
- 640 in C-band
- 219 in X-band

â HV: 605 measurements
- 7 in L-band
- 538 in C-band
- 60 in X-band

Pays de Caux (Fr) [21,22] ERS; RADARSAT C 1998; 1999

Villamblain (Fr) [23–25]
Villamblain (Fr) [13,19]

ASAR
TerraSAR-X

C
X

2003; 2004; 2006
2008; 2009

Thau (Fr) [26] RADARSAT
TerraSAR-X

C
X

2010; 2011
2010

Touch (Fr) [23,27] ERS-2; ASAR C 2004; 2006; 2007

Mauzac (Fr) [13] TerraSAR-X X 2009

Garons (Fr) [13] TerraSAR-X X 2009

Kairouan (Tu) [28]
Kairouan (Tu) [13,28,29]

ASAR
TerraSAR-X

C
X

2012
2010; 2012; 2013; 2014

Yzerons (Fr) [30] TerraSAR-X X 2009

Versailles (Fr) [13] TerraSAR-X X 2010

Seysses (Fr) [13] TerraSAR-X X 2010

Chateauguay (Ca) [21] RADARSAT C 1999

Brochet (Ca) [21] RADARSAT C 1999

Alpilles (Fr) [21] ERS; RADARSAT C 1996; 1997

Sardaigne (It) [31] ASAR; RADARSAT C 2008; 2009

Saint Lys (Fr) [32] PALSAR-1 L 2010

Matera (It) [33] SIR-C L 1994

Alzette (Lu) [34] PALSAR-1 L 2008

Dijle (Be) [34] PALSAR-1 L 2008; 2009

Zwalm (Be) [34] PALSAR-1 L 2007

Demmin (Ge) [34] ESAR L 2006

Montespertoli (It) [35]
Montespertoli (It) [36]
Montespertoli (It) [37]

AIRSAR
SIR-C
JERS-1

L
L; C

L

1991
1994
1994

The roughness was defined by the standard deviation of surface height (Hrms) available for
each reference plot. From roughness profiles sampled for each reference plot using mainly laser or
needle profilometers (mainly 1 m and 2 m long and with 1 cm and 2 cm sampling intervals), the
mean of all experimental autocorrelation functions was calculated to estimate the Hrms measurement.
However, for some in situ measurement campaigns, the meshboard technique was used for estimating
the roughness parameters. In our dataset, Hrms surface height ranged from 0.2–9.6 cm (k Hrms ranged
from 0.2–13.4, k was the radar wave number).

A total of 1569 experimental data acquisitions with radar signal, soil moisture content, and
roughness were available for HH polarization, 930 for VV polarization, and 605 for HV polarization.

3. Validation and Analysis of the Dubois Model

3.1. Description of the Dubois Model

Dubois et al. [12] proposed an empirical model to model radar backscatter coefficients in HH and
VV polarizations (σ0

HH and σ0
VV) for bare soil surfaces. The expressions of σ0

HH and σ0
VV depend on the

radar wave incidence angle (θ, in radians), the real part of the soil dielectric constant (ε), the rms surface
height of the soil (Hrms), and the radar wavelength (λ = 2 π/k, where k is the radar wavenumber):

σ0
HH = 10−2.75

(
cos1.5θ

sin5θ

)
100.028εtanθ (k Hrmssinθ)1.4 λ0.7 (1)
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σ0
VV = 10−2.35

(
cos3θ

sin3θ

)
100.046εtanθ (k Hrmssinθ)1.1 λ0.7 (2)

σ0
HH and σ0

VV are given in a linear scale. λ is in cm. The validity of the Dubois model is defined as
follows: k Hrms ≤ 2.5, mv ≤ 35 vol%, and θ ≥ 30◦.

3.2. Comparison between Simulated and Real Data

The Dubois model shows an overestimation of the radar signal by 0.7 dB in HH polarization and
an underestimation of the radar signal by 0.9 dB in VV polarization for all data combined (Table 2).
The results show that the overestimation in HH is of the same order for L-, C-, and X-bands (between
0.6–0.8 dB). For the L-band, a slight overestimation of approximately 0.2 dB of SAR data is observed in
VV polarization. Additionally, in VV polarization, the Dubois model-based simulations underestimate
the SAR data in the C- and X-bands by approximately 0.7 dB and 2.0 dB, respectively.

The rms error (RMSE) is approximately 3.8 dB and 2.8 dB in HH and VV, respectively (Table 2).
Analysis of the RMSE according the radar frequency band (L-, C-, and X-, separately) shows in HH an
increase of the RMSE with the radar frequency (2.9 dB in the L-band, 3.7 dB in the C-band, and 4.1 dB
in the X-band). In VV polarization, the quality of Dubois simulations (RMSE) is similar for the L- and
C-bands, but is less accurate in the X-band (2.3 dB in the L-band, 2.6 dB in the C-band, and 3.2 dB in
the X-band).

Table 2. Comparison between the Dubois model and real data for all data and by range of kHrms, soil
moisture (mv), and incidence angle (θ). Bias = real data − model.

Dubois for HH Dubois for VV

Bias (dB) RMSE (dB) Bias (dB) RMSE (dB)

For all data −0.7 3.8 +0.9 2.8
L-band −0.8 2.9 −0.2 2.3
C-band −0.6 3.7 +0.7 2.6
X-band −0.7 4.1 +2.0 3.2

kHrms < 2.5 +0.4 3.4 +1.3 2.9
kHrms > 2.5 −2.7 4.5 −0.1 2.5

mv < 20 vol% −2.0 4.3 +0.9 2.8
mv > 20 vol% +0.5 3.2 +0.9 2.8
θ < 30◦ −4.1 5.4 −0.6 2.9
θ > 30◦ +0.6 3.0 +1.5 2.7

In addition, the agreement between the Dubois model simulations and SAR data is analyzed
according to soil roughness, moisture content, and incidence angle (Figures 1 and 2). The results
indicate a slight underestimation of the radar signal by the Dubois model in the case of kHrms lower
than 2.5 (Dubois validation domain) for both HH and VV polarizations (Figures 1b and 2b; Table 2).
For surfaces with a roughness kHrms greater than 2.5, an overestimation of the radar signal is obtained
with the Dubois model in HH, while the model works correctly in VV (Figures 1b and 2b; Table 2).
Higher under- and overestimations are observed in HH than they are in VV (reaching approximately
10 dB in HH).

Analysis of the error as a function of soil moisture (mv) shows that for both VV-polarized data,
whatever the mv values, and HH-polarized data with mv values higher than 20 vol%, the observed bias
between real and simulated data is small (Figures 1c and 2c; Table 2). However, a strong overestimation
of the radar signal is observed by the Dubois model in HH for mv values lower than 20 vol% (−2.0 dB,
Table 2).

Finally, the discrepancy between SAR and the model is larger in HH for incidence angles lower
than 30◦ (outside of the Dubois validity domain) than for incidence angles higher than 30◦ (Table 2).
The Dubois model strongly overestimates the radar signal in HH for incidence angles lower than 30◦
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but agrees closely with the measured data for incidence angles higher than 30◦ (Figures 1d and 2d;
Table 2). In VV polarization, the Dubois model slightly overestimates the radar signal for incidence
angles lower than 30◦ and underestimates the signal for incidence angles higher than 30◦ by +1.5 dB
(Figures 1d and 2d; Table 2).

In conclusion, the Dubois model simulates VV better than it does HH (RMSE = 2.8 and 3.8 dB,
respectively). The disagreements observed between the Dubois model and measured data are not
limited to data that are outside the optimal application domain of the Dubois model.
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Figure 1. For HH polarization, (a) comparison between radar backscattering coefficients calculated
from SAR images and estimated from the Dubois model; (b) the difference between the SAR signal and
the Dubois model relative to soil roughness (kHrms); (c) the difference between the SAR signal and the
Dubois model relative to soil moisture (mv); and (d) the difference between the SAR signal and the
Dubois model relative to incidence angle. The best regression model is plotted in gray.
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Figure 2. For VV polarization, (a) comparison between radar backscattering coefficients calculated
from SAR images and estimated from the Dubois model; (b) the difference between the SAR signal and
the Dubois model relative to soil roughness (kHrms); (c) the difference between the SAR signal and the
Dubois model relative to soil moisture (mv); and (d) the difference between the SAR signal and the
Dubois model relative to incidence angle. The best regression model is plotted in gray.

4. New Empirical Model

4.1. Methodology

The disagreement observed between the measured and modelled radar signal encouraged us to
develop a new empirical backscattering model using SAR observations and soil in situ measurements.
The new model is based on the Dubois model and uses the dependency observed between the
SAR signal and soil parameters according to results obtained in various studies. For bare soils, the
backscattering coefficient depends on soil parameters (roughness and moisture) and SAR instrumental
parameters (incidence angle, polarization, and wavelength). For bare soils, the radar signal in pq
polarization (p and q = H or V, with HV = VH) can be expressed as the product of three components:

σ
◦
pq = fpq (θ) gpq (mv, θ) Γpq (kHrms, θ) (3)

The radar backscatter coefficient is related to the incidence angle (θ) by the relation
fpq (θ) = α(cosθ)β [38–40]. This relationship describes the decrease of σ◦ with the incidence angle (the
decrease is higher for low angles than for high angles).

The second term represents the relationship between the radar backscatter coefficient and soil
moisture (mv). The results obtained in several investigations show that, for bare soils, the radar
signal (σ◦) in decibels increases linearly with soil moisture (mv) when mv is in the range between
approximately 5–35 vol% (e.g., [5,6,19,41]). In the linear scale gpq (mv, θ) can be written as δ 10γ mv.
The sensitivity of the radar signal to the soil moisture γ depends on θ. Higher sensitivity is observed
for lower than for higher incidence angles (e.g., [42,43]). To include this dependence on the incidence
angle, the soil moisture value is multiplied with the term cotan (θ). Thus, gpq (mv, θ) can be written
as δ 10γ cotan(θ) mv.

The last term Γpq (kHrms, θ) represents the behavior of σ◦ with soil roughness. An exponential
or logarithmic function is often used to express the radar signal (in dB) in terms of surface
roughness ([7,41,44,45]). For a logarithmic behavior of σ◦ (dB) with k Hrms, Γpq in the linear scale
can be written as µ (kHrms)ξ . Baghdadi et al. [22] showed that at high incidence angles, the radar
return is highly sensitive to surface roughness and shows much larger dynamics than at a low incidence
angle. In addition, the term sin (θ) is intended to include this dependence with the incidence angle:
Γpq = µ (kHrms)ξ sin(θ).
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Finally, the relationship between the radar backscattering coefficient (σ◦) and the soil parameters
(soil moisture and surface roughness) for bare soil surfaces can be written as Equation (4):

σ
◦
pq = δ(cosθ)β 10γ cotan(θ) mv (kHrms)ξ sin(θ) (4)

The coefficients δ, β, γ, and ξ are then estimated for each radar polarization using the method of
least squares by minimizing the sum of squares of the differences between the measured and modelled
radar signal. The error in the modelling of radar backscatter coefficients by the new backscattering
model was assessed for each polarization using a five-fold cross-validation to validate the predictive
performance of the new model. To conduct the five-fold cross-validation, the dataset was first randomly
divided into five equal size subsets. Next, four of the subsets are used to train the new model and one
was retained to validate its predictive performance. The cross-validation process was then repeated
five times, with each of the five sub-datasets used exactly once as the validation data. The final
validation result combines the five validation results. The advantage of this method over repeated
random sub-sampling is that all observations are used for both training and validation, and each
observation is used for validation exactly once.

The fitting of various coefficients parameter in the Equation (4) was done using the entire dataset
(fitting errors are about 2 dB for all polarizations). This fitting allows writing σ◦ as a function of the
rms surface height (Hrms) and incidence angle (θ), by Equations (5)–(7):

σ
◦
HH = 10−1.287(cos θ)1.227 100.009 cotan(θ) mv (kHrms)0.86 sin(θ) (5)

σ
◦
VV = 10−1.138(cos θ)1.528 100.008 cotan(θ) mv (kHrms)0.71 sin(θ) (6)

σ
◦
HV = 10−2.325(cos θ)−0.01 100.011 cotan(θ) mv (kHrms)0.44 sin(θ) (7)

where θ is expressed in radians and mv is in vol%. Equations (5)–(7) show that the sensitivity (γ) of the
radar signal to the soil moisture in the decibel scale is 0.25 dB/vol% in HH polarization, 0.22 dB/vol%
in VV polarization, and 0.30 dB/vol% in HV polarization for an incidence angle of 20◦. This sensitivity
decreases to 0.09 dB/vol% in HH, 0.08 dB/vol% in VV, and 0.11 dB/vol% for an incidence angle of 45◦.
As for the signal’s sensitivity to soil roughness, it is of the same order of magnitude in HH and VV,
and twice as large as the HV signal. The availability of a backscatter model for the cross-polarization
component is required because most spaceborne SAR acquisitions are made with one co-polarization
and one cross-polarization, in the case of a dual-polarization mode.

4.2. Results and Discussion

4.2.1. Performance of the New Model

Results show that the new model provides more accurate results. The biases and the RMSE
decrease for both HH and VV polarizations. The RMSE decreases from 3.8 dB to 2.0 dB for HH
and from 2.8 dB to 1.9 dB for VV (Table 3). In addition, the high over- or underestimations of
radar backscattering coefficients observed with the Dubois model according to soil moisture, surface
roughness, and radar incidence angle are clearly eliminated with the new model (Figures 3 and 4).

Analysis of the new model’s performance for each radar wavelength, separately (L-, C- and
X-bands), shows that the most significant improvement is observed in the X-band with an RMSE that
decreases from 4.1 dB to 1.9 dB in HH and from 3.2 dB to 1.8 dB in VV. In the L-band, the performance
of the new model is no better than that of the Dubois model because the RMSE decreases slightly with
the new model, from 3.0 dB to 2.3 dB in HH, and remains similar in VV (RMSE = 2.3 dB with the
Dubois model and 2.7 dB with the new model). The improvement is also important for the C-band
with an RMSE that decreases from 3.7 dB to 1.9 dB in HH and from 2.6 dB to 1.9 dB in VV. With respect
to bias, the results show that it decreases with the new model for all radar wavelengths. In addition,
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the new model does not show bias according to the range of soil moisture, surface roughness, and
radar incidence angle.Remote Sens. 2016, 8, 920 8 of 14 
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Figure 3. (a) Comparison between σ◦ modelled in the new model and σ◦ measured (for all SAR bands)
for HH polarization; (b) the difference between SAR and the new model as a function of surface
roughness (kHrms); (c) the difference between SAR and the new model as a function of soil moisture
(mv), and (d) the difference between SAR and the new model as a function of incidence angle. The best
regression model is plotted in gray.

Table 3. Comparison between the results obtained with the Dubois model and those obtained with the
new model. Bias = real − model.

Dubois for HH and VV New Model

Bias (dB) RMSE (dB) Bias (dB) RMSE (dB)

HH for all data −0.7 3.8 0.4 2.0
VV for all data +0.9 2.8 0.0 1.9
HV for all data - - 0.0 2.1

HH, L-band −0.8 2.9 −0.1 2.3
HH, C-band −0.6 3.7 +0.3 1.9
HH, X-band −0.7 4.1 0.7 1.9
VV, L-band −0.2 2.3 −0.1 2.7
VV, C-band +0.7 2.6 +0.1 1.9
VV, X-band +2.0 3.2 −0.4 1.8
HV, L-band - - −1.3 1.6
HV, C-band - - +0.2 2.2
HV, X-band - - −1.3 1.9
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Figure 4. (a) Comparison between σ◦ in the new model and σ◦ measured (for all SAR bands) for VV
polarization; (b) the difference between SAR and the new model as a function of surface roughness
(kHrms); (c) the difference between SAR and the new model as a function of soil moisture (mv);
and (d) the difference between SAR and the new model as a function of incidence angle. The best
regression model is plotted in gray.

The comparison between the new model simulations in HV polarization Equation (7) and
the real data (SAR data) shows an RMSE of 2.1 dB (Table 3) (1.6 dB in the L-band, 2.2 dB in the
C-band, and 1.9 dB in the X-band). The bias (σ◦SAR—model) is −1.3 dB in the L-band, 0.2 dB in the
C-band, and −1.3 dB in the X-band. Figure 5 shows also that the new model correctly simulates
the radar backscatter coefficient in HV for all ranges of soil moisture, surface roughness, and radar
incidence angle.
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Figure 5. (a) Comparison between σ◦ in the new model and σ◦ measured (for all SAR bands) for
HV polarization; (b) the difference between SAR and the new model as a function of kHrms; (c) the
difference between SAR and the new model as a function of mv; and (d) the difference between SAR
and the new model as a function of incidence angle. The best regression model is plotted in gray.

4.2.2. Behavior of the New Model

The physical behavior of the new radar backscatter model was studied as a function of the
incidence angle (θ), soil moisture (mv), and surface roughness (kHrms).

Figure 6 shows that the radar signal is strongly sensitive to surface roughness, especially for
small values of kHrms. In addition, this sensitivity increases with the incidence angle. Concerning the
influence of polarization, the new model shows, as do many theories and experimental studies, that a
given soil roughness leads to slightly higher signal dynamics with the soil moisture in HH than in VV
polarization [17,46]. The radar signal σ◦ increases with kHrms. This increase is higher for either low
kHrms values or high θ values than it is for either high kHrms values or low θ values. For θ = 45◦, σ◦

increases approximately 8 dB in HH and 6.5 dB in VV when kHrms increases from 0.1 to 2 compared
with only 3 dB when kHrms increases from two to six (for both HH and VV). This dynamic of σ◦ is
only half for θ = 25◦ in comparison to that for θ = 45◦. In HV, the dynamic of σ◦ to kHrms is half that
observed for HH and VV.

The behavior of σ◦ according to soil moisture shows a larger increase of σ◦ with mv for low
incidence angles than for high incidence angles. Figure 6 shows that σ◦

HH and σ◦
VV increase

approximately 6 dB for θ = 25◦ compared with only 3 dB for θ = 45◦ when mv increases from five to
35 vol%. In HV, the signal increases approximately 7.5 dB for θ = 25◦ and 3.5 dB for θ = 45◦ when mv
increases from 5 to 35 vol%.
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Figure 6. Behavior of the new model as a function of incidence angle (θ), surface roughness (k Hrms)
and soil moisture (mv) in HH (a and b), VV (c and d), and HV (e and f) polarizations. (a,c,e): θ = 25◦;
(b,d,f): θ = 45◦.

As mentioned in Dubois et al. [12], the ratio σ
◦
HH

σ
◦
VV

should increase with kHrms and remain less

than 1. The new model shows that this condition is satisfied when 20◦< θ < 45◦, kHrms < 6 and
mv < 35 vol%.

5. Conclusions

This investigation’s objective is to propose a new empirical model for radar backscatter from
bare soil surfaces. The new model is based on the formulation made in the Dubois model where
the radar signal in HH and VV polarizations is described according to radar wavelength, incidence
angle, soil moisture, and roughness. This new model is based on the formulation made in the Dubois
model. A large dataset was used, composed of ground measurements and SAR images over bare
agricultural soils.

Results show that the new model provides improved results in comparison to the Dubois model
(in the case of HH and VV). Biases and RMSE have decreased for both HH and VV polarizations.
In addition, the high over- or under-estimations observed with the Dubois model for some ranges of
soil moisture, surface roughness, and radar incidence angles were clearly eliminated with the new
model. Analysis of the new model’s performance for each radar wavelength separately (L, C, and X)
shows that, in the L-band, the performance of the new model was similar to that of the Dubois model.
The model shows significant improvement in C- and X-bands (RMSE approximately 1.9 dB with the
new model and between 2.6–4.1 dB with the Dubois model).
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Based on the same equation as that used for HH and VV, a radar signal in HV polarization was
also proposed. Finally, the new empirical model proposed in the present study would allow more
accurate soil moisture estimates using the new Sentinel-1A and -1B SAR data.
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