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Abstract: Rice growth monitoring is very important as rice is one of the staple crops of the world.
Rice variables as quantitative indicators of rice growth are critical for farming management and yield
estimation, and synthetic aperture radar (SAR) has great advantages for monitoring rice variables due
to its all-weather observation capability. In this study, eight temporal RADARSAT-2 full-polarimetric
SAR images were acquired during rice growth cycle and a modified water cloud model (MWCM)
was proposed, in which the heterogeneity of the rice canopy in the horizontal direction and its
phenological changes were considered when the double-bounce scattering between the rice canopy
and the underlying surface was firstly considered as well. Then, three scattering components from an
improved polarimetric decomposition were coupled with the MWCM, instead of the backscattering
coefficients. Using a genetic algorithm, eight rice variables were estimated, such as the leaf area index
(LAI), rice height (h), and the fresh and dry biomass of ears (Fe and De). The accuracy validation
showed the MWCM was suitable for the estimation of rice variables during the whole growth season.
The validation results showed that the MWCM could predict the temporal behaviors of the rice
variables well during the growth cycle (R2 > 0.8). Compared with the original water cloud model
(WCM), the relative errors of rice variables with the MWCM were much smaller, especially in the
vegetation phase (approximately 15% smaller). Finally, it was discussed that the MWCM could be
used, theoretically, for extensive applications since the empirical coefficients in the MWCM were
determined in general cases, but more applications of the MWCM are necessary in future work.

Keywords: paddy rice; polarimetry; water cloud model (WCM); LAI; height; ear biomass;
heterogeneity; RADARSAT-2; synthetic aperture radar (SAR)

1. Introduction

Rice is the main staple food in Asian countries, which feeds about 3.5 billion people worldwide
and accounts for 90% of the global rice supply [1]. The estimation of rice variables arouses people’s
interest [2,3] because rice variables are quantitative indicators for rice growth and productivity, and
provide reliable information for agricultural management applications. Considering rice always grows
in the rainy season in almost all Asian countries, the all-weather capability of synthetic aperture radar
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(SAR) makes it suitable for monitoring rice paddy fields when it is also sensitive to the structure of the
rice canopy [4–9].

In order to relate SAR signatures to the rice variables, numerous scattering models have been
developed, including empirical [9,10], semi-empirical [11,12], and physical models [13,14]. Among the
three methods, the empirical model is the simplest way to estimate the rice variables, however, it lacks
a theoretical basis and is only suitable for the specific study site [15]. The physical model consists of
complicated equations describing the interaction between radar signals and targets accurately, but it is
too complex to be applied in practice and insufficient input parameters could cause ambiguities [3].
The semi-empirical model as good compromise between the empirical and physical model, considering
both the physical background and the simplicity [15]. Therefore, the semi-empirical model is the most
popular method for rice variable estimation [5,12,16].

The water cloud model (WCM) is one of the typical semi-empirical scattering models, which was
firstly proposed by Attema and Ulaby [17] and was then applied to the assessment of soil moisture and
vegetation variables extensively since it is simple and practical [18–21]. However, the WCM simplicity
is often accompanied by relatively low accuracies because many assumptions and simplifications are
contained in the model [22]. In order to improve the accuracy of WCM, some researchers improved
the scattering mechanisms of the WCM. For example, Ulaby et al. [23] developed the multi-layered
vegetation model and separately considered the backscatter from different parts of the vegetation
(leaves, stems, and ears). Kweon and Oh [22] modified the WCM by adding the leaf angle distribution
function to accurately depict the canopy with angular scattering particles. Moreover, many other
studies focused on the calibration of the model coefficients of WCM for specific area, vegetation type
or SAR data. For instance, Prevot et al. [24] adjusted the input parameters of the WCM with the field
data and expressed the WCM briefly with four empirical coefficients. Van Leeuwen and Clevers [25]
undertook a study attempting to simulate the LAI values for sugar beet using both optical and SAR
data. The WCM was used for the SAR data and a canopy parameter of the WCM related to attenuation
was modified. Xu et al. [26] recommended a modified WCM by calibrating the model coefficients
using ERS-1 SAR data and ground measurements, which made the root mean squared error (RMSE) of
the leaf area index (LAI) less than 0.4. In addition, the WCM was also improved through considering a
different optimization algorithm for estimating the model coefficients. Generally, the model coefficients
of the WCM are estimated by nonlinear least squares regression analysis by fitting the model against
experimental datasets [24,26,27]. For example, Prevot et al. [24] fitted the model coefficients of the
WCM by using a quasi-Newton minimization algorithm, a first-order method based on Newtonian
mechanics. Xu et al. [26] fitted the model coefficients on in situ data using a combined Gauss-Newton
and modified Newton minimizing algorithm. Bolten et al. [28] used a quasi-Newtonian method to
estimate A and B. The reliability of parameter estimates by least squares optimization depends greatly
upon the quality of the experimental data and the nature of the objective function. Errors in the
experimental data are inevitable. During the experiment, measurement errors generally occur due
to human mistakes, the malfunction of instruments or a lack of precision. Recently, Kumar et al. [12]
estimated the coefficients of the WCM using a genetic algorithm optimization and found that the
root mean squared error obtained from the GA was about half of that obtained by the conventional
gradient-based sequential unconstrained minimization technique.

According to the analysis above, it is seen that many improvements on the WCM were considered,
including the calibration of the model coefficients using the in situ data and the optimization algorithms
for accurate estimation results. However, there are still some flaws that are ignored in the WCM. First,
the distribution of crop leaves in the horizontal direction is not random, especially in the early period
of the growth season, which conflicts with the assumptions of the WCM. Second, the backscattering
coefficients were always used directly in the WCM to build the relationship with the vegetation
variables. The correlation between the different polarimetric channels could cause the equations of
the WCM to be mutually related to some extent, which could produce problems [29]. In addition,
the double-bounce was not considered in the WCM because the second-order scatterings between the
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canopy particles and the soil surface were ignored. However, the double-bounce actually makes
significant contributions, especially in the early period of the rice growth cycle [30]. Thus the
polarimetric scattering mechanism assumed in the WCM is not particularly well adapted to the
scattering from crops, especially for rice.

In order to solve the mentioned problems above, the present study aims to propose a modified
water cloud model (MWCM), in which the heterogeneity of the rice canopy in the horizontal direction
and the double-bounce scattering are added. The double-bounce, volume, and surface scattering
components from an improved polarimetric decomposition are related to the rice variables with the
MWCM, rather than the backscattering coefficients. Using a genetic algorithm (GA) to solve the
MWCM, eight of the rice variables were estimated, including the leaf area index (LAI), rice height (h),
the fresh and dry biomass of ears (Fe and De), the water content of leaves, stalks, ears, and the total
rice canopy (mv_l, mv_s, mv_e, and mv). The estimated results of the rice variables and the comparison
between the MWCM and the WCM are discussed.

2. Materials and Methods

2.1. Study Site

Our study was conducted in Jinhu, Jiangsu Province (33◦07′05”N, 118◦59′55.14”E), a major rice
production region in Eastern China (Figure 1). The test site is located in a plain southeast of Hung-tse
Lake and covers a total area of 40 × 30 km2. It lies at a geographic elevation of approximately 20 m
above sea level with a gentle and flat topography, where the annual average air temperature and total
precipitation are 14.6 ◦C and 1085 mm, respectively.
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Figure 1. Study area in the RGB color image of polarimetric Radarsat-2 data on 27 June 2012 (R = HH, 
G = HV, B = VV). The paths of the field investigation (red lines) and the location of rice sample fields 
(green dots) are both displayed. The Landsat-8 Operational Land Imager (OLI) true color image is 
used as a backdrop. 

In the test site, the transplanted hybrid rice fields were dominant and several varieties were 
included, such as “LIANGYOU-898” and “XIEYOU-9308”. All rice fields were cultivated once a year 
from late June to late October. The whole rice growth cycle was divided into three major development 
phases, which were subdivided into ten phenological stages according to the BBCH scale (from 
Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie) [31]: (1) Vegetative phase (from 
the seedling to the elongation stage): in the seedling stage, the bundles of 5–10 seedlings were 
transplanted with a spacing of 30 × 15 cm2 under flooded fields. Then the seedlings split into several 
tillers and began to develop a root system in the tillering stage. The rice stems grew much longer in 

Figure 1. Study area in the RGB color image of polarimetric Radarsat-2 data on 27 June 2012 (R = HH,
G = HV, B = VV). The paths of the field investigation (red lines) and the location of rice sample fields
(green dots) are both displayed. The Landsat-8 Operational Land Imager (OLI) true color image is used
as a backdrop.

In the test site, the transplanted hybrid rice fields were dominant and several varieties were
included, such as “LIANGYOU-898” and “XIEYOU-9308”. All rice fields were cultivated once a
year from late June to late October. The whole rice growth cycle was divided into three major
development phases, which were subdivided into ten phenological stages according to the BBCH scale
(from Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie) [31]: (1) Vegetative phase
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(from the seedling to the elongation stage): in the seedling stage, the bundles of 5–10 seedlings were
transplanted with a spacing of 30 × 15 cm2 under flooded fields. Then the seedlings split into several
tillers and began to develop a root system in the tillering stage. The rice stems grew much longer in
the elongation stage; (2) Reproductive phase (from the booting to the flowering stage): the upper part
of stems thickened, and the flag leaves unfolded in the booting stage. The heading stage started with
the emergence of the panicles. After the completion of the panicles, the anthers appeared and fully
developed in the flowering stage; and (3) Maturity phase (from the dough to the mature stage): ears
ripened and were ready to harvest (Figure 2). Normally, plant growth within each field was almost
uniform when between-field variability was relatively large due to the difference in the soil conditions
and the agronomic management practices.
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not random, thus the water content of the rice canopy in the horizontal direction is not uniform, 
which conflicts with the assumptions of the WCM [17,18]. In order to solve this problem, a “scattering 
cell” is defined, including two parts, i.e., the rice and the space parts (Figure 3). 
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Figure 2. The rice morphologies at different phenological stages are shown along with the SAR image
acquisition dates. The phenological stages are quantified using the BBCH scale.

2.2. Acquisition and Processing of RADARSAT-2 Images

In order to collect the rice growth conditions in different phenological stages, a stack of eight
RADARSAT-2 full-polarimetric single-look complex (SLC) C-band SAR images were acquired from
27 June to 15 October 2012 (Table 1). The eight SAR images were in two beam positions, FQ9W and
FQ20W, which results in different incidence angles. The spatial resolution was higher than 10 m,
which is suitable for estimating rice variables in field scale. The Next ESA SAR Toolbox (NEST) 5.1
(http://nest.array.ca/web/nest) was utilized for pre-processing these SAR images. The radiometric
correction was applied to all image data based on radiometric parameters provided in the header
files. Then a 7 × 7 enhanced Lee filter was applied to each image to reduce speckle noise, and all
of the images were georectified based on the digital elevation map (DEM) using the Range-Doppler
terrain model.

Table 1. Available RADARSAT-2 images and corresponding rice phenology stages. Date: yy-mm-dd.

Date Mode Incidence Angle(◦) Pixel Spacing (A × R, m) Phenology

2012-06-27 FQ20W 1 38–41 5.2 × 7.6 Seedling
2012-07-11 FQ9W 27–30 5.2 × 7.6 Tillering
2012-07-21 FQ20W 38–41 5.2 × 7.6 Elongation
2012-08-04 FQ9W 27–30 5.2 × 7.6 Booting
2012-08-28 FQ9W 27–30 5.2 × 7.6 Heading
2012-09-07 FQ20W 38–41 5.2 × 7.6 Flowering
2012-09-21 FQ9W 27–30 5.2 × 7.6 Dough
2012-10-15 FQ9W 27–30 5.2 × 7.6 Mature

1 FQ**W stands for wide fine-quad mode.

http://nest.array.ca/web/nest
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2.3. Ground Truth Measurements of Rice Variables

Detailed ground truth measurements were collected at 32 rice sample fields concurrently with
the SAR data acquisitions. All sample fields in the ground campaign were 120 m × 120 m or larger,
to ensure a sufficient number of pixels were included for analysis. For each rice field, the rice
phenological stage was recorded based on the BBCH scale (Table 1), and the typical rice canopies
were photographed (Figure 2). Then five or more representative rice plants were chosen randomly
in each rice field, on which various rice variables were measured, such as the line spacing (LL), row
spacing (LR), density of plants in the rice field (Np), leaf angles, major and minor diameters of the rice
cluster (DL and DS), etc. In detail, the LAI was measured using LAI-2200 and the height was measured
by tapeline, whose precision is to the millimeter. The height between the lowest leaf node of the stem
and the underlying surface was defined as the height of stems (hs). The height between the highest leaf
node of the stem and the vertex of the ears was defined as the height of the ear layer (he). The height
between the lowest and highest leaf node was defined as the height of the leaf layer (hl). The height of
total rice canopy (h) was defined as the sum of hl, hs, and he. All of the rice variables were measured
more than five times and then averaged to get the final results for each rice field. The wet and dry
biomass of leaves, stems, ears and whole plants were obtained through destructive measurements of
the sampled plants based on normal gravimetric processes. The volumetric water content (VWC) of
leaves, stems, ears, and the total rice canopy (mv_l, mv_s, mv_e, and mv) were calculated by the fresh and
dry biomass from different parts of the rice plants, respectively, i.e.,

mv_l = (Fl − Dl) Np/hl
mv_s = (Fs − Ds) Np/hs

mv_e = (Fe − De) Np/he

mv =
(

Fp − Dp
)

Np/h

 , (1)

where Fl, Fs, Fe, and Fp are the fresh biomass of leaves, stems, ears, and total rice canopy, respectively.
Dl, Ds, De, and Dp are the dry biomass of leaves, stems, ears, and total rice canopy, respectively. Np is
the planting density. hl, hs, he, and h denote the height of leaves, stem, ear layers, and total rice
canopy, respectively.

3. Methodology

3.1. Modified Water Cloud Model (MWCM)

From Figure 2, it is found that the distribution of leaves and ears in the horizontal direction
is not random, thus the water content of the rice canopy in the horizontal direction is not uniform,
which conflicts with the assumptions of the WCM [17,18]. In order to solve this problem, a “scattering
cell” is defined, including two parts, i.e., the rice and the space parts (Figure 3).
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3.1.1. Scattering Cell

From Figure 4a, it is seen that the rice field consists of many scattering cells and Figure 4b shows
that a scattering cell is regarded as a cuboid including the leaves, stalks and air. The length of the
cuboid is equal to the line spacing (LL) and the width of the cuboid is equal to the row spacing (LR)
when the height of the cuboid is equal to the height of the rice cluster (h). In Figure 4c, the lowest leaf
nodes of all stems of the rice cluster are illustrated when the leaves become invisible. It is assumed
that the nodes make up an ellipse and the long and short diameter axes (DL and DS) of the rice cluster
are measured in the ground truth measurement, respectively. Then the rice cluster in each scattering
cell could be expressed as a cuboid, whose length is the long axis of the rice cluster (DL), whose
width is the short axis of the rice axis (DS), and whose height is equal to the rice height (Figure 4d).
Thus, a volume fraction coefficient F is defined as the ratio of the space volume to the scattering
cell, i.e., F = 1 − (DL × Ds)/(LL × LR), 0 < F < 1. In the seedling stage, the diameter of rice cluster is
small due to the small rice plants. The space between the adjacent rice clusters accounts for a large
portion of the scattering cell, implying F is large. In the tillering and elongation stage, many tillers
are generated and the stems develop much longer. Thus, the long and short diameter axes of the rice
cluster become large and the proportion of the rice cluster increases, which decreases F. From the
heading to the mature stage, no more tillers are generated and the length of the stems remains stable;
however, the inclination angles of stems and leaves become slightly larger. Thus, the diameter axes of
rice cluster become larger, which causes F to slightly decrease.
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Figure 4. The configuration of a scattering cell. (a) The rice field is divided into a large number of
scattering cells, as denoted by the red rectangle. (b) A scattering cell is regarded as a cuboid with length
LL, width LR and height h, which denote the rice plant height, the line, and the row spacing of the rice
field, respectively. (c) Top view of one scattering cell. The projective point of the lowest leaf node of
each stem in a rice cluster constitutes an ellipse (the black dotted line) with the major and minor axes
of DL and DS. The external rectangle (the red rectangle) of the ellipse is defined as the projection of the
rice part in a scattering cell. (d) The rice part is defined as a cuboid in the embrace of a scattering cell,
with length DL, width DS, and height h (the red cuboid).

In addition, it is noted that more of the surrounding air and less leaves are included in the space,
compared with the rice cluster. Considering the VWC of air is much lower than that of the rice plant,
the VWC of the rice part is larger than that of the space part. Assuming the VWC of the leaves in the
rice part is W1 and that in the space part is W2, then W2 = n1 ×W1, where coefficient n1 denotes the
ratio of the VWC of the leaves in the space part (W2) to that in the rice part (W1), ranging from 0 to 1.
In the seedling stage, rice plants and leaves were small. Almost all leaves were included in the rice
parts and few leaves ran out to the space part, causing n1 to be very small. From the tillering to the
booting stage, rice leaves became larger, denser, and more inclined. Thus, the difference between W1
and W2 became smaller, resulting in a large value of n1. From the heading to the flowering stage,
the underlying surface of the rice field was almost completely covered by leaves. The density of leaves
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in the scattering cell was nearly homogenous, i.e., W1–W2. Thus, n1 was close to one. From the milk to
the mature stage, although the VWC in the rice part (W1) and the space part (W2) both decreased due
to the withered rice canopy, there was still no big difference between W1 and W2 because the leaves
distributed randomly, implying that the coefficient n1 was nearly one as well.

Similar with the analysis above, assuming the VWC of ears in the rice part and that in the space
are W3 and W4 respectively, then W4 = n2 ×W3, where coefficient n2 denotes the ratio of the VWC of
ears in the space part (W4) to that in the rice part (W3), ranging from 0 to 1. From the heading to the
flowering stage, the ears were almost straight with small inclination angles (up to 5◦ approximately)
because of their small biomass. Thus it was assumed that the ears were only distributed in the rice part
during this period, i.e., n2 ≈ 0. From the milk to the mature stage, the ears became inclined due to the
increase of biomass and, consequently, increased n2. Based on the analysis above, the value intervals
of F, n1, and n2 were assumed empirically according to the ground measurement, which would be
applied to the genetic algorithm (GA) as the initial conditions in different phenological stages.

3.1.2. Scattering Components from Multi-Layered Rice Canopy

Based on the scattering cell, the multi-layered rice canopy proposed by Ulaby et al. [23] is
considered and Figure 5 shows the variation of the multi-layers at different phenological stages. In the
seedling stage, the rice plants are short and mainly consisted of small leaves. The rice cluster of
the scattering cell is considered as a layer consisting of identical water particles that are uniformly
distributed. In addition, as almost no leaves were distributed in the space of the scattering cell,
the water content in the space is negligible in the seedling stage. Therefore, four scattering mechanisms
are considered in the seedling stage, including the volume scattering from the rice cluster (Vf_r),
the underlying surface scattering through the rice cluster (Sg_r), the underlying surface scattering
through the space (Sg_s), and the double-bounce between underlying surface and rice cluster (Dg_f)
(Figure 5a). From the tillering to the booting stage, the volumetric water content in the space increases
as the rice plant and leaves develop. The stem layer is also considered in the rice cluster since
the rice stems grow longer. Thus, three more scattering interactions are considered in the MWCM,
including the volume scattering from the leaf layer in the space (Vf_s), surface scattering from the stem
layer (St), and the double-bounce between the underlying surface and the stem (Dg_t) (Figure 5b).
After the booting stage, the ears emerge and the ear layer is considered in the MWCM (Figure 5c,d).
From the heading to the flowering stage, rice plants were fully developed and completely covered the
underlying surface, which made the VWC of the space (W2) and the rice part (W1) being almost equal.
Consequently, the double-bounce scattering between the underlying surface and the leaf layer (Dg_f)
was ignored. Meanwhile, rice ears came out with small inclination angles and were almost embodied
in the rice part. Accordingly, the volumetric scattering from the ear layer in the rice part (Ve_r) and
the double-bounce between the underlying surface and the ear layer (Dg_e) were added (Figure 5c).
From the milk to the mature stage, rice ears leaned over and ran out to the space part due to the
increasing biomass. Accordingly, the volumetric scattering from the ear layer in the space part (Ve_s)
was considered (Figure 5d).

It is noted that the underlying surface of the rice field changes along with the phenological stages.
During the field experiments, it was found that the underlying surfaces of all rice fields were covered
by water in the seedling stage. From the tillering to the booting stage, the underlying surfaces of most
rice fields were flooded, except for some that were covered by mud. From the heading to the mature
stage, nearly all of the underlying surfaces of rice fields were covered by wet soil. For convenience,
it is assumed that rice fields are flooded from the seedling to the booting stage and then change to wet
soil from the heading stage to the mature stage.



Remote Sens. 2016, 8, 878 8 of 21
Remote Sens. 2016, 8, 878 8 of 21 

 

 
Figure 5. (a–d):The adaptive MWCM according to the rice phenological stage. The yellow, green, and 
red dots consist of ear, leaf, and stem layers, respectively. The scattering mechanisms of the rice 
canopy are shown. 

3.2. Improved Polarimetric Decomposition 

The model-based decomposition has been extensively applied for its simplicity and easy 
implementation [32–34]. However, this decomposition methods has some deficiencies. Due to 
uncertainty and unsuitability of the volume scattering model, it usually leads to the overestimation 
of volume scattering contribution [34–35]. Additionally, for the flaw of the traditional estimation 
method for scattering model parameters, such as the assumption of reflection symmetry, there exists 
the problem of negative powers [36]. In order to solve the mentioned problems above and to enhance 
the accuracy of decomposition, a new decomposition method is proposed, including three 
improvements. 

3.2.1. Deorientation 

First, the deorientation [37–38] is applied. The purpose of the deorientation process is to remove 
the fluctuant influence of randomly-distributed target orientation angles on polarimetric scattering, 
and it can make identical targets with different orientation angles yield the same polarimetric matrix, 
which will finally lead to the same decomposition results. 

In the deorientation process, the coherency matrix is rotated by a certain angle about the line of 
sight so that the cross-polarized scattering power is minimized. The minimization of the cross-
polarized scattering means that the power is concentrated to the co-polarized channels. More detail 
information could be found in [37]. The deorientation process is denoted as Cθ = DEORIENT (C). 

3.2.2. Distinguish the Reflection Symmetry 

The difference between the reflection symmetry and non-reflection symmetry targets can be 
described by the product of the cross-polarization and co-polarization component in the Sinclair 
matrix, i.e., <SHHSHV*> and <SHV*SVV> [39]. In terms of the reflection symmetry target, the product is 
nearly zero. Thus, the averaged cross-polarization coefficient (ρ) can be generated to distinguish the 
reflection and non-reflection symmetry target: 
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3.2. Improved Polarimetric Decomposition

The model-based decomposition has been extensively applied for its simplicity and easy
implementation [32–34]. However, this decomposition methods has some deficiencies. Due to
uncertainty and unsuitability of the volume scattering model, it usually leads to the overestimation of
volume scattering contribution [34,35]. Additionally, for the flaw of the traditional estimation method
for scattering model parameters, such as the assumption of reflection symmetry, there exists the
problem of negative powers [36]. In order to solve the mentioned problems above and to enhance the
accuracy of decomposition, a new decomposition method is proposed, including three improvements.

3.2.1. Deorientation

First, the deorientation [37,38] is applied. The purpose of the deorientation process is to remove
the fluctuant influence of randomly-distributed target orientation angles on polarimetric scattering,
and it can make identical targets with different orientation angles yield the same polarimetric matrix,
which will finally lead to the same decomposition results.

In the deorientation process, the coherency matrix is rotated by a certain angle about the line of
sight so that the cross-polarized scattering power is minimized. The minimization of the cross-polarized
scattering means that the power is concentrated to the co-polarized channels. More detail information
could be found in [37]. The deorientation process is denoted as Cθ = DEORIENT (C).
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3.2.2. Distinguish the Reflection Symmetry

The difference between the reflection symmetry and non-reflection symmetry targets can be
described by the product of the cross-polarization and co-polarization component in the Sinclair
matrix, i.e., <SHHSHV*> and <SHV*SVV> [39]. In terms of the reflection symmetry target, the product is
nearly zero. Thus, the averaged cross-polarization coefficient (ρ) can be generated to distinguish the
reflection and non-reflection symmetry target:

ρ =
1
2

∣∣∣∣∣∣∣∣
〈
SHHS∗HV

〉√〈
|SHH |2

〉 〈
|SHV |2

〉 +

〈
SHVS∗VV

〉√〈
|SHV |2

〉 〈
|SVV |2

〉
∣∣∣∣∣∣∣∣, (2)

where SHH, SHV, and SVV are the parameters of the Sinclair matrix. The subscript * denotes
the conjugate.

The range of ρ is [0,1]. When the value of ρ is close to 0, the target is inclined to reflection
symmetry; and the target is inclined to non-reflection symmetry when ρ is larger than an appointed
threshold (such as 0.1).

3.2.3. Generalized Volume Scattering Model

Modifying the volume scattering model is a good method to reduce the overestimation of the
volume scattering power. Freeman [32] considered the forest canopy with randomly-oriented dipoles
when−2 dB≤ 10log (|SVV|2/|SHH|2)≤ 2 dB; Yamaguchi et al. [35] added the horizontal and vertical
dipole volume models when 10log (|SVV|2/|SHH|2) ≤ −2 dB and 2 dB ≤ 10log (|SVV|2/|SHH|2),
respectively. In this paper, the generalized volume scattering model (GVSM) [40] is adopted:

Cvolume =
1

3
2 (1 + γ)−

√
γ

3

 γ 0
√

γ
3

0 1+γ
2 −

√
γ

3 0√
γ

3 0 1

, (3)

where γ = |SHH|2/|SVV|2, denotes the HH and VV ratio.
From Equation (3), the GVSM can be used to describe the volume scattering continuously with

the variation of γ [40]. When γ = 1, the GVSM is equivalent to the volume model in the Freeman
decomposition; and when γ = 8/3 and 3/8, the GVSM is equivalent to the vertical and horizontal
dipole volume models in the Yamaguchi decomposition.

Based on Sections 3.2.1–3.2.3, the improved decomposition method is explained as follows:

〈[C]〉 = fs

〈[
Csur f ace

]〉
+ fd 〈[Cdouble]〉+ fv 〈[Cvolume]〉

+

{
fc 〈[Chelix]〉 ,i f ρ ≥ threshold (such as 0.1)

0 ,i f ρ ≤ threshold (such as 0.1)

, (4)

where fs, fd, fv, and fc are coefficients to be determined. <[Csurface]>, <[Cdouble]>, <[Cvolume]>, and <[Chelix]>
are matrices corresponding to the surface, double-bounce, volume, and helix scattering mechanisms,
respectively. Except <[Cvolume]>, the other scattering mechanisms and matrices are adopted as same as
that of the Yamaguchi decomposition.
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Expanding the covariance matrices in Equation (4), Equation (5) is attained, from which the
coefficients fs, fd, fv, and fc are calculated by using the similar method in the previous studies [34,35].
The flow chart of the improved decomposition method is shown in Figure 6.

 C11 C12 C13

C21 C22 C23

C31 C32 C33

 = fs

 |β|
2 0 β

0 0 0
β∗ 0 1

+ fd

 |α|
2 0 α

0 0 0
α∗ 0 1

+ fv
3
2 (1+γ)−

√
γ

3

 γ 0
√

γ
3

0 1+γ
2 −

√
γ

3 0√
γ

3 0 1



+


fc
4

 1 ∓j
√

2 −1
±j
√

2 2 ∓j
√

2
β∗ ±j

√
2 1

 , i f ρ ≥ threshold (such as 0.1)

0 , i f ρ ≤ threshold (such as 0.1)

, (5)

where fs, fd, fc, α, and β are as same as the parameters in Freeman and Yamaguchi decomposition.
γ=|SHH|2/|SVV|2, denotes the HH and VV ratio.
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Figure 6. The flow chart of the improved model-based decomposition integrating deorientation
and GVSM.

The results of the polarimetric scattering components could be attained during the whole growth
season (Figure 7a). It is noted that the decomposition components have an unexpected decrease on
21 July and 7 September because the incident angles of SAR images on these dates are much larger
than those on other dates (as seen in Table 1).
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Figure 7. (a,b) The results of improved three-component polarimetric decomposition and the
Freeman-Durden decomposition.

Compared with the results of the Freeman decomposition (Figure 7), the temporal behaviors of
the Pd, Pv, and Ps from both the improved and the Freeman decomposition are similar. However,
the Pv is significantly overestimated and the two other scattering components are underestimated
with the Freeman decomposition. For example, the double-bounce scattering is dominant with the
improved decomposition in the seedling stage, instead of the volume scattering. The possible reason is
that the rice canopy is very small, leading to small volume scattering when the interaction between
the specular reflection from water and the rice plants make the double-bounce dominant. In addition,
the pixels denoting the negative scattering power are also considered. We subset some rice fields and
then counted the negative pixels (Table 2). It can be seen that the negative pixels with the improved
decomposition are much fewer than those of the Freeman decomposition.

Table 2. Numbers of negative pixels in six rice fields.

No. of Rice
Fields

Total Number
of Pixels

Number of Negative Pixels Percentage of Negative Pixels (%)

Freeman
Decomposition

Improved
Decomposition

Freeman
Decomposition

Improved
Decomposition

(1) 408 31 10 7.60 2.45
(2) 2238 106 65 4.69 2.90
(3) 1516 240 80 15.83 5.28
(4) 518 71 32 13.90 6.18
(5) 213 19 8 9.39 3.76
(6) 556 22 13 4.14 2.34

3.3. Scenario for Estimation of Rice Variables

Through applying Ps, Pd, and Pv from the improved polarimetric decomposition into the MWCM,
three equations relating the three scattering components to the rice variables are built as follows:

Pv = Ve_r + Ve_s + Vf _r + Vf _s
Pd = Dg−e + Dg−t + Dg− f
Ps = Sg_r + Sg_s + St

 , (6)

where the scattering components of V, D, and S with subscripts could be found in Figure 5.
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3.3.1. Different Expressions of Equation (6)

Based on the previous studies [23–27], the scattering components of V, D, and S with subscripts
in the right part of Equation (6) could be expressed as the function of different rice variables.

LAI, h, mv_s, and De

The scattering components in the right part of Equation (6) can be expressed as the function of
LAI, h, mv_s, and De (Equations (7)–(21)), based on the theory proposed by Ulaby et al. [23].

Ve_r = (1− F)× Ae1(θ)× De, (7)

Ve_s = F× Ae1(θ)× n2De, (8)

Vf _r = (1− F)× A f 1 × (1− exp(−B f 1L/h))cos(θ)× (1− γ2
f _r(θ))γ

2
e_r(θ), (9)

Vf _s = F× A f 1 × (1− exp(−B f 1n1L/h))cos(θ)× (1− γ2
f _s(θ))γ

2
e_s(θ), (10)

St = (1− F)× At1mvh× γ2
f _r(θ)× γ2

e_r(θ), (11)

Sg_r = (1− F)× Cg1(θ)ms × γ2
f _r(θ)γ

2
e_r(θ)γ

2
t (θ), (12)

Sg_s = F× Cg1(θ)ms × γ2
f _s(θ)γ

2
e_t(θ), (13)

Dg− f = F× Cg2(θ)ms × A f 2 × (1− exp(−B f 2L/h))× γ2
f _s(θ), (14)

Dg−e = F× Cg2(θ)ms × Ae2(θ)× Deγ2
f _s(θ)γ

2
e_s(θ), (15)

Dg−t = F× Cg2(θ)ms × At2mvh× γ2
f _s(θ)γ

2
e_s(θ), (16)

where θ is the incident angle of the SAR image and:

γ2
f _r(θ) = exp(−2α f Lsec(θ)), (17)

γ2
f _s(θ) = exp(−2α f n1Lsec(θ)), (18)

γ2
t (θ) = exp(−2αtmvhsec(θ)), (19)

γ2
e_r(θ) = exp(−2αeDesec(θ)), (20)

γ2
e_s(θ) = exp(−2αen2Desec(θ)), (21)

From Equations (7)–(21), there are twenty unknowns, including sixteen model coefficients and
five rice variables. The sixteen model coefficients include F, n1, n2, Ae1(θ), Ae2(θ), Af1, Bf1, Af2, Bf2, At1,
At2, Cg1(θ), Cg2(θ), αf, αt, and αe. The four rice variables to estimate are De, L, h, and mv_s.

Before the heading stage, there is no ear layer and the underlying surface of the rice field is water.
Thus, De is not considered and the backscattering coefficient of the underlying surface related to ms is
replaced by the Fresnel reflection coefficient of water. Therefore, three rice variables, LAI, h, and mv_s,
are easily estimated.

From the heading to the mature stage, the ear is booting and the underlying surface of the rice
field is wet soil. Thus, five rice variables need to be considered, including De, LAI, h, mv_s, and ms.
Two assumptions are adopted here. First, we assume the backscattering coefficient of water is constant,
i.e., Cg × ms = C’

g, which can eliminate the variable ms. Second, the stem layer is ignored after the
heading stage considering that the attenuation from ear and leaf layers are large and the scattering
contribution from the stem layer is small, which results in the variable mv_s being eliminated. According
to the two assumptions, the three remaining rice variables De, LAI, and h are easily estimated by
Equation (6).
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mv_l, h, mv_s, and De

The scattering components in the right part of Equation (6) could also be expressed as the function
of mv_l, h, mv_s, and De. Considering the quantity mv_lh for the top (leaf) layer is related to the wet
and dry biomasses of the leaves, which, in turn, are related to the green LAI [23], we can replace the
LAI in Equations (8)–(17) by the mv_lh. Then the mv_l, h, mv_s, and De could be estimated similarly,
i.e., the variables mv_l, h and mv_s are estimated before the heading stage and the variables De, mv_l,
and h are estimated after the heading stage.

LAI, h, mv_s and Fe

Similarly, assuming that De is linearly correlated to Fe, i.e., Fe = k × De, Fe could be estimated
instead of De through replacing De in Equations (7), (14), and (19) by Fe.

LAI, h, mv_s, and mv_e

Similar with the consideration that the quantity mv_lh for the top (leaf) layer is related to the wet
and dry biomasses of the leaves, which, in turn, are related to the green LAI [23], the mv_eh could be
estimated when the De in Equations (7), (14), and (19) by mv_eh.

Except the four situations above, the scattering components could be expressed as different cases,
such as “mv, h, mv_s, and De” and “LAI, h, and mv_s”. Thus, we can estimate different rice variables
through expressing the scattering components from the rice canopy as different combinations of rice
variables in the right part of Equation (6).

3.3.2. Genetic Algorithm (GA)

A genetic algorithm [41] is used to solve Equation (6) for estimating rice variables in eight
phenological stages. Nine rice fields, distributed uniformly in the study area, are used as training
data for the model training and the remaining 23 rice fields are used for validation. Usually, a simple
GA for optimization comprises six major components, namely genetic representation, reproduction,
cross-over, mutation, a fitness function, and termination criteria.

Initialization and genetic representation

In the genetic representation of the GA, each coefficient above was encoded by using binary
coding as the gene substring. For F, n1, and n2, their initial values and ranges were determined by the
ground data measurements and empirical assumption (Section 3.1.1). In terms of the other coefficients,
their initial values and ranges were initialized by solving the MWCM with a set of training data.
For example, the attenuation coefficients αf and αe were initialized to [0,1] and [0,4], respectively.

Based on their ranges, the gene substring lengths of the coefficients were determined when the
desired solution accuracy to four decimal places was considered. Then the length of the chromosome
(total of the gene substring) was determined, i.e., 161 in the seeding stage (27 June), 175 from the
tillering (11 July) to the booting stage (4 August), 135 from the heading (28 August) to the flowering
stage (7 September), and 149 from the dough (21 September) to the mature stage (15 October).
The population of the coefficients was generated using a random generator and the population
size of 100 was initialized.

Reproduction

The chromosomes generated in the initial population were then chosen for participation in the
reproduction process based on their fitness values [16]. In this study, the fitness value was calculated
as Equations (22) and (23) and proportionate fitness selection was used. A chromosome with a higher
fitness value had a higher probability of being copied into the cross-over pool.

f =
1

1 + SSE
, (22)
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SSE =
n

∑
i=1

[
(Pv,obs,i − Pv,est,i)

2 + (Pd,obs,i − Pd,est,i)
2 + (Ps,obs,i − Ps,est,i)

2
]

(23)

Cross-over

Cross-over is a recombinant operator that selects two chromosomes from the cross-over pool at
random and cuts them into bits at a randomly chosen position [41]. The number of strings participating
in mating depended on the cross-over probability. In this study, the cross-over probability was assumed
to 0.8 and one-point cross-over was selected.

Mutation

Mutation is an important process that permits new genetic material to be introduced to a
population. A mutation probability is specified that permits random mutations to be made to
individual genes (e.g., changing 1 to 0, and vice versa, for binary GAs). The mutation probability of
0.02 was selected in this study.

Termination criteria

Finally, the termination criterion of the GA process was determined. The GA process could be
stopped when the fitness criterion was satisfied, or the maximum number of generations was exceeded.
In this study, the maximum number of generations was 5000.

3.3.3. Flow Chart for Rice Variable Estimation

Based on the MWCM, the improved decomposition components, and the genetic algorithm,
the flow chart for rice variable estimation is shown (Figure 8), by which the coefficients of the MWCM
and the rice variables in different phenological stages are estimated in Section 4.
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coefficient R2 of the “y = x” line is calculated. In this study, the R2 values for all rice variables, except 
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Figure 8. Flow chart for rice variable estimation with the MWCM and improved
polarimetric decomposition.

4. Results and Discussion

4.1. Estimated Results

Based on the scenario for the estimation of rice variables (Section 3.3), nine rice fields, distributed
uniformly in the study area, are used as training data for the GA and the remaining twenty-three rice
fields are used for validation. The estimated results of rice variables in different phenological stages
are shown in Figure 9.
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Figure 9. (a–h) The estimated results vs. ground truth data of the rice variables.

For each variable, most estimated results from different fields (denoted as different dots in
Figure 9) are around the ground truth data. Several statistical indicators are used to validate the
performance of the MWCM in the multi-temporal prediction of rice variables. First, the determination
coefficient R2 of the “y = x” line is calculated. In this study, the R2 values for all rice variables, except
mv_s, are larger than 0.8, implying that the “y = x” line can express the relationship between the
estimated and ground truth data well. The R2 of h is the largest (0.8914) (Figure 9d), denoting that the
difference between the estimated results and ground truth of h is the smallest. The possible reason
is that h is related to all scattering and attenuation from all layers in the rice plants (leaves, stalks,
and ears). Then we attain that the RMSE of LAI, h, Fe, De, mv, mv_l, mv_s, and mv_e are 0.48, 10.37 cm,
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0.27 kg/m2, 0.22 kg/m2, 0.57 kg/m3, 0.35 kg/m3, 0.85 kg/m3, and 0.46 kg/m3, respectively. Compared
with the mv, mv_l, and mv_e, the R2 of mv_s is the minimum (0.7587) and the RMSE of mv_s is the largest
(0.85 kg/m3) (Figure 9g) because the estimated errors of mv_s are large, especially from the heading to
the mature stage, considering the scattering attenuation from leaves and ears is very large. Therefore,
the large R2 and the small RMSE of all rice variables suggest the good performance of the MWCM in
the multi-temporal prediction of rice variables when the estimated results of mv_s after the heading
stage need more consideration due to the large scattering attenuation from leaves and ears.

4.2. Comparison with the WCM

In order to prove the capability of the MWCM for improving the accuracy of the rice variables,
the estimated results with the MWCM should be compared to the estimated results with the WCM
proposed by Ulaby et al. [23].

For each rice variable, the absolute and relative errors with the MWCM are abbreviated as AM
and RM, respectively, and the absolute and relative errors with the WCM are abbreviated as AW and
RW, respectively. Then ∆a and ∆r are attained by calculating (AW − AM) and (RW − RM), respectively
(Figure 10). It is noted that ∆a of LAI, mv, and Me are multiplied by 100 for display in Figure 10, but the
coefficient of 100 is ignored when ∆a is analyzed in the paper.
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From Figure 10, it is seen that ∆a and ∆r of all rice variables in all phenological stages are larger
than zero, implying the absolute and relative errors with the WCM are larger than those with the
MWCM in all phenological stages. For the LAI (Figure 10a), ∆r is about 15% in the seedling stage
(27 June), which is the largest in all phenological stages. With rice growth, ∆r decrease. It is found that
∆r from the seedling to the booting stage are clearly larger than those from the heading (28 August) to
the mature stage (15 October). From the seedling to the booting stage (4 August), ∆r is larger than 8%;
from the heading to the mature stage (15 October), ∆r is about 5%. Therefore, the MWCM improves
the estimated accuracy of LAI efficiently, especially in the vegetative phase of the rice growth season
(from the seedling to the booting stage). The possible reason is that the WCM assumes that the water
particles are distributed uniformly in the rice canopy, which is not consistent with the fact that the
water particles in the rice canopy are actually distributed heterogeneously in the vegetative phase
of the rice growth season (Figure 5a,b). The MWCM greatly improves the estimated accuracy by
considering the heterogeneity of water particles in this period. For h, mv, mv_l, and mv_s, the temporal
behavior of ∆r is very similar with those of the LAI (Figure 10b,e–g). In addition, the largest ∆r of Fe,
De, and mv_e are about 13% in the heading stage, and then decreases with rice growth (Figure 10c,d,h.
The possible reason is the WCM ignores that the water particles are distributed heterogeneously in the
heading stage when the ears just form and grow straight. The MWCM analyzes the variation of water
content in the rice canopy during the whole rice growth season (Figure 5), which makes the estimated
accuracy of rice variables greatly improved. In addition, the polarimetric scattering components, rather
than backscattering coefficients, are used in the MWCM, which reduces the correlation of the model
and is beneficial for the estimation of the rice variables. From all of the above, it can be found that the
MWCM improves the estimated accuracy of rice variables efficiently, especially for LAI, h, mv, mv_l,
and mv_s in the vegetation phase of the rice growth season and for Fe, De, and mv_e in the heading stage.
∆a could be analyzed similarly considering that ∆a is related to the absolute value of each rice variable
in each phenological stage.

4.3. Discussion for the Key Improvements of the MWCM

Upon the analyses above, two main improvements in the MWCM result in the superiority of the
MWCM (Figure 10), i.e., the consideration of the rice canopy heterogeneity in the horizontal direction
and the application of the polarimetric decomposition components instead of the backscattering
coefficients. In this section, the effects caused by the two improvements were quantified, respectively,
and compared with each other.

In Figure 11, three different cases are set. In CASE I, the heterogeneity of the rice canopy in
the horizontal direction is considered, when the backscattering coefficients are used in the MWCM.
In CASE II, the scattering components from the improved polarimetric decomposition are used in the
MWCM, while the heterogeneity of rice canopy in the horizontal direction is ignored. In CASE III,
both the heterogeneity of the rice canopy and the decomposition components are considered in the
MWCM. Then the relative error of LAI, h, and mv are obtained for the three cases, which are compared
with those with the original WCM, similar with Section 4.2 (Figure 11). It is noted that the LAI, h,
and mv are shown here as an example, and the similar results could be obtained for the other variables.

During the whole rice growth cycle, ∆r for CASE III was the largest, implying that the estimation
accuracy is the best by considering both the heterogeneity of rice canopy and the decomposition
components. From the seedling to the booting stage (from 27 June to 4 August), ∆r for CASE
I (larger than 10%) is much larger than that for CASE II (2%–3%), implying that the estimation
accuracy is improved considerably by considering the heterogeneity of rice canopy during the
this period, whereas the estimation accuracy is just improved approximately 3% by applying the
decomposition components. From the heading to the mature stage (from 28 August to 15 October),
∆r for CASE II (approximately 5%) is larger than that for CASE I (less than 2%), implying the application
of decomposition components in the MWCM could improve the estimation accuracy more than the
consideration of the rice canopy heterogeneity during the reproductive phase of rice growth cycle.
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In sum, the heterogeneity of the rice canopy is a very essential consideration in the MWCM, especially
during the vegetative phase. As the rice canopy becomes dense and uniform, the heterogeneity of rice
canopy decreases. The application of decomposition components in the MWCM could improve the
estimation accuracy with 3%–5% during the rice growth cycle.
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Furthermore, it is important to consider whether or not the MWCM can be applied in general
cases. The MWCM proposed in the study is mainly aimed at transplanting rice fields. The distribution
of the rice plants in the direct-sown rice fields is more random than that in the transplanting rice fields,
and the distribution of scattering elements (leaves, stalks, and ears) in the horizontal direction in the
direct-sown rice fields is more uniform than that in the transplanting fields. Thus, the heterogeneity
of water content of the rice canopy in the horizontal direction in the transplanting fields is more
obvious than that of the direct-sown rice fields, which is considered in the MWCM (Section 3.1).
In addition, the model coefficients of the MWCM are similar with those of the WCM except that
the empirical parameters F, n1, and n2 are added. In this study, F, n1, and n2 in the MWCM are
determined statistically based on the ground measurement (Section 2), which are mainly related to the
transplanting condition and the rice phenological stage. The transplanting method most commonly
used in China and Japan is considered, i.e., a bundle of 5–10 seedlings of 15–30 cm long are transplanted
at a spacing of 30 × 15 cm2 [3,42]. Eight phenological stages are taken into account, i.e., the seedling,
tillering, elongation, booting, heading, flowering, dough, and mature stages. Accordingly, the MWCM
with the statistical intervals of F and n in this study could be used in general cases, theoretically,
but more applications of the MWCM are necessary in future work.
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5. Conclusions

In this study, the heterogeneity of the rice canopy in the horizontal direction was considered and
the double-bounce scattering was added in the MWCM. Then, improved polarimetric decomposition
was adopted, which reduced the overestimation of volume scattering and the negative pixels from the
Freeman decomposition. Afterwards, the scattering components Pd, Pv, and Ps from the improved
decomposition were applied into the MWCM, instead of the polarimetric backscattering coefficients.
By using a GA, eight rice variables were estimated in this study, including LAI, h, Fe, De, mv_l, mv_s,
mv_e, and mv. The accuracy validation showed that the R2 of all rice variables, except mv_s, were larger
than 0.8, and their RMSE were relatively small during the whole rice growth season, suggesting the
good performance of the MWCM in the multi-temporal prediction of rice variables. Compared with
mv_l, mv_e, and mv, the R2 of mv_s is smaller (0.7585) and the RMSE is larger (0.85 kg/m3). The possible
reason was that the large attenuation from leaves and ears decreased the scattering from the stalk layer,
resulting in the large errors of mv_s. The large scattering attenuation from ears impacted the scattering
from the leaves layer, adding the errors of mv_l. The scattering from the ear layer was not attenuated
by any rice layers; thus, the relative errors of mv_e were the smallest.

In addition, compared with the WCM, the relative errors of rice variables with the MWCM were
much smaller than those with the WCM, especially for LAI, h, mv, mv_l, and mv_s in the vegetation
phase of the rice growth season (approximately 15% smaller) and for Fe, De, and mv_e in the heading
stage (approximately 13% smaller). Thus, the performance of the MWCM for the estimation of rice
variables was validated and it was significant to consider the heterogeneity of the rice canopy in the
horizontal direction for estimation of rice variables.

Finally, it was considered that the MWCM could be used for extensive applications, at least
theoretically, since the empirical parameters F, n1, and n2 in the MWCM are determined in general
cases, but more applications of the MWCM are necessary in future work.
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