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Abstract: In the past decades, sub-pixel mapping algorithms have been extensively developed due
to the large number of different applications. However, most of the sub-pixel mapping algorithms
are based on single-temporal images, and the results are usually compromised without auxiliary
information due to the ill-posed problem of sub-pixel mapping. In this paper, a novel spatial-temporal
sub-pixel mapping algorithm based on swarm intelligence theory is proposed for multitemporal
remote sensing imagery. Swarm intelligence theory involves clonal selection sub-pixel mapping
(CSSM), which evolves the solution by emulating the biological advantage of the human immune
system, and differential evolution sub-pixel mapping (DESM), which optimizes the solution by
intelligent operations and heuristic searching in the solution pool. In addition, considering the
under-determined problem of sub-pixel mapping, the spatial-temporal sub-pixel mapping method is
used to obtain the distribution information at a fine spatial resolution from the bitemporal image
pair, which exactly regularizes the ill-posed problem. Furthermore, the short-interval temporal
information and the fine spatial distribution information within the bitemporal image pair can be
integrated for further use, such as timely and detailed land-cover change detection (LCCD). To verify
the validation of the swarm intelligence theory based spatial-temporal sub-pixel mapping algorithm,
the proposed algorithm was compared with several traditional sub-pixel mapping algorithms, in both
synthetic and real image experiments. The experimental results confirm that the proposed algorithm
outperforms the traditional approaches, achieving a better sub-pixel mapping result both qualitatively
and quantitatively, as well as improving the subsequent LCCD performance.

Keywords: spatial-temporal sub-pixel mapping (SSM); swarm intelligence theory; clonal selection
sub-pixel mapping (CSSM); differential evolution sub-pixel mapping (DESM); land-cover change
detection (LCCD)

1. Introduction

Due to the resolution constraint of sensors, in that the instantaneous field of view (FOV) is usually
larger than the land-cover objects the sensors observe [1], the mixed pixel is a common phenomenon
in remote sensing imagery acquired by moderate/low-resolution sensors. Such pixels contain more
than one land-cover class and cannot simply be attributed to only one class by hard classification.
Therefore, the technique of spectral unmixing has been developed to handle the mixed pixel problem
by analyzing and decomposing the mixed spectra to a combination form of several single pure spectra
(endmembers) [2,3], as well as the fraction each spectra comprises in the mixed model [4–7]. In spite of
this, the outputs of the spectral unmixing still retain a coarse spatial resolution, which cannot meet the
requirement for detailed information.
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Thus, the sub-pixel mapping method has been proposed to further improve the unmixing
result by not only determining the proportion of each land-cover class within the mixed pixel,
but also the specific distribution of each land-cover class, with the unmixing output as the input,
generating a fine spatial resolution land-cover map. Sub-pixel mapping is based on the spatial
dependence assumption, i.e., pixels which are nearer are more likely to be the same land-cover class
than pixels which are further apart [8]. This idea was derived from the First Law of Geography,
proposing the idea that everything is related to everything else, but near things are more related
than distant things. It has also been proved to be an effective assumption for sub-pixel mapping
techniques [9,10]. The goal is to maximize the spatial dependence and find the most plausible
sub-pixel distribution, subsequently improving the spatial resolution relative to the input coarse image.
In the past decades, sub-pixel mapping algorithms have been widely developed. An early sub-pixel
mapping method was direct neighboring sub-pixel mapping (DNSM) [11], which is a simple and
effective way of reconstructing a more accurate land-cover map than the traditional hard classification.
Mertens et al. [9] proposed the spatial attraction sub-pixel mapping (SASM) method considering
the spatial dependence between pixels and sub-pixels, and substantially enhanced the accuracy of
the reconstructed map. Atkinson et al. [10,12–15] proposed the pixel swapping algorithm (PSSM) to
maximize the spatial dependence by swapping the sub-pixels within a coarse pixel. However, only the
spatial dependence between sub-pixels is taken into consideration, and the blind interactive swap just
increases the computational complexity. More recently, Hopfield neural networks (HNNs) [16–19],
particle swarm optimization [20], Markov random fields [21–25], the back-propagation neural network
(BPSM) [26–30], multiagent system [31], and maximum a posteriori estimation [32–34] have been
proposed to solve the problem, and have improved the reconstruction result compared to the traditional
methods. Nevertheless, most of the current sub-pixel mapping algorithms are based on single-temporal
images and only rely on the spatial dependence assumption, which cannot provide sufficient spatial
distribution information for the reconstruction of mixed pixels.

Aiming at solving this ill-posed problem, spatial-temporal sub-pixel mapping algorithms have
been proposed to obtain the spatial distribution information from the fine spatial resolution image
with the same FOV to constrain the reconstruction of the land-cover map’s spatial distribution
pattern, regularizing the under-determined problem and thus improving the accuracy of the sub-pixel
mapping result. Some research has also been done to incorporate a fine spatial resolution image
from a closer acquisition time [35–48] to solve the sub-pixel mapping problem. Ling et al. [35]
proposed a method integrating the fine image in the process of sub-pixel mapping to constrain the
solution, and further improved it in [36–39]. Wu et al. [40] also proposed an algorithm using images
of different resolutions to provide a constraint; nevertheless, the spatial attraction model used in
this framework only assigns class attributes pixel by pixel, which can easily fall into local optima.
Gao et al. [41] proposed the spatial-temporal adaptive reflectance fusion model (STARFM), considering
both spatial information from Landsat images and temporal information from Moderate Resolution
Imaging Spectroradiometer (MODIS) images; however, the result is a reflectance product instead
of a land-cover map. Huan et al. [42], Hilker et al. [43], and Hansen et al. [44] further improved the
performance of STARFM by considering sensor observation differences. Wang et al. [45–47] also used
the integration strategy to improve the sub-pixel mapping accuracy by the traditional fast sub-pixel
mapping algorithm, and they further improved the performance by adding an HNN to the framework.
However, they were only concerned with the method of integration of the fine image within the
bitemporal image pair, and the inner sub-pixel mapping algorithm, which only considers the local
spatial distribution information, was out of date, leading to a locally optimal solution.

Swarm intelligence theory is one of the most up-to-date population-based algorithms, and it has
been successfully applied to the sub-pixel mapping problem [49]. It searches for the most plausible
solution in the global population stochastically but heuristically by emulating the biological advantage
of the human system, and the typical swarm intelligence theory method is the genetic algorithm (GA).
The GA, which is based on natural selection and the natural genetic principle [49], is implemented with
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several genetic operators, such as crossover, mutation, and selection, on a set of solutions (population).
Each solution is scored by a fitness value calculated based on the spatial dependence, and the solution
with the highest score is selected to be the parent of the next generation. After a fixed number of
iterations, the solution with the highest fitness value is selected as the optimal configuration of the
coarse pixel. Nevertheless, traditional swarm intelligence theory based sub-pixel mapping algorithms
are mainly implemented on single-temporal images, which cannot provide enough distribution pattern
information for the reconstruction. In this paper, in order to obtain more auxiliary information for
the constraint of the reconstruction, and based on the principle of the GA, spatial-temporal sub-pixel
mapping based clonal selection (SSMCS) and spatial-temporal sub-pixel mapping based differential
evolution (SSMDE) are proposed based on the framework of swarm intelligence theory. The clonal
selection algorithm (CSA) [50,51], which is inspired by the artificial immune system (AIS), has a
powerful information processing capability. It evolves the solution population by a number of genetic
operators, as in the GA, but is improved by some advanced operators of initiation, selection, cloning,
mutation, reselection, and population replacement according to the AIS. It is thus able to deal with
a more complex search space than the GA. The differential evolution algorithm (DEA), which takes
advantage of the differentiation information among the population to find the global optimum in
the continuous search space, is an effective optimization technique because of its fast convergence,
robustness, and simplicity [52]. It uses genetic operators to evolve from a randomly generated initial
population to the final solution [52], during which new candidate solutions are generated and a greedy
scheme is applied to decide whether the new candidate or its parent will survive in the next generation.
Furthermore, a fusion strategy is carried out for the integration of the bitemporal image pair to provide
enough distribution information, giving a constraint for the reconstruction. The proposed methods not
only transform the sub-pixel mapping problem into a global optimization problem, which overcomes
the drawback of falling into local optima, but they also consider the integration of the distribution
pattern of the fine spatial resolution image. Meanwhile, the spatial dependence between sub-pixels
and pixels is maximized, which yields more continuous land-cover boundaries, thereby enhancing the
sub-pixel mapping accuracy.

LCCD is a way to analyze temporal changes in Earth surface properties from multitemporal
datasets [53,54]. As a result of the diverse demands of ecosystem monitoring, disaster monitoring,
urban expansion monitoring, and land management using remote sensing imagery, LCCD has become
one of the most prevalent and effective methods. The rapid changes on the Earth’s surface mean
that high-frequency temporal LCCD is becoming increasingly necessary for applications such as
crop-growth monitoring and the detection of intraseasonal ecosystem disturbance, while maintaining
a fine spatial resolution to provide adequate detail and boundary information [41]. Although sensors
such as the Advanced Very High Resolution Radiometer (AVHRR) and MODIS can provide daily
image sequences of the same district, the coarse spatial resolution of these sensors means that they are
less useful in monitoring sufficient detailed changes, and the mixed pixels, which contain more than
one land-cover class, seriously compromise the accuracy of LCCD. On the other hand, the Landsat
Thematic Mapper (TM) can obtain a relatively fine spatial resolution, but the 16-day revisit period
limits its application in detecting rapid surface changes and ephemeral events. Therefore, it is useful
to be able to fulfill both a fine temporal resolution and a fine spatial resolution for LCCD through
algorithm computation [35]. Meanwhile, in the framework of spatial-temporal sub-pixel mapping,
bitemporal image pairs are used, one of which is the coarse image to be reconstructed, and the other is
a fine spatial resolution land-cover map with the same FOV but a different acquisition time. Therefore,
the proposed SSMDE and SSMCS can be applied to reconstruct the coarse image at a fine spatial
resolution, which is then overlaid with the other fine spatial resolution image within the image pair to
obtain the land-cover change information at the sub-pixel scale, achieving a differential map with both
a fine spatial resolution (through the reconstruction process of sub-pixel mapping) and a fine temporal
resolution, exactly meeting the demands of timely and detailed LCCD.
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According to the above introduction, the main achievements of this paper can be summarized
as follows:

(1) A spatial-temporal sub-pixel mapping model is built to obtain the distribution pattern
information from the fine spatial resolution image with the same FOV according to the differential
of each land-cover type between the fine and the coarse images, which helps to provide
the sub-pixel mapping problem with a corroborative constraint and exactly regularizes this
under-determined problem.

(2) A promising swarm intelligence algorithm, which includes a clonal selection algorithm
(SSMCS) and a differential evolution algorithm (SSMDE), is successfully incorporated into the
framework of the spatial-temporal sub-pixel mapping method, which transforms the sub-pixel
mapping problem into an optimization problem and searches for an optimal solution by maximizing
the spatial dependence index (SDI). The SDI is designed to quantify the spatial dependence and
measure the spatial dependence of the spatial configuration according to the spatial dependence
assumption. It is specifically introduced and formulated in Section 2.2.

(3) The genetic parameters in swarm intelligence theory, such as the mutation rate or crossover
rate, are adaptively determined in the spatial-temporal framework by the proposed adaptive strategy,
in which a higher fitness value deserves a lower mutation rate or crossover rate to avoid destroying
the good structure of the antibodies in the population, while a lower fitness value deserves a higher
mutation rate or crossover rate to remove the bad genetic information from the population.

The rest of this paper is organized as follows. Section 2 provides the basic background and
rudimentary knowledge needed to better understand the sub-pixel mapping formulation. Section 3
logistically and systematically introduces the specific operation of the two swarm intelligence
algorithms incorporated within the spatial-temporal model (SSMDE, and SSMCS). The qualitative
and quantitative assessments implemented to verify the performance of the proposed algorithm are
described in Section 4. Finally, the conclusion and future work are summarized in Section 5.

2. Sub-Pixel Mapping Problem

2.1. Background

The spectral unmixing technique is a kind of soft classification method used to determine the
number of endmembers (land-cover classes) within a pixel and the fraction of each endmember when
the acquired imagery has a low spatial resolution and contains many mixed pixels, which involve
several land-cover classes and cannot be simply assigned to a specific class. Nevertheless, the spectral
unmixing technique provides no information about the distribution pattern of these endmembers
within the mixed pixel. Thus, the sub-pixel mapping method was developed to specifically determine
the location of each land-cover class inside the mixed pixel, and the proportion each endmember
occupies is determined by the fraction map yielded by the spectral unmixing. According to the
spatial dependence assumption that analogous geographic elements have a tendency to be closer than
disparate ones, sub-pixel mapping can reconstruct a reasonable solution compared to the corresponding
real scene by quantifying the spatial dependence and maximizing the SDI.

To describe the operation necessary for sub-pixel mapping, we should ensure the corresponding
relationship between the fine and coarse images by dividing every coarse pixel into SP sub-pixels
according to the scale factor s (that is SP = s2, where SP represents the total number of sub-pixels
inside one coarse pixel). Let us assume that X represents the coarse image with a size of M × N,
and Y represents the reconstructed map, and thus has a size of (s×M)× (s× N). Figure 1 shows
a simple example of the sub-pixel problem with two classes (class 1 and class 2), and the fraction
image of class 1 is displayed in Figure 1a in a grid with the corresponding fraction value inside each
coarse pixel. The scale factor is equal to 4, which means that one coarse pixel is divided into 16 (4× 4)
sub-pixels, and the following step is to assign class labels to these sub-pixels based on the fraction of
every class. For instance, the fraction value of class 1 in the left side of the upper coarse pixel is equal
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to 25%, which means that four (25% × 4 × 4) sub-pixels are assigned to class 1. After the operation
of assigning classes to sub-pixels, Figure 1b,c are two possible results. Since the neighboring pixels
are considered to have a significant impact on the center pixel according to the spatial dependence
assumption, sub-pixels within the same class are inclined to have a closer location, and therefore the
distribution pattern of Figure 1b is more likely to conform with the real situation.
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Figure 1. Example of the sub-pixel mapping problem: (a) A 3 × 3 grid coarse pixel divided into
16 sub-pixels (4 × 4), with the scale factor of 4; (b) The optimal sub-pixel distribution of one class;
and (c) The possible sub-pixel distribution of one class.

Although the process of sub-pixel mapping seems like a kind of per-pixel classification in a coarse
pixel from the microscopic view, it does focus on a single divided pixel from a macro perspective.
The sub-pixel mapping process is based on the spatial dependence principle that closer objects are
more likely to belong to the same class. This is consistent with the First Law of Geography, i.e., the
idea that everything is related to everything else, but near things are more related than distant things.
Therefore, the neighboring pixels are considered to have an influence, attracting the sub-pixels of the
same class in the center pixel. Furthermore, the sub-pixel mapping process also follows the fraction
constraint generated by the spectral unmixing techniques, indicating the number of classes in each
mixed pixel as well as the proportion each class occupies.

In order to clearly illustrate the sub-pixel mapping problem, a simple example is shown in Figure 2.
Figure 2a is a coarse image, for which the spatial resolution is so poor that we cannot distinguish
anything. However, based on the spatial dependence principle and the fraction constraint, we can
look into the coarse pixels, exploring the intricate patterns and boundaries of each land-cover class,
where blue represents river, green represents tree, brown represents house, and yellow represents
soil, as shown in Figure 2b. From this example, we can see that the coarse pixels are related to each
other, which is not just per-pixel classification. Thus, we do not just focus on dividing a coarse pixel
into s × s sub-pixels and per-pixel classification, and the dividing process (s × s) is just a bridge to
further discuss the specific distribution of the coarse image. Furthermore, with regard to the sub-pixel
mapping result, the spatial resolution has improved, and, therefore, when compared to the original
coarse pixel, the terminology “sub-pixel mapping” is naturally validated.
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2.2. Formulation

According to the spatial dependence assumption, real geographic scenes usually have great
spatial dependence both between and within land-cover classes, and we can therefore quantify the
spatial dependence by transforming the sub-pixel problem into an optimization problem and searching
for an optimal solution by maximizing the SDI. Supposing that the fraction map of the cth land-cover
class has been generated, then the number of sub-pixels within the center coarse pixel assigned to the
cth class can be formulated as follows:

NCc = round(SP · Fractionc) (1)

where SP is the total number of sub-pixels within the center coarse pixel, Fractionc is the fraction
occupied by the cth class, and round() means confining the argument towards the nearest integer.

In order to measure the sub-pixels’ spatial dependence of the cth class, the neighboring coarse
pixels are taken into consideration, and the formula can be expressed as:

SDIcs =
N

∑
n=1

ωn · Fractionc,n (2)

where N generally represents the eight neighboring pixels, and ωn is the inverse distance weighting
coefficient between the sth sub-pixel and the nth neighboring coarse pixel, which is calculated by
Equations (2) and (3). Fractionc,n represents the fraction value of the cth class inside the nth neighboring
coarse pixel.

ωn = 1/d (3)

d =

√
(l − j)2 + (m− k)2 (4)

where (l, m) is the coordinates of the sub-pixel inside the center coarse pixel, and (j, k) is the coordinates
of the neighboring coarse pixel. The process of distance calculation between the sub-pixel and pixel in
the sub-pixel coordinate system is illustrated in Figure 3 by a simple example with the scale factor of
4. The coordinates of the sub-pixel are (4.5, 6.5), and the coordinates of the neighboring coarse pixel
are (6, 2). According to Equations (2) and (3), the weight of the selected sub-pixel to the left middle
neighboring pixel is equal to 0.213.
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To better solve the optimization problem, we can mathematically formulate the total spatial
dependence index (TSDI) of the sub-pixels within one coarse pixel as the binary sum of the sub-pixels
inside the center coarse pixel using:

TSDI =
C

∑
c=1

SP

∑
s=1

ycs × SDIcs (5)

where ycs is a binary function to decide whether the sth sub-pixel of the cth class should be added to
the total spatial dependence, and is illustrated as follows:

ycs =

{
1, i f subpixel s is assign to class c
0, otherwise

(6)

s.t.
C

∑
c=1

ycs = 1, s = 1, 2, ..., SP (7)

SP

∑
s=1

ycs = NCc, c = 1, 2, ..., C (8)

where Equation (5) indicates that the total number of sub-pixels within the coarse pixel should be equal
to 1, and Equation (6) expresses the fraction constraint that the number of sub-pixels assigned to the cth
class should be equal to NCc. In this way, the sub-pixel mapping problem of simply assigning classes
is transformed into an optimization problem of searching for the optimal solution in a continuous
solution space through maximizing the TSDI. In this paper, we use swarm intelligence computation to
solve the optimization problem.

2.3. Swarm Intelligence Theory for Sub-Pixel Mapping Based on A Single-Temporal Image

Swarm intelligence theory is one of the latest algorithms to imitate the human system, and
it generally consists of the intelligent processes of coding, population initialization, evolution,
and population updating. These processes have the ability to eliminate the inferior individuals and
select superior individuals for the next generation. The main processes are as follows:
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(1) Coding and population initialization
Firstly, one coarse pixel is to be divided into s× s sub-pixels according to the principle of the

sub-pixel mapping problem, and the class attributes are randomly assigned to these sub-pixels,
but constrained by the fraction each class occupies in this coarse pixel. The process of coding is then
implemented by connecting the first sub-pixel in each row to the last sub-pixel of the previous row, row
by row (as shown in Figure 4), to generate a linear structure, which we generally call the individual.
Finally, since the evolutionary algorithm is a population-based method which operates on a set of
solutions to select the fittest one, the NP individuals are randomly generated with a fraction constraint,
and each individual ai , i = 1, 2, ..., NP represents one configuration of the reconstruction of the coarse
pixel. NP is determined empirically by the complexity of the spatial distribution and scale factor s.
If the spatial distribution is complex and the scale factor s is large, which means that a diverse scene is
to be reconstructed, we should set a large solution searching space to obtain the best solution. In this
paper, NP is set to 100.
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(2) Evolution
After initialization of the population, a series of evolution operators are carried out on the

solution pool to evolve the solutions. The typical evolution operators involve crossover and mutation.
The crossover operator is essential to take advantage of the differential information. It randomly
selects two individuals and a crossover point, and exchanges the part of the linear structure after the
crossover point to yield two offspring. The mutation operator is mainly for individuals to escape from
the local optima and maintain the diversity of the population. In the sub-pixel mapping problem,
mutation is implemented by exchanging the class attributes of two randomly selected positions of the
individual, thereby achieving the effect of mutation.

(3) Updating the antibody population
After the evolution operation, the TSDI values of each individual are calculated to select the

parent individuals of the next generation, and the individual with the highest TSDI value will survive.
The stopping condition is set as a fixed number of generations, and the individual with the maximum
TSDI value is selected as the optimal solution for the reconstruction of the coarse pixel.

3. Swarm Intelligence Theory Based Spatial-Temporal Sub-Pixel Mapping

Sub-pixel mapping is an ill-posed problem, since not enough distribution information exists
in a single-temporal image to properly constrain the solution of the reconstruction. Meanwhile, in
the framework of spatial-temporal sub-pixel mapping, a bitemporal image pair can be considered to
have similar geographic distributions, thus the distribution of the fine spatial resolution image within
the bitemporal image pair can be obtained and incorporated into the process of sub-pixel mapping.
This provides the sub-pixel mapping problem with a corroborative constraint and regularizes this
under-determined problem, improving the outcome of the sub-pixel mapping.

A number of studies have addressed incorporating the fine spatial resolution image into
the sub-pixel mapping process. Nevertheless, these traditional algorithms and neural network
algorithms, which search for the solution scholastically, are out of date. In this paper, we propose two
spatial-temporal sub-pixel mapping algorithms based on swarm intelligence theory, to incorporate
the distribution constraint from the fine spatial resolution image into the intelligent processes of the
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evolutionary algorithm, such as the classical events of coding, initialization of the population, crossover,
mutation, etc. The framework of spatial-temporal sub-pixel mapping based on swarm intelligence
theory is shown in Figure 5. In order to reconstruct the spatial distribution of the coarse image at
T2, the fine image at T1 with the same FOV is borrowed by the spatial-temporal sub-pixel mapping
to yield an integrated fine image at T2. However, there are still many pixels that cannot be uniquely
determined, which are represented by the black pixels in Figure 5. Therefore, swarm intelligence
theory is used to generate the optimal solution of the undetermined black pixels, outputting the final
reconstructed fine image at T2.
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3.1. Spatial-Temporal Sub-Pixel Mapping

We suppose that the fine image at acquisition time T1 has been classified into three land-cover
classes (light gray represents class 1, dark gray represents class 2, and black represents class 3), and
spectral unmixing has been carried out on the coarse image (assuming that the spatial resolution of
the fine image is five times that of the coarse image) at acquisition time T2 (assuming that time T1 and
T2 are close) to obtain the abundance map for the three land-cover classes (52%, 20% and 28%) (one
coarse pixel is shown in Figure 6 as an example). A mean filter is then implemented to degrade the fine
image (with the scale factor of five) at T1 to ensure that the proportion of the three land-cover classes
(40%, 32% and 28%) is comparable to the unmixing result. During the time interval of T1 to T2, it can
be seen that class 1 has increased by 12%, which is equivalent to three (12% × 5 × 5) sub-pixels when
transformed to the integer number of sub-pixels, and thus one can suppose that when one land-cover
class has increased, some other land-cover class has changed to the increased class, but no increased
class has changed to another class. Therefore, the unchanged part of the increased class can be copied
to the distribution reconstruction of the coarse image, and the three extra sub-pixels of class 1 can only
be allocated in the red circle. The upper situation in Figure 6 is a possible distribution of class 1 in the
coarse image at T2. Meanwhile, class 2 has decreased by 12% during the time interval, and thus one
may assume that when the land-cover class has decreased, no other class has changed to the decreased
class, but the decreased class has changed to some other class. Therefore, the three sub-pixels of class 2
change to class 1, which is shown in the middle sub-figure, with the dotted area meaning that class 2 is
about to change to class 1. For the black class, however, the proportion remains the same, and thus one
can make the assumption that when the land-cover class remains unchanged, the spatial distribution
of the class is also unchanged, which can be copied to the reconstruction of the coarse image.

Thus, both the fraction and real distribution of each class at the previous time are used, and the
fraction is used as the determinant to decide whether or not each class increased or decreased, or was
even unchanged, between the two temporal images. In addition, according to the fraction change
tendency, we can decide which part of the real distribution at the previous time can be borrowed for
the sub-pixel mapping of the imagery of the current time.

Integrating the land-cover map of the three classes, one can see that many sub-pixels can be
uniquely determined for a certain class, except for the area within the red circle, which contains three
sub-pixels of the light gray class and five sub-pixels of the dark gray class. In this paper, we use swarm
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3.2. Swarm Intelligence Theory Based Spatial-Temporal Sub-Pixel Mapping

Swarm intelligence theory based sub-pixel mapping of a single-temporal image was introduced
in the previous section. In this section, differing from the traditional GA, swarm intelligence theory
is applied to a bitemporal image pair. To further improve the genetic process of swarm intelligence
theory, two specific evolutionary algorithms are introduced in this section.

3.2.1. Spatial-Temporal Sub-Pixel Mapping Based on the Clonal Selection Algorithm (CSA)

The CSA is inspired by the human immune system, which can resist the infection of a virus by
recognizing the extrinsic antigens. This algorithm generates a pool of candidate antibodies (solutions),
selecting the most suitable antibodies corresponding to the antigens, and eliminates the antigens by
the combination of the antigens and antibodies, thus solving the optimization problem [55]. When
detecting the assault of antigens, the immune system will generate a pool of candidate antibodies,
and the antibody with the most affinity to the antigen will successfully combine with the antigen and
eliminate it. Thus, the main mechanism of the immune system is the updating of the antibody pool to
obtain the most suitable antibodies corresponding to the antigens. The updating mechanism consists
of a series of maturation processes, such as cloning the antibodies with a higher fitness to pass on to
the next generation for the reason of maintaining a suitable structure, replacing the antibodies with a
lower fitness, and mutating to retain diversity of the antibody pool. Through this process of selecting
superior antibodies to pass on and eliminating inferior antibodies generation by generation, the best
antibody with the most suitable structure will be generated.

The CSA is derived from this mechanism and imitates the intelligent operations of cloning,
selection, mutation, and elimination [56]. The antigens are analogous to the coarse pixel to be
reconstructed, and the antibody is the solution of the reconstruction map of that coarse pixel.
The suitability degree of the antibody to the antigen is measured by the TSDI. In the CSA, the solutions
with a higher TSDI are selected to reproduce clonal solutions as the next generation for the sake of
maintaining good genetic information, and the solutions with a lower TSDI are eliminated to remove
the bad genetic information from the population. In order to facilitate the maturation of the solutions



Remote Sens. 2016, 8, 894 11 of 30

while retaining the diversity of the solution pool, hypermutation is used, giving a chance for solutions
to escape from local regions. More importantly, the operations of cloning and selection corroboratively
confirm the convergence of the optimization problem [57]. The specific operation of the CSA can be
described in the following steps.

(1) Coding and population initialization
In the first step, the integrated land-cover map at T2 is first coded to the linear structure shown

in Figure 7 according to the clonal selection principle by connecting the first sub-pixel in each row to
the last sub-pixel of the previous row, row by row. The operation of population initialization involves
randomly assigning the three light gray classes and five dark gray classes to the empty position within
the red circle, generating a certain number of antibodies according to the population size NP. Each
antibody ani , i = 1, 2, ..., NP represents a possible spatial distribution pattern inside the coarse pixel.
After initialization of the population, the TSDI of each antibody is calculated to obtain the highest
TSDI value max(TSDI(ani)) and the lowest TSDI value min(TSDI(ani)) for further use.
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(2) Evolution
After initialization of the population, the clonal operation is implemented to ensure that the

better genetic information is passed on to the next generation. Each antibody ani produces ncl clonal
antibodies according to the formula:

ncl = round(α · NP) (9)

where α is the clonal ratio parameter, round() indicates the operation of confining the argument toward
the nearest integer, and ncl represents the number of clones each antibody generates. After the process
of cloning, each antibody has its clonal set ant

i , i = 1, 2, ..., NP, t = 1, 2..., ncl , and to ensure there is at
least one antibody in the clonal set, ncl is set as no less than 1. Thus, the total number of antibodies in
the population is equal to NP× ncl .

The hypermutation operation is undertaken to avoid the solution falling into the local regions,
while promoting the convergence of these intelligent processes to obtain the best solution with the
highest TSDI. In this paper, in order to improve the intelligence of the evolutionary processes, we adopt
an adaptive mutation operation, in which the mutation rate pmi is adaptively determined according to
the fitness degree of the antibody ani, as formulated below:

pmi = exp(−β · R(ani)), i = 1, 2..., NP (10)

R(ani) =
TSDI(ani)−min(TSDI(ani))

max(TSDI(ani))−min(TSDI(ani))
, i = 1, 2, ..., NP (11)

which is based on the principle that a higher fitness value deserves a lower mutation rate to avoid
destroying the good structure of the antibodies in the population, while a lower fitness value deserves
a higher mutation rate to remove the bad genetic information from the population, to better handle
the hypermutation process. Parameter β is the decay factor defined by the user, and is usually set
to 2. Because of the fraction constraint calculated before for determining the number of sub-pixels
allocated to each land-cover class, it is unreasonable to simply change the attributes of any sub-pixel
and subsequently break the constraint, and thus we take the measure of exchanging the attributes of
the two randomly selected positions of the sub-pixel, achieving the effect of mutation.

(3) Updating the antibody population
After the hypermutation operation, the TSDI values of each antibody, as well as the mutated

clones, are calculated to decide which antibodies can pass structural information on to the next
generation, and the NP highest antibodies are selected as parents for the next generation. To retain
diversity of the population and exploit the unknown solution space, the ND antibodies ranking at
the end of the NP parents are replaced by newly produced antibodies. ND represents the number of
displaced individuals, and was previously defined by the user. The stopping condition is set as a fixed
number of generations, and the antibody with the maximum TSDI is selected as the optimal solution
for the reconstruction of the coarse pixel and to output the result.

3.2.2. Spatial-Temporal Sub-Pixel Mapping Based on the Differential Evolution Algorithm (DEA)

The DEA is one of the latest global optimization methods, which searches for the solution
heuristically in the global space [58], and is incorporated into the framework of spatial-temporal
sub-pixel mapping in this paper. A genetic operator such as crossover is adopted to take advantage of
the differential information for facilitating the convergence of the solution, and the genetic parameters
of mutation rate, crossover rate, and scale factor are adaptively determined by the adaptive scheme.

(1) Coding and population initialization
At the inception, differing from the coding mechanism in the CSA, the DEA codes the serial

number of the sub-pixel instead of the class label, as shown in Figure 8. The linear structure filled with
only 1, 2, and 3 represents the class attribute position, which is constructed according to the fraction
constraint of the coarse pixel at T2. Therefore, the individual is generated by filling the attribute block
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with serial numbers according to the class block of the class attribute position. For example, in Figure 8,
the position with a serial number of 3 has the attribute number of 1, and thus the coding operation is
implemented by filling the attribute block of class 1 with the serial number of 3, and the position with
a serial number of 11 has the attribute number of 3, so the attribute block of class 3 is filled with the
serial number of 11.
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Each individual IDVi, i = 1, 2, ..., NP represents a possible spatial distribution pattern inside the
coarse pixel, and the TSDI of each antibody is calculated for further use.

(2) Evolution
Differing from the traditional mutation operation of simply exchanging the attributes of two

sub-pixel positions, the individual undergoing the mutation is regenerated by adding the weighted
difference of two randomly selected individuals to a third randomly selected one, which is formulated
as follows:

IDV′i,G = IDVr1,G + Fi,G · (IDVr2,G − IDVr3,G) (12)
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where the indices of r1, r2, and r3 are randomly generated within the range [1, NP] and are mutually
exclusive, as well as i, which means r1 6= r2 6= r3 6= i. Fi,G is a scale factor parameter of the ith
individual in the Gth generation, which can balance the scale of the difference. IDVr1,G represents the
r1th individual of the Gth generation, and IDV′i,G indicates the newly generated ith individual of the
Gth generation as an intermediate quantity.

The crossover operator is then implemented and can be defined as follows:

IDV j
i,G
′′
=

{
IDV j

i,G
′
, i f (rand1 < pci,G)

IDV j
i,G, otherwise

(13)

where IDV j
i,G represents the serial number of the jth position in the ith individual of the Gth generation,

and IDV j
i,G
′

represents the corresponding serial number after the mutation operation. rand1 is a
randomly generated number ranging from 0 to 1. pci,G is the genetic parameter of the crossover rate,
which determines the probability of the crossover operation.

In order to determine the genetic parameters adaptively, instead of manually, which is
time-consuming, an adaptive strategy is adopted based on the principle that the better individuals are
more likely to survive and pass on better genetic information (better structural information) to the
next generation, and is formulated as follows:

pci,G+1 =

{
rand2, i f rand3 < pmi,G
pci,G, otherwise

(14)

Fi,G+1 =

{
1− rand(1−G/IG)d

4 , i f rand5 < pmi,G
Fi,G, otherwise

(15)

where pci,G and Fi,G represent the crossover rate and scale factor of the current generation, while
pci,G+1 and Fi,G+1 indicate the genetic parameters of the next generation, respectively. rand3, rand4,
and rand5 are randomly generated numbers within the range [0, 1]. IG represents the total number of
generations of the differential evolution process defined by the user. d is the nonconforming degree
parameter, and is empirically set to 3 [59]. pmi,G is the mutation rate, which acts as a threshold of
the adaptive scheme, depending on the best and worst TSDI values of the current generation, and is
formulated as follows:

pmi,G =
T(IDVi,G)− T(IDVworst,G)

T(IDVbest,G)− T(IDVworst,G)
(16)

where T(IDVi,G) means the TSDI value of the ith individual in the Gth generation, and T(IDVbest,G)

and T(IDVworst,G) represent the best and the worst TSDI values of the Gth generation, respectively.
After the adaptive mutation and crossover operations, more intelligent processes need to be

implemented to further improve the individual. Considering that repeated serial numbers inside
the individual might emerge due to the process of mutation, further measures should be taken to
repair the repeated positions, and the process is shown in Figure 9. Serial numbers 2, 6, and 18 are
missing, and 9, 22, and 5 are repeated, and thus should be replaced to repair the integer of the serial
number of the individual. The exchange operator is then implemented to improve the individual by
randomly selecting two positions and exchanging the serial numbers inside the positions. Finally, an
insertion operation is undertaken to stochastically disturb the solution and facilitate the convergence
by randomly selecting two positions, putting the front serial number to the position behind the next
serial number, as shown in Figure 6.
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(3) Updating the population
After the process of evolution, the TSDI of each antibody is calculated to decide the parents of the

next generation, as follows:

IDVi,G+1 =

{
IDVi,G

′′, i f T(IDVi,G
′′) > T(IDVi,G)

IDVi,G, otherwise
(17)

where IDVi,G and IDVi,G
′′ represent the ith individual in the Gth generation before and after the

process of evolution, respectively. Only if the TSDI of the ith individual improves during the process
of evolution can this individual pass the structural information on to the next generation. The best
TSDI and the worst TSDI in the current generation are then calculated for the updating of the mutation
rate, crossover rate, and scale factor.

The stopping condition in the differential evolution also adopts a fixed number of generations,
and the individual with the maximum TSDI is selected as the optimal solution for the reconstruction
of the coarse pixel, and to output the result.

Although the two proposed algorithms have similar main frameworks, both of which are based
on natural selection and the natural genetic principle, searching for the most plausible solution in
the global population stochastically but heuristically by emulating the biological advantage of the
human system, they are different in the coding method and evolution process. Both algorithms are
implemented with several evolution operators on a set of solutions (population) and an adopted
adaptive strategy to determine the genetic parameters, and each solution is scored by a fitness value
calculated based on the spatial dependence. The solution with the highest score is then selected to
be the parent of the next generation. However, the coding method of SSMCS is based on the class
attributes, and it simply transforms the square structure to a linear structure by connecting the first
sub-pixel in each row to the last sub-pixel of the previous row. Meanwhile, the coding method of
SSMDE is based on the serial number of each sub-pixel in the individual, and the linear structure is
divided into several class attribute blocks according to the fraction constraint. We then fill these blocks
with the serial numbers of each sub-pixel according to their class attributes. Furthermore, the evolution
processes of SSMCS and SSMDE are also different. SSMCS evolves the solution population by a cloning
operator and a mutation operator. On the other hand, SSMDE evolves the solution population by an
advanced mutation operator which adds each individual to the differential of another two individuals,
as well as the crossover operator, which is not included in SSMCS.
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4. Experiments and Analysis

We designed three experiments to demonstrate the effectiveness of the proposed algorithms
(SSMDE, SSMCS) visually and quantitatively, and a number of previous sub-pixel mapping algorithms
were used to make a comparison: pixel swapping sub-pixel mapping (PSSM) [11], sub-pixel mapping
based on a genetic algorithm (GASM) [49], sub-pixel mapping based on clonal selection (CSSM) [56],
sub-pixel mapping based on differential evolution (DESM) [58], as well as the spatial-temporal
sub-pixel mapping versions of these algorithms (spatial-temporal sub-pixel mapping based on a
pixel swapping algorithm (SSMPS) [35], spatial-temporal sub-pixel mapping based on a genetic
algorithm (SSMGA) (spatial-temporal sub-pixel mapping based on a genetic algorithm (SSMGA) has
not been proposed so far, and we just added the spatial-temporal sub-pixel mapping principle to
GASM to generate SSMGA), to examine the validation of the spatial-temporal sub-pixel mapping
principle. The population size, crossover rate, and mutation rate in GASM and SSMGA were set to 100,
0.5, and 0.5, respectively. In CSSM and DESM, the crossover rate and mutation rate employ an adaptive
strategy during the generation, so we just needed to determine the population size, which was set
to 100 (the clonal rate α was set to 0.02 and ND was set to 10 in CSSM). The overall accuracy (OA)
and Kappa coefficient were calculated for the quantitative assessment of the accuracy of the proposed
sub-pixel mapping algorithm. Furthermore, since the experimental datasets were bitemporal image
pairs, LCCD was conducted between the sub-pixel mapping result and the fine spatial resolution image
during each experiment (the LCCD was simply implemented by differentiating the sub-pixel mapping
result with the fine spatial resolution image and then classifying the differential map into two classes:
changed areas and unchanged areas). OA and Kappa consider all the pixels of the image, including the
pure pixels, as parents in the finer resolution. These sub-pixels all belong to the pure pixels and will
only raise the value of OA and Kappa, without providing information about the algorithm’s predictive
abilities. To improve the reliability, adjusted OA (OA*) and adjusted Kappa coefficient (Kappa*) were
developed, which only take the mixed pixels into consideration and ignore the pure pixels, because the
sub-pixel mapping method only reconstructs the mixed pixels, and the pure pixels would consequently
increase the OA and Kappa, masking the true contribution of the tested algorithm. These criteria have
been proved to be useful in the published paper by Mertens et al. [41].

4.1. Experiment 1: Landsat 8 Image

In Experiment 1, we obtained bitemporal Landsat 8 images from Cili County, Hunan province,
in which the farmland areas are abundant, as shown in Figure 10a,c. The acquisition times of the
bitemporal images were 13 July 2013, and 7 August 2013, respectively. The time interval is 25 days,
and it is worth noting that 7 August is the beginning of the autumn in the 24 solar terms in China, by
which time many farmland crops are ripe and being harvested, and thus more bare soil would appear
compared to the image of 13 July. Together, these images exactly meet the condition of frequent change
over a small time interval. We split the test area into subsets of 240× 240, with a resolution of 30 m. The
coordinates of the selected test area are (29◦4′45.66”–29◦8′38.60”N) and (111◦0′19.21”–111◦4′45.27”E),
with the north arrow toward the upside. A supervised hard classification method—support vector
machine (SVM)—was applied to the bitemporal Landsat 8 images to generate the land-cover maps
(Figure 10b,d) to be used for the degrading and accuracy assessment. The land-cover maps were
classified into five land-cover classes: water, farmland, vegetation, urban, and bare soil.

Synthetic images were used as the input fraction images, and were obtained by degrading the
hard classification image from 7 August to a coarser scale using an averaging filter of four. We chose
synthetic imagery to verify the validation of the proposed algorithm so as to avoid coregistration errors
between the lower- and higher-resolution images, the sensor point spread function, the atmospheric
effect, and the spectral unmixing error, and thus the sub-pixel mapping results solely illustrate the
performance of the different algorithms. Figure 10e–i shows the degraded fraction image, and the
sub-pixel mapping results of PSSM, GASM, DESM, CSSM, SSMPS, SSMGA, SSMDE, and SSMCS are
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displayed in Figure 10j–q. To further examine the performance of the reconstruction of detailed land
cover, the small area of S1 is zoomed in on in Figure 11a–i.
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Figure 10. Sub-pixel mapping results for the Landsat 8 image in Experiment 1: (a) Original Landsat
8 image from 13 July 2013 (bands 4, 3, 2) (240 × 240); (b) Original SVM classification result of
the 13 July 2013, Landsat 8 image (250 × 250); (c) Original Landsat 8 image from 7 August 2013
(bands 4, 3, 2) (240 × 240); (d) Original SVM classification result of the 7 August 2013, Landsat 8
image (250 × 250); (e) Fraction image of water (60 × 60); (f) Fraction image of farmland (60 × 60);
(g) Fraction image of vegetation (60 × 60); (h) Fraction image of urban (60 × 60); (i) Fraction image of
bare soil (60 × 60); (j) pixel swapping sub-pixel mapping (PSSM); (k) Sub-pixel mapping based
on a genetic algorithm (GASM); (l) Sub-pixel mapping based on differential evolution (DESM);
(m) Sub-pixel mapping based on clonal selection (CSSM); (n) Spatial-temporal sub-pixel mapping
based on a pixel swapping algorithm (SSMPS); (o) Spatial-temporal sub-pixel mapping based on a
genetic algorithm (SSMGA); (p) Spatial-temporal sub-pixel mapping based on differential evolution
(SSMDE); and (q) Spatial-temporal sub-pixel mapping based on clonal selection (SSMCS).

According to the visual assessment, as can be clearly seen in the zoomed version in Figure 11,
GASM is weak at preserving boundary features such as the coastline. Linear features, such as bridges
and roads, are almost entirely missing in the results of the traditional methods. When compared



Remote Sens. 2016, 8, 894 18 of 30

with the other algorithms, SSMGA, SSMDE, and SSMCS outperform the other methods, giving a
better linear reconstruction and smoother boundaries, and are more consistent with the reference. As
for the quantitative evaluation in Table 1, the OA and Kappa values of the SSMDE and SSMCS are
almostly the same, and are the best among all the algorithms, reaching 81.62%, 0.7584 and 81.61%,
0.7584, respectively, while the accuracies of SSMGA are slightly lower than SSMDE and SSMCS. The
advantage of the proposed algorithms are also shown for LCCD in Table 2, in which the SSMDE and
SSMCS algorithm obtains a higher OA of 84.15% and 84.13%, respectively. To solely examine the
reconstruction of the mixed pixels and ignore the influence of the pure pixels, the OA* and Kappa* were
also calculated, where SSMDE and SSMCS again obtain the best result. The reason for this is down to
the advantage of the genetic operators such as crossover, mutation, and selection, which can exchange
information adequately to obtain the optimal solution, and the advantage of the spatial-temporal
sub-pixel mapping principle, which can incorporate the distribution information of the fine spatial
resolution image to regularize the ill-posed sub-pixel mapping problem.
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Figure 11. Zoomed areas of each sub-pixel mapping result: (a) Zoom of the original classification result
of the 2005 Landsat TM image; (b) Zoom of the PSSM result; (c) Zoom of the GASM result; (d) Zoom of
the DESM result; (e) Zoom of the CSSM result; (f) Zoom of the SSMPS result; (g) Zoom of the SSMGA
result; (h) Zoom of the SSMDE result; and (i) Zoom of the SSMCS result.

Table 1. Comparison of the different algorithms for the Landsat 8 image in Experiment 1.

Scale = 4 PSSM GASM DESM CSSM SSMPS SSMGA SSMDE SSMCS

OA (%) 73.61 72.13 74.39 75.01 79.98 81.52 81.62 81.61
Kappa 0.6533 0.6338 0.6635 0.6716 0.7375 0.7572 0.7584 0.7584

OA* (%) 63.31 61.25 64.39 65.25 72.17 74.30 74.44 74.43
Kappa* 0.5206 0.4937 0.5348 0.5460 0.6354 0.6642 0.6660 0.6660

Note: The highest accuracies in the table are marked with bold.

Table 2. Comparison of the land-cover change detection performances of the sub-pixel mapping
algorithms in Experiment 1 (change/no change).

Scale = 4 PSSM GASM DESM CSSM SSMPS SSMGA SSMDE SSMCS

OA (%) 77.12 75.75 77.65 78.11 82.52 84.07 84.15 84.13
Kappa 0.4089 0.3847 0.4180 0.4246 0.4530 0.4917 0.4947 0.4933

Note: The highest accuracies in the table are marked with bold.

In this way, the synthetic coarse image of 7 August 2013 can be seen as the daily obtained MODIS
image, with frequent temporal information but coarse spatial resolution. Meanwhile, the original
Landsat 8 image of 13 July 2013 can provide the high spatial resolution, but the 16-day revisit period
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missed the growth cycle at the beginning of autumn. Therefore, the proposed algorithm can fuse the
temporal information of MODIS and the spatial information of Landsat to obtain a high-resolution
image at the missing growth cycle time. The experimental results confirm that the proposed algorithm
outperforms the traditional approaches, achieving a better sub-pixel mapping result, both qualitatively
and quantitatively. Furthermore, it also achieves a change map with both a fine spatial resolution and
a fine temporal resolution, exactly meeting the demands of timely and detailed LCCD.

4.2. Experiment 2: QuickBird Image

In Experiment 2, bitemporal QuickBird images of 240 × 240 (at a 2.5-m spatial resolution) of
the urban area located at Shiyan City, Hubei province, which were acquired in 2002 (Figure 12a) and
2004 (Figure 12c), respectively, were taken into consideration to further examine the performance
of the proposed algorithm. The coordinates of the QuickBird images are (413,616.00–414,211.20 m E)
and (3712,485.60–3713,080.80 m N), with the north arrow toward the upside. A supervised hard
classification method—support vector machine (SVM)—was applied to the bitemporal QuickBird
images to generate the land-cover maps (Figure 12b,d) to be used for the degrading and accuracy
assessment. The land-cover maps were classified into five land-cover classes: impervious surface,
vegetation, pond, building, and road. Experiment 2 also adopted a synthetic strategy, as in Experiment 1,
to avoid the errors introduced by coregistration and spectral unmixing. The SVM hard classification
of the QuickBird image from 2004 was degraded by a mean filter with a scale factor of four to yield
the fraction maps shown in Figure 12e–i. Figure 12j–q shows the sub-pixel mapping results of PSSM,
GASM, CSSM, DESM, SSMPS, SSMGA, SSMDE, and SSMCS, respectively, and the zoomed area of S1
showing the detailed reconstruction of each algorithm is shown in Figure 13a–i.

According to the visual assessment, when compared with Figure 13a, one can see that CSSM
is better able to reconstruct the scattered impervious surfaces (shown in red) than PSSM, which
reconstructs the discrete scattered land cover into a continuous blocky area, thus losing much of
the detailed information. Meanwhile, the results of GASM and DESM are less pleasing due to the
discontinuous land-cover boundaries and noise. The performance of the reconstruction of the linear
road (shown in blue) is disappointing in all the sub-pixel mapping algorithms, except for SSMCS,
as shown in Figure 13, where it effectively reconstructs the linear road, as well as the other land
covers, and the distribution pattern is the most similar to Figure 13a. On the other hand, in Table 3,
the quantitative accuracy result is consistent with the visual assessment, where for the OA, SSMCS
achieves the best result of 80.98%, and the performance of SSMDE resembles SSMGA. In Table 4, the
SSMDE and SSMCS also outperform the others in terms of LCCD with higher OA of 88.08% and
88.20%, respectively. A possible reason for this can be ascribed to the transformation of the sub-pixel
mapping problem into the swarm intelligence based optimization problem, enabling us to search for a
solution in a continuous solution space, thereby guaranteeing the continuity of the land cover and
yielding a smoother result. The strategy of the spatial-temporal model also contributes to the more
accurate result, due to the detailed spatial information it obtains from the fine spatial resolution image
to regularize the under-determined sub-pixel mapping problem.

Table 3. Comparison of the sub-pixel mapping algorithm performances for the Landsat TM image in
Experiment 2.

Scale = 4 PSSM GASM DESM CSSM SSMPS SSMGA SSMDE SSMCS

OA (%) 76.78 75.41 78.28 79.15 76.99 80.58 80.73 80.98
Kappa 0.6905 0.6722 0.7105 0.7220 0.6929 0.7412 0.7432 0.7465

OA* (%) 66.77 64.81 68.93 70.16 67.07 72.22 72.43 72.78
Kappa* 0.5434 0.5164 0.5730 0.5900 0.5469 0.6182 0.6212 0.6260

Note: The highest accuracies in the table are marked with bold.
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Table 4. Comparison of the land-cover change detection performances of the sub-pixel mapping
algorithms in Experiment 2 (change/no change).

Scale = 4 PSSM GASM DESM CSSM SSMPS SSMGA SSMDE SSMCS

OA (%) 85.24 84.29 86.26 86.84 85.33 87.91 88.08 88.20
Kappa 0.7027 0.6839 0.7226 0.7340 0.7001 0.7524 0.7558 0.7582

Note: The highest accuracies in the table are marked with bold.
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Figure 12. Sub-pixel mapping results for the Hubei QuickBird image in Experiment 2: (a) Original
QuickBird image from 2002 (bands 3, 2, 1) (250 × 250); (b) Original SVM classification result of the
2002 QuickBird image (250 × 250); (c) Original QuickBird image from 2004 (bands 3, 2, 1) (250 × 250);
(d) Original SVM classification result of the 2004 QuickBird image (250 × 250); (e) Fraction image of
impervious surface (50 × 50); (f) Fraction image of vegetation (50 × 50); (g) Fraction image of pond
(50 × 50); (h) Fraction image of building (50 × 50); (i) Fraction image of road (50 × 50); (j) PSSM;
(k) GASM; (l) DESM; (m) CSSM; (n) SSMPS; (o) SSMGA; (p) SSMDE; and (q) SSMCS.
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Figure 13. Zoomed areas of each sub-pixel mapping result: (a) Zoom of the original classification 
result of the 2004 QuickBird Image; (b) Zoom of the PSSM result; (c) Zoom of the GASM result; (d) 
Zoom of the DESM result; (e) Zoom of the CSSM result; (f) Zoom of the SSMPS result; (g) Zoom of 
the SSMGA result; (h) Zoom of the SSMDE result; and (i) Zoom of the SSMCS result. 
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reference to evaluate the accuracy of each algorithm by the k-means method, as shown in  
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Figure 13. Zoomed areas of each sub-pixel mapping result: (a) Zoom of the original classification result
of the 2004 QuickBird Image; (b) Zoom of the PSSM result; (c) Zoom of the GASM result; (d) Zoom of
the DESM result; (e) Zoom of the CSSM result; (f) Zoom of the SSMPS result; (g) Zoom of the SSMGA
result; (h) Zoom of the SSMDE result; and (i) Zoom of the SSMCS result.

4.3. Experiment 3: Real Image

Although the synthetic images utilized in Experiments 1 and 2 can avoid the errors introduced by
coregistration or spectral unmixing, allowing us to solely evaluate the performance of each sub-pixel
mapping algorithm, this does not meet the practical requirement of applying the algorithm directly
to a real low spatial resolution image, instead of a synthetic image generated by degrading the hard
classification image. Therefore, sub-pixel mapping of a real low spatial resolution image (MODIS)
was implemented in Experiment 3, and a Landsat TM image with almost the same acquisition area
was chosen to evaluate the performance of each algorithm. Given that coregistration and spectral
unmixing are considered as preprocessings of each sub-pixel mapping algorithm, the performances of
each sub-pixel mapping algorithm could be considered to be comparable due to the same errors being
introduced by these preprocessing operations. It is worth noting that the synthetic process can avoid
the coregistration errors between the lower- and higher-resolution images, the sensor point spread
function, the atmospheric effect, and the spectral unmixing error, and the sub-pixel mapping results
solely illustrate the performance of the different algorithms; on the other hand, the real experiment
process considers the practical requirement of applying the algorithm directly to a real low spatial
resolution image, and can test the adaptability and expansibility of the proposed algorithm. Both
the synthetic and real processes are feasible, and they just focus on different aspects and work for
different purposes.

The MODIS surface reflectance product (24× 24) acquired at Shenzhen City, Guangdong province,
on 12 October 2009, with a spatial resolution of 500 m, was chosen as the low spatial resolution image
to be reconstructed, which is shown in Figure 14e, and the Landsat TM image (408 × 408) acquired
in the same area with a 30-m spatial resolution on 12 August 2001, as shown in Figure 14a, was
selected as the fine spatial resolution image to provide a distribution pattern for the reconstruction
process. The Landsat Enhanced Thematic Mapper (ETM) image acquired on October, 2009, at the
same scene, was used to obtain a fine spatial resolution classification result as the reference to evaluate
the accuracy of each algorithm by the k-means method, as shown in Figure 14c,d, respectively. The
coordinates of the Landsat ETM+ image and MODIS image are (113◦1′25.85”–113◦8′32.45”E) and
(22◦7′21.00”–22◦3′42.20”N), and the north arrow is toward the upside.
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Figure 14. Sub-pixel mapping results for the 2009 MODIS image in Experiment 3: (a) Original TM 
image from 2001 (bands 4, 3, 2) (408 × 408); (b) K-Means classification result of the 2001 TM image 
(408 × 408); (c) Original TM image from 2009 (bands 4, 3, 2) (408 × 408); (d) K-Means classification 
result of the 2009 TM image (408 × 408); (e) Original MODIS image from 2009 (bands 4, 1, 2)  
(24 × 24); (f) Fraction image of water (24 × 24); (g) Fraction image of vegetation (24 × 24); (h) fraction 
image of urban (24 × 24); (i) PSSM; (j) GASM; (k) DESM; (l) CSSM; (m) SSMPS; (n) SSMGA; (o) 
SSMDE; and (p) SSMCS. 

Three steps were taken to complete the preprocessing. Firstly, the TM image from 2001 was 
classified into three land-cover types (water, vegetation, and urban) using the k-means method, as 
shown in Figure 14b. The coregistration process was then implemented between the MODIS image 
from 2009 and the TM image from 2001, so that each fine pixel in the TM image had a 
corresponding coarse pixel in the MODIS image, using the ground control point function provided 
in ENVI software. During the coregistration, the MODIS image was resampled to 510 m to match 
the TM image (30 m) data by 17 times. Finally, fully constrained least squares (FCLS) linear spectral 
unmixing was carried out to generate fraction images of the MODIS image, as shown in  
Figure 14f–h. After the preprocessing, we could use the standard data to implement the sub-pixel 

Figure 14. Sub-pixel mapping results for the 2009 MODIS image in Experiment 3: (a) Original TM
image from 2001 (bands 4, 3, 2) (408 × 408); (b) K-Means classification result of the 2001 TM image
(408 × 408); (c) Original TM image from 2009 (bands 4, 3, 2) (408 × 408); (d) K-Means classification
result of the 2009 TM image (408 × 408); (e) Original MODIS image from 2009 (bands 4, 1, 2) (24 × 24);
(f) Fraction image of water (24 × 24); (g) Fraction image of vegetation (24 × 24); (h) Fraction image of
urban (24 × 24); (i) PSSM; (j) GASM; (k) DESM; (l) CSSM; (m) SSMPS; (n) SSMGA; (o) SSMDE; and
(p) SSMCS.

Three steps were taken to complete the preprocessing. Firstly, the TM image from 2001 was
classified into three land-cover types (water, vegetation, and urban) using the k-means method, as
shown in Figure 14b. The coregistration process was then implemented between the MODIS image
from 2009 and the TM image from 2001, so that each fine pixel in the TM image had a corresponding
coarse pixel in the MODIS image, using the ground control point function provided in ENVI software.
During the coregistration, the MODIS image was resampled to 510 m to match the TM image (30 m)
data by 17 times. Finally, fully constrained least squares (FCLS) linear spectral unmixing was carried
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out to generate fraction images of the MODIS image, as shown in Figure 14f–h. After the preprocessing,
we could use the standard data to implement the sub-pixel mapping algorithms, and the results are
displayed in Figure 14i–p. As for the quantitative accuracy assessment, we used the classification result
of the 2009 TM image (Figure 14d) to compare with the sub-pixel mapping result to obtain the statistics
shown in Table 5. In order to evaluate the performance of the LCCD generated by each sub-pixel
mapping method, we overlaid the classification result of the 2001 TM image on the classification result
of the 2009 TM image to produce a differential map as the reference LCCD result, and each sub-pixel
mapping result was overlaid on the classification result of the 2001 TM image to generate the LCCD
result, which was then compared to the reference LCCD result to obtain the statistics of the LCCD
accuracy, as shown in Table 6.

Table 5. Comparison of the sub-pixel mapping algorithm performances for the Landsat TM image in
Experiment 3.

Scale = 17 PSSM GASM DESM CSSM SSMPS SSMGA SSMDE SSMCS

OA (%) 62.99 62.44 62.22 62.86 64.44 64.18 64.24 64.50
Kappa 0.4301 0.4231 0.4184 0.4281 0.4525 0.4485 0.4493 0.4533

OA* (%) 62.99 62.44 62.22 62.86 64.44 64.18 64.24 64.50
Kappa* 0.4301 0.4231 0.4184 0.4281 0.4525 0.4485 0.4493 0.4533

Note: The highest accuracies in the table are marked with bold.

Table 6. Comparison of the land-cover change detection performances of the sub-pixel mapping
algorithms in Experiment 3 (change/no change).

Scale = 17 PSSM GASM DESM CSSM SSMPS SSMGA SSMDE SSMCS

OA (%) 69.87 69.40 69.41 69.92 70.81 70.66 70.68 70.93
Kappa 0.3815 0.3723 0.3733 0.3830 0.3661 0.3629 0.3635 0.3687

Note: The highest accuracies in the table are marked with bold.

In the visual assessment, one can see that PSSM loses almost all the structural information and
boundary information between the different classes, showing a fuzzy classification for the whole map.
Although the result of GASM contains some structural information when compared to PSSM, there is
a lot of noise, which compromises the visual effect to a great extent. On the other hand, the results of
DESM and CSSM are better than the results of PSSM, providing relatively clear boundaries between
classes, but the inner structure of each class is still fuzzy. All the sub-pixel mapping results are more or
less fuzzy and disappointing, except for the spatial-temporal fusion based sub-pixel mapping methods
(SSMPS, SSMGA, SSMDE, and SSMCS), which better reconstruct the structural information between
and within classes, and are less affected by noise, when compared to the results of the aforementioned
traditional methods. Although the results (SSMPS, SSMGA, SSMDE, and SSMCS) appear similar, the
quantitative assessment can be used to further distinguish the algorithms.

When it comes to the quantitative assessment, we can see in Table 5 that the accuracies of all the
sub-pixel mapping algorithms are lower than those in the synthetic experiments, which may be due to
the errors induced by the coregistration and spectral unmixing operation and the classification errors
of the TM image. The scale factor s is another reason for the compromised statistical accuracy, where,
according to the principle of the sub-pixel mapping problem, one coarse pixel should be reconstructed
to an s× s fine pixel, which indicates that a larger scale factor means a more complex reconstructed
scene, thereby generating a lower accuracy. Nevertheless, SSMCS still acquires a reasonable accuracy
when compared to the other algorithms with regard to OA and Kappa, reaching 64.50% and 0.4533,
respectively. Meanwhile, SSMDE and SSMGA obtain a relatively high OA of 64.18% and 64.24%,
respectively. Note that all the adjusted OA and Kappa values are the same as the normal OA and
Kappa values in Experiment 3, since the adjusted OA and Kappa only take the mixed pixels into
consideration, and, in this case, the spatial resolution of the MODIS image is 500 m, which is large
enough that one pixel could contain several land-cover types. During the spectral unmixing process,
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all the pixels were determined as mixed pixels. Therefore, the adjusted OA and Kappa values are all
the same as the normal OA and Kappa values. As for the subsequent LCCD results in Table 6, the
results are consistent with the sub-pixel mapping results, and SSMCS obtains the best LCCD accuracy
of 70.93%, confirming the superiority of the proposed algorithm, regardless of the low accuracy.

The main limitation of this technique is the full constraint of the fractions derived from the spectral
unmixing technique. As we know, the abundance map generated by the spectral unmixing process is
the input of the sub-pixel mapping method; however, the error of the spectral unmixing is introduced
into the following sub-pixel mapping process and seriously compromises the sub-pixel mapping result.
This is why the proposed method in real Experiment 3 has a limited advantage, while, in synthetic
Experiments 1 and 2, which use the degraded image as input, it has a noticeable advantage over the
other algorithms.

4.4. Computational Complexity

We can consider the computation time in terms of computational complexity, which can reflect
the computation time from a macro perspective. Furthermore, the computational complexity is more
convincing since the computation time is related to many uncertainties, such as the actual coding
strategy in the program, the programing platform, the configuration of the user’s PC, etc.

The complexity of SSMCS can be split into four parts: (1) the integration of the previous
high-resolution image; (2) the step of population initialization and coding; (3) the step of cloning and
mutation according to the clonal rate α and mutation rate pm; and (4) the step of TSDI calculation and
population updating. We assume that the number of land-cover classes is C, the total number of pixels
in each dimension of the input abundance map is M × N, the scale factor of the sub-pixel mapping is s,
the population size is NP, and the generation number is G. Since only one coarse pixel is processed at a
time, the computational complexity should be multiplied by M × N, so the computational complexity
of part 1 is O (M × N × C), which is independent of the following part. For part 2, the complexity is O
(M × N × s2), since the initialization and coding involve a sub-pixel scale. In part 3, the computational
complexity is O (M × N × s2 × α × NP × G) due to the mutation processing for every antibody in
every generation, and the clonal processing only functions on the total number of antibodies. As the
parts of initialization, coding, cloning, and TSDI calculation are dependent parts, they have the total
computational complexity of O (M × N × s2 × α × NP × G). Considering all the aforementioned
parts, the total computational complexity of SSMCS is O (M × N × C + M × N × s2 × NP × G).

The complexity of SSMDE can also be split into the same parts as SSMCS, except for part 3, which
contains the mutation operator and crossover operator. The total computational complexity of the
generation part is therefore O (M × N × s2 × 2 × NP × G). Taking all four parts into consideration,
the total computational complexity of SSMDE is O (M × N × C + M × N × s2 × 2 × NP × G).

5. Sensitivity Analysis

The proposed algorithms have several important parameters, including the scale factor s
determining the complexity of the reconstructed scene, and the genetic parameters controlling the
genetic process of evolution, which have a significant impact on the result of the reconstructed map.
Since the sub-pixel mapping results were only analyzed at the scale factor of 4 in the synthetic
experiments, multiple scale factors were also tested on the synthetic images used in Experiments 1 and
2 to examine the performance of the proposed algorithm.

The main genetic parameters are as follows:

(1) pm is the mutation rate parameter in SSMCS.
(2) pc is the crossover rate parameter in SSMDE.

Beside, the genetic parameters are adaptively determined by the adaptive strategy proposed
in this paper, the two synthetic images used in Experiments 1 and 2 were again chosen to verify
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the adaptive strategy, and the results obtained by the adaptive parameters were compared with the
non-adaptive results of different values of the genetic parameters.

5.1. Sensitivity in Relation to the Scale Factor

To explore the sensitivity of the proposed algorithm in relation to scale factor s, all the other
parameters were kept the same as in Experiments 1 and 2. The scale factor was then set as s = {4, 5, 10},
and the corresponding OA accuracy of different algorithms were serve as the benchmark.

As shown in Figure 15, the OA values are negatively correlated with the scale factor, i.e. the higher
the value of scale factor s, the lower the OA value. This is because the distribution of the land-cover
classes becomes more complex as the scale factor s increases, leading to an increase in the difficulty
of the sub-pixel mapping. Given the fact that the accuracy of the synthetic images decreases as the
scale factor increases, the proposed algorithms are still superior to the others. From the line chart,
one can see that SSMDE and SSMCS are relatively stable with the increase of the scale factor, as the
slope is gentler. What is more, SSMDE obtains the highest OA when the scale factor equals 4, and
SSMCS performs the best at the scale factors of 5 and 10 in Experiment 1. As for Experiment 2, SSMCS
performs better than the other methods at all the scale factors.
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5.2. Sensitivity in Relation to the Mutation Rate Parameter in SSMCS

In SSMCS, the mutation rate parameter pm plays an important role in the evolution process of
the generation. It controls the balance of the convergence of the solution and the preservation of the
suitable structural information of the antibodies. If the mutation rate is too low, there is not enough
disturbance to escape from the local optima. On the other hand, the suitable structural information
will be destroyed if the mutation rate is too high. Therefore, the value of pm has a significant impact
on the accuracy of the output result. In this paper, we develop an adaptive strategy to automatically
find the most suitable value, which is based on the principle that a better individual deserves a
lower mutation rate to avoid destroying the good structure, whereas a worse individual deserves a
higher mutation rate to remove the bad genetic information from the population, and thus the value
adaptively changes in every generation. In order to verify the effect of the adaptive strategy, several
non-adaptive parameters were selected within the range [0.1, 1] with the same footstep of 0.1, to obtain
the best non-adaptive parameter setting, which was then compared to the best adaptive parameter
setting. It is worth noting that the selected value of the non-adaptive parameter did not change during
the iteration process.
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Figure 16a,b shows the OA curves of the results generated by the series of non-adaptive parameter
pm values for the synthetic images of Experiments 1 and 2, respectively. Since the adaptive values were
updated in the iteration, we only show the final estimated adaptive values, as well as the OA values,
which are represented by the stars. As displayed in Figure 16a,b, the OAs of the results obtained by the
adaptively estimated parameters are almost the same with the best OAs obtained by the non-adaptive
parameters. As the values of the adaptively estimated parameter pm are close to the best non-adaptive
ones, this confirms the feasibility of the adaptive strategy. It is worth noting that since the pm values
are randomly initialized in the adaptive strategy, the pm value will finally converge around the best
pm value manually selected, which corresponds to better OA values. Therefore, the adaptive strategy
can be considered to be stable and robust, and moreover, release the time consuming manual work.
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5.3. Sensitivity in Relation to the Crossover Rate Parameter in SSMDE

The crossover rate pc is one of the most important parameters in the operation of SSMDE.
The crossover rate pc controls the rate of the exchange of differential information between an individual
of the current generation and the next generation. Since a larger parameter value means an inclination
to exchange superfluous differential information and consequently destroy the structure of the
individual, a smaller parameter value means less disturbance of the structure of the individual, which
slows down the mutation process. Hence, an appropriate value of pc will result in a more rational
reconstruction. In the framework of SSMDE, adaptive strategies were adopted for the crossover rate
parameter pc and the differential scale factor F, and in order to test the validity of the adaptive strategy,
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parameter F was set to a fixed number during the iteration process. It should be noted that the adaptive
strategy employed by parameter F could also be examined in a similar way. The same strategy that
was used in SSMCS was used to obtain the optimum non-adaptive parameter value within the range
[0.1, 1] and a footstep of 0.1.

Figure 16c,d displays the OA results obtained by the adaptive parameter pc and the non-adaptive
parameters selected manually. As the adaptive parameter changes in every generation, only the final
value of the parameter is shown in the figures, in the shape of a star. The optimum non-adaptive
parameter value shows as the peak of the curve. It can be seen that the OA results acquired by the
adaptive parameter pc are nearly the same with the ones acquired by the optimum non-adaptive
parameter, proving the superiority of the adaptive strategy.

6. Conclusions

In this paper, we have proposed a novel sub-pixel mapping algorithm based on swarm intelligence
theory for bitemporal remote sensing imagery, to regularize the ill-posed sub-pixel mapping problem
and further improve the performance of sub-pixel mapping. The swarm intelligence theory involves
clonal selection sub-pixel mapping (CSSM) and differential evolution sub-pixel mapping (DESM).
Furthermore, a spatial-temporal sub-pixel mapping method is used to obtain the distribution
information at a fine spatial resolution from the bitemporal image pair, which exactly regularizes the
ill-posed sub-pixel mapping problem. To verify the effectiveness of the swarm intelligence theory based
spatial-temporal sub-pixel mapping algorithm, we conducted two synthetic experiments and one
real image experiment, and compared the proposed algorithm to several of the traditional sub-pixel
mapping algorithms. The experimental results confirmed that the proposed algorithm surpasses
the performance of the traditional approaches, both qualitatively and quantitatively, and can be
successfully used for the application of timely and detailed LCCD. The proposed sub-pixel mapping
algorithm was proved to be effective in Experiments 1 and 2, and the insignificant advantage in
Experiment 3 was mainly due to the spectral unmixing error. As a result of the low spatial resolution
of the MODIS image, which contains many mixed pixels, the blending pattern is very complicated,
leading to a deficiency in the boundary and structure information, making it difficult for the spectral
unmixing techniques to clearly distinguish each class. As these preprocessing errors were introduced
into the sub-pixel mapping process, they compromised and masked the advantage of the proposed
algorithm. Therefore, further work will be undertaken to ensure that the proposed method is more
compatible with the spectral unmixing error, and to ensure that the proposed method can be better
applied to real remote sensing images.
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