Next Article in Journal
Citizen Bio-Optical Observations from Coast- and Ocean and Their Compatibility with Ocean Colour Satellite Measurements
Previous Article in Journal
Integration of Aerial Thermal Imagery, LiDAR Data and Ground Surveys for Surface Temperature Mapping in Urban Environments
Previous Article in Special Issue
Fine-Scale Sea Ice Structure Characterized Using Underwater Acoustic Methods
Article Menu

Export Article

Open AccessArticle
Remote Sens. 2016, 8(11), 881; doi:10.3390/rs8110881

Vocalization Source Level Distributions and Pulse Compression Gains of Diverse Baleen Whale Species in the Gulf of Maine

Laboratory for Ocean Acoustics and Ecosystem Sensing, Northeastern University, Boston, MA 02115, USA
*
Author to whom correspondence should be addressed.
Academic Editors: Nicholas Makris, Xiaofeng Li and Prasad S. Thenkabail
Received: 23 June 2016 / Revised: 6 September 2016 / Accepted: 16 October 2016 / Published: 25 October 2016
(This article belongs to the Special Issue Underwater Acoustic Remote Sensing)
View Full-Text   |   Download PDF [1803 KB, uploaded 25 October 2016]   |  

Abstract

The vocalization source level distributions and pulse compression gains are estimated for four distinct baleen whale species in the Gulf of Maine: fin, sei, minke and an unidentified baleen whale species. The vocalizations were received on a large-aperture densely-sampled coherent hydrophone array system useful for monitoring marine mammals over instantaneous wide areas via the passive ocean acoustic waveguide remote sensing technique. For each baleen whale species, between 125 and over 1400 measured vocalizations with significantly high Signal-to-Noise Ratios (SNR > 10 dB) after coherent beamforming and localized with high accuracies (<10% localization errors) over ranges spanning roughly 1 km–30 km are included in the analysis. The whale vocalization received pressure levels are corrected for broadband transmission losses modeled using a calibrated parabolic equation-based acoustic propagation model for a random range-dependent ocean waveguide. The whale vocalization source level distributions are characterized by the following means and standard deviations, in units of dB re 1 μ Pa at 1 m: 181.9 ± 5.2 for fin whale 20-Hz pulses, 173.5 ± 3.2 for sei whale downsweep chirps, 177.7 ± 5.4 for minke whale pulse trains and 169.6 ± 3.5 for the unidentified baleen whale species downsweep calls. The broadband vocalization equivalent pulse-compression gains are found to be 2.5 ± 1.1 for fin whale 20-Hz pulses, 24 ± 10 for the unidentified baleen whale species downsweep calls and 69 ± 23 for sei whale downsweep chirps. These pulse compression gains are found to be roughly proportional to the inter-pulse intervals of the vocalizations, which are 11 ± 5 s for fin whale 20-Hz pulses, 29 ± 18 for the unidentified baleen whale species downsweep calls and 52 ± 33 for sei whale downsweep chirps. The source level distributions and pulse compression gains are essential for determining signal-to-noise ratios and hence detection regions for baleen whale vocalizations received passively on underwater acoustic sensing systems, as well as for assessing communication ranges in baleen whales. View Full-Text
Keywords: baleen whale; vocalization source level; pulse compression baleen whale; vocalization source level; pulse compression
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Wang, D.; Huang, W.; Garcia, H.; Ratilal, P. Vocalization Source Level Distributions and Pulse Compression Gains of Diverse Baleen Whale Species in the Gulf of Maine. Remote Sens. 2016, 8, 881.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top