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Abstract: Detailed monitoring of vegetation changes in ice-free areas of Antarctica is crucial to
determine the effects of climate warming and increasing human presence in this vulnerable ecosystem.
Remote sensing techniques are especially suitable in this distant and rough environment, with high
spectral and spatial resolutions needed owing to the patchiness and similarity between vegetation
elements. We analyze the reflectance spectra of the most representative vegetation elements in
ice-free areas of Antarctica to assess the potential for discrimination. This research is aimed as
a basis for future aircraft/satellite research for long-term vegetation monitoring. The study was
conducted in the Barton Peninsula, King George Island. The reflectance of ground patches of
different types of vegetation or bare ground (c. 0.25 m2, n = 30 patches per class) was recorded
with a spectrophotometer measuring between 340 nm to 1025 nm at a resolution of 0.38 nm. We used
Linear Discriminant Analysis (LDA) to classify the cover classes according to reflectance spectra,
after reduction of the number of bands using Principal Component Analysis (PCA). The first five
principal components explained an accumulated 99.4% of the total variance and were added to the
discriminant function. The LDA classification resulted in c. 92% of cases correctly classified (a hit
ratio 11.9 times greater than chance). The most important region for discrimination was the visible
and near ultraviolet (UV), with the relative importance of spectral bands steeply decreasing in the
Near Infra-Red (NIR) region. Our study shows the feasibility of discriminating among representative
taxa of Antarctic vegetation using their spectral patterns in the near UV, visible and NIR. The results
are encouraging for hyperspectral vegetation mapping in Antarctica, which could greatly facilitate
monitoring vegetation changes in response to a changing environment, reducing the costs and
environmental impacts of field surveys.

Keywords: Antarctica; classification; field spectroscopy; hyperspectral imaging; species discrimination;
lichen; moss; Deschampsia antarctica

1. Introduction

Antarctic terrestrial ecosystems are changing rapidly in response to global threats, such as
climate warming [1] and the introduction of alien species [2,3], and to local impacts due to increasing
human presence [4]. The Maritime Antarctica has experienced rapid warming over the past 50 years,
and additional, more accelerated warming is predicted for the future [1,5]. Increasing temperatures
result in the recession of glaciers and snow, exposing new bare ground for colonization by pioneer
vegetation [6,7]. They also involve longer summer-growing seasons and higher water availability,
thus ameliorating the harsh conditions prevailing in Antarctica. This leads to an increase in the
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abundance and diversity of lichens and bryophytes, the most dominant in Antarctic terrestrial
ecosystems, and to the expansion of flowering plants [8,9]. Colonization and expansion of alien
species is also favoured, owing to this amelioration of environmental constraints and the increase in
dispersal mediated by humans [10]. Increasing competition may lead also to the loss of some native
species. Thus, changes in both structure and floristic composition of communities are expected in the
short-, medium- and long-term timescales [11].

The Antarctic Peninsula and adjacent islands are considered an important indicator of global
climate change [5,12] due to the extraordinary rates of environmental change in recent decades and the
sensitivity of Antarctic terrestrial ecosystems [13,14]. Changes in vegetation can be used as indicators
of these environmental changes [15,16]. Different communities characterize the successional stages of
vegetation colonization after glacier and snow recession. These are indicative of the age of the terrain
and of some environmental factors with important effects on vegetation development [6,17].

Detailed information on the vegetation in Antarctica is scarce and very patchy, with information
being concentrated mostly on areas more frequently visited by researchers, such as the surroundings
of research stations. However, for a detailed account of current and expected environmental changes,
an extensive and long-term monitoring is needed in this globally important region. The remoteness,
inaccessibility and rugged terrain that characterizes Antarctica makes traditional field methods
impractical. In order to survey large areas, field surveys require substantial costs in labor and many
observers. The movement of researchers in the field results in damage to the especially sensitive
Antarctic environment. Remote sensing methods, in contrast, represent a cost-effective and reliable
alternative, especially suitable for the task. Remote sensing techniques facilitate data acquisition
in difficult access areas and allow the survey of a broad area simultaneously, which reduces the
perturbations derived from multiple observers. The data obtained can be easily integrated into
a geographic information system (GIS) for further analysis. In addition, acquired images constitute
a permanent record of the status of the area, which can be useful in the future to analyze dynamics
and processes not foreseen in the moment of acquisition.

Optical remote sensing usually involves the acquisition and analysis of reflectance spectra of
terrain elements (such as mosses, lichens or bare ground). Reflectance spectral patterns are defined
by the relative amount of light that is absorbed or reflected at different wavelengths by different
target materials, which depends on their biochemical and structural properties. Instruments differ
mainly in spatial and spectral resolution, spectral range, and the number of spectral bands where
reflectance is measured. The patchy nature of Antarctic tundra, where inconspicuous lichens and
mosses are interspersed with bare ground or snow (see Figure 1), and the similarity between species
call for high spectral and spatial resolutions. Hyperspectral remote sensing, in which light reflectance
is measured in many narrow, adjacent spectral bands (often >100 bands) appears as one of the most
suitable techniques for the study of Antarctic vegetation [18–21].

Studies aimed at mapping vegetation in Antarctica using remote sensing techniques are scarce.
Fretwell et al. [22] used the Normalized Difference Vegetation Index (NDVI) computed from Landsat
images at 30 m spatial resolution. However, as the authors recognize in a recent work [23], the NDVI
may overlook the presence of lichens even if they are abundant [24], and thus might seriously
underestimate vegetation cover in Antarctica, where lichens are often dominant. Vieira et al. [17] used
supervised classification to map Usnea sp. lichen communities in high-resolution QuickBird imagery
(DigitalGlobe). Usnea can be used as a proxy for areas with less snow during the cold season, important
for the understanding of periglacial processes in the region. Shin et al. [25] used linear unmixing of
three endmember spectra (snow, rock/soil, and vegetation) extracted from Quickbird and KOMPSAT-2
imagery to map vegetation in Barton Peninsula. Casanovas et al. [23] mapped lichen cover in areas
of the Antarctic Peninsula by means of a matched filter using three endmember spectra recorded in
the field, but working with images of very poor spectral resolution (Landsat 7 and 8) compared to the
field spectral measurements. They also compared the detection results with those from using NDVI.
They normalized the spectra following the method described by Zhang et al. [26], devised to erase any
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differences among lichen spectra. The original purpose of [26] was to indistinctly detect lichens on
rocks in the Short Wave Infra-Red (SWIR) region of the spectrum, to avoid interference by lichens on
mineralogical studies.

Figure 1. Typical ice-free Maritime Antarctic landscape. Rugged terrain with abrupt topography and
an abundance of bare, highly dynamic ground, spotted with inconspicuous, heavily mixed vegetation
(mainly lichens and mosses), most of the year covered by snow. High spatial and spectral resolutions
are needed for accurate monitoring of vegetation in these regions.

It seems no attempt has been made yet to discriminate among the main different vegetation
taxa in the region, including different taxa of lichens and moss. However, efficient techniques to
map the distribution of different species and communities are necessary in order to facilitate spatially
explicit conservation planning [27], which is highly needed in the region [28]. Spatial information
about the distribution of vegetation is also essential for monitoring the effects of environmental
changes and human impacts in the tundra and to follow their changes through time, e.g., the evolution
of moss and lichen patterns on the surface as permafrost recedes [29]. For this, knowledge of the
spectral characteristics of the most representative species of vegetation communities is required.
Portable field spectrometers allow collecting in situ hyperspectral reflectance spectra of living
vegetation. These spectroscopic measurements are required for upscaling. Upscaling allows the
simulation and development of airborne or spatial instrumentation [30] with spatial, spectral and
radiometric characteristics capable of tackling the discrimination problem at large scales [31]. Given the
patchy nature of the Antarctic vegetation, a pixel in one of these images will often include a mixture of
several terrain elements [25], so that the resulting reflectance spectrum is the average of those elements
weighted by the area they cover. Endmember or spectral unmixing analysis can then be used to infer
the presence and coverage of each of the elements [32,33]. However, first, the separability of the
pure endmember spectra must be established or assumed, as it is a necessary condition for spectral
unmixing and abundance estimation.

In this study, we analyze the reflectance spectra of the most representative taxa of Antarctic
vegetation in ice-free areas in the Barton Peninsula, King George Island, in order to assess the potential
for discrimination among them. This research is aimed as a basis for future aircraft/satellite research for
developing long-term detailed monitoring of terrestrial vegetation to study the effect of environmental
changes on the Antarctic tundra.
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2. Methods

2.1. Study Area

The data collection was conducted in January 2014 in the Barton Peninsula (62◦13′S 58◦45′W),
located in the SW of King George Island, where the Korean Antarctic Scientific Station King
Sejong is located. King George Island is the largest island in the South Shetlands archipelago
(Maritime Antarctic).

Due to a strong maritime effect, the climate on this island is humid and relatively mild compared
to the Antarctic Peninsula. The average annual temperature is −1.8 ◦C and the average summer
(December–February) temperature is 1.6 ◦C, according to the meteorological records collected in King
Sejong Station since 1988. Relative humidity averages 89%, with an average annual precipitation of
437 mm [34,35].

The typical ice-free Maritime Antarctic landscape (see photograph in Figure 1) is characterized by
an abrupt topography, with most of the surface covered by glaciers, except for a narrow fringe along
the coast. These ice-free areas are covered by abundant vegetation dominated by cryptogamic species,
mostly lichens but also mosses and algae, with vascular plants being scarce but expanding in some
areas [36,37].

2.2. Field Spectral Measurements

Reflectance, ρ(λ), is the ratio of the spectral radiance of the surface, L(λ), in W·m−2· sr−1·µm−1,
to spectral solar irradiance, ES(λ), in W·m−2· µm−1, ρ(λ) = πL(λ)/(ES(λ) cos(θS)), with θS the solar
zenith angle. We recorded the reflectance of ground patches covered by different types of vegetation or
bare ground with a dual-channel spectrophotometer (Ocean Optics USB2000, Dunedin, Florida, USA)
covering the spectrum from 340 nm to 1025 nm with a spectral resolution of 0.38 nm. Calibration was
performed by means of a Tungsten halogen National Institute of Standards and Technology (NIST)
traceable calibrated reference lamp (Ocean Optics LS-1-CAL) for irradiance calibration, and a Hg-Ar
reference lamp (Ocean Optics HG-1 253–922 nm) for wavelength calibration. One channel was devoted
to measuring downwelling, i.e., the incidental radiation, by means of an upward-looking cosine
corrector integrating 2π sr. The other channel was pointed down to record the upwelling, i.e., the
ground-reflected radiation. Upwelling and downwelling were simultaneously measured immediately
after recording dark noise in both channels for each sample.

Fibre aperture and distance to the ground were selected to cover a c. 0.25 m2 plot on the ground.
We selected homogeneous target areas dominated by each of the target cover classes, with ≥90% cover
of the target class (estimated at centimeter scale with a 1 cm mesh trellis), and 30 patches per class.
A total of 390 reflectance spectra of 13 different classes were measured in the field (see Table 1 and
Figure 2); vegetation taxa are referred by the genus name in the text. Each measurement was recorded
as the average of 40 sequential scans, in order to minimize instrument noise.

Wavelengths below 380 nm and above 1000 nm were eliminated to avoid the noise observed in the
ends of the spectrum, due to the low signal-to-noise ratio caused by the poor sensitivity of the silicon
detector at the extreme wavelengths. The bands between 760 nm and 775 nm were also eliminated due
to high noise levels in this region, which we attribute to the effect of the 760 nm oxygen absorption
band, heavily dependent on cloud coverage [38], abundant in Maritime Antarctica. Box averaging of
five spectral samples was also performed for the final record to better approximate the typical spectral
resolutions of hyperspectral remote sensing sensors.

We used a custom-built rig for the spectral measurements in the field, made with lightweight
aircraft-grade aluminum alloy and black polyethylene. A vertical 2 m long pole supported a horizontal
1.5 m long beam with precision-machined sockets for the measuring optical fiber ends. The horizontal
beam also supported a GPS receiver and its antenna, a nine-axis Inertial Measurement Unit (IMU)
continuously measuring the attitude of the rig at 100 Hz, and a nadir-looking, USB-controlled RGB
camera with a fore lens matching the size and position of the terrain patch integrated by the upwelling
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fiber at the distance set by the vertical pole. The vertical pole also had a holder attached for the
spectrophotometer and a shadowed stand for a ruggedized laptop computer, plus routing clips for all
the wiring and optical fibers.

Table 1. Terrain cover classes whose spectra were recorded. Description information taken
from [36,39–41]. Scientific names are according to [39] for lichens, [40] for mosses, and [36] for the
vascular plant and alga.

Class Brief Description

Bare ground Ground with no macroscopic forms of vegetation. Soils in the Barton Peninsula are
generally poor in organic material and nutrients and mostly composed of mineral
and rock fragments derived from the bedrock and volcanic ashes. Samples were
taken in basaltic andesite areas.

Lichens

Aff. Lecanora polytropa Crustose growth form with aerolate thallus, common on rocks frequented by birds.

Stereocaulon sp. Fruticose growth form with photobiont trebouxioid and cephalodia
containing cyanobacteria.

Psoroma sp. Squamulose growth form with photobiont Myrmecia and cephalodia containing
Nostoc. Frequently growing on mosses.

Himantormia lugubris Fruticose growth form and a trebouxioid photobiont. Endemic to Antarctica.

Ramalina aff. tenebrata Fruticose growth form containing usnic acid. Widespread on coastal cliffs and large
boulders frequently associated with bird colonies (ornithocoprohillous).

Usnea antarctica Fruticose lichen with probably the widest ecological amplitude of any Antarctic
lichen. Abundant in most habitats from sheltered to very exposed and moist to
dry situations. It forms dense stands on pebbles and gravels. Common and locally
abundant on mosses.

Xanthoria sp. Foliose growth form rich in anthraquinone pigment giving its characteristic orange
colour. Abundant on rocks influenced by birds.

Sphaerophorus globosus Fruticose lichen growing in coralloid tufts to 10 cm tall. Photobiont trebouxioid.

Mosses

Sanionia uncinata Mat forming moss with a wide geographic distribution and growing in a variety
of substrata.

Andreaea sp. Pioneer moss in exposed rocks and fellfields. The spectra recorded correspond to
mixtures of rocks (basaltic andesite) and Andreaea mosses, both alive and dead.

Alga

Prasiola crispa Nitrophilous alga that forms dense mats in wet areas very high in nutrients in
penguin colonies.

Vascular plant

Deschampsia antarctica One of the two flowering plants native to Antarctica. Cushion-forming perennial
grass with thin leaves.

With the pole held in vertical position and its base resting on the ground, the distance from
the upwelling fiber tip to the ground was held constant and thus also the size of the terrain patch
integrated by the fiber aperture. A proper vertical position of the pole also guaranteed proper
downwelling irradiance integration by the cosine corrector at the tip of the downwelling fiber. A custom
software application running on the computer centralized all sensor data to ensure standard spectral
measurement conditions. The GPS provided location and precise time data, which together with rig
orientation and attitude data from the IMU allowed taking the spectral measurements always with the
correct upright pole position and constant orientation with respect to the source, the Sun, even when
covered by clouds. A graphical display on the computer’s touchscreen showed the deviation from the
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upright position and ideal azimuth, and indicated by means of a semaphoric color code whether the
rig was held at the right orientation and attitude to get adequate spectral measurements.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2. Vegetal classes addressed in this study: (a) crustose lichen aff. Lecanora polytropa;
(b) Stereocaulon sp.; (c) Psoroma sp.; (d) Himantormia lugubris; (e) Ramalina aff. tenebrata;
(f) Usnea antarctica; (g) Xanthoria sp.; (h) Sphaerophorus globosus; (i) Sanionia uncinata; (j) Andreaea sp.;
(k) Prasiola crispa; and (l) Deschampsia antarctica.

2.3. Discrimination between Cover Classes

We used Linear Discriminant Analysis (LDA) in combination with Principal Component Analysis
(PCA-LDA) to classify the cover classes according to their reflectance spectra [42–45]. The number
of independent variables for a LDA has to be smaller than the number of samples in each class,
and high-resolution spectra contain a high degree of redundancy. For these reasons we first performed
a Principal Component Analysis (PCA) to reduce the large number of variables (wavelengths in this
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case) to a small number of principal components, i.e., linear combinations of the data variates that
retain most of the variance between the samples. Since all the variates were expressed in the same
scale and had similar amounts of variance, we based the PCA on sums of squares and products.
We extracted the principal components with eigenvalues greater than one, five principal components
in this study, that we used as predictor variables in the LDA. Previous to LDA, those principal
components were normalized to [0, 1], in order to eliminate any differences of range between the
variables. For the LDA, we used the stepwise method, with the Wilks’ Lambda statistic as the variable
selection method. At each step, the variable that minimized the overall Wilks’ Lambda was entered
into the discriminant equation.

We estimated the relative importance of each region of the reflectance spectrum for the
discrimination among cover classes as derived from the loadings of each wavelength in each PC
(according to the PC analysis), the correlations between each PC and the standardized canonical
discriminant functions (according to the Structure Matrix obtained from the LDA), and the proportion
of variance explained by each canonical function. The resulting index was normalized to [0, 1].

We produced a classification matrix in which errors of inclusion (spectra wrongly labelled as
belonging to the class of interest) and errors of exclusion (spectra that belong to the class of interest but
have been classified as belonging to another class) are quantified for each class. We considered the
classification results with the full dataset and also by leave-one-out cross-validation. Leave-one-out
cross-validation classifies each case separately using the partition derived from all cases except the
one being classified, in order to account for over-fitting. Note that the purpose of our study was
not the design of an optimal classifier but to assess the separability of the dataset. In consequence,
the estimation of classification accuracy by a “weak” (in the sense of linear) classifier is used as
an indicator of the separability of the spectra, and not as an indicator of the suitability of a given
model as optimal classifier for the problem at hand. If PCA-LDA is able to adequately separate the
dataset, this means that the dataset is easily separable, and therefore powerful classifiers may be able
to tackle the problem when other factors enter the equation (such as spectral mixing or atmospheric
influence). Leave-one-out cross-validation is not used in this context to build a generalizable classifier
but to measure the robustness of our assessment with respect to over-fitting to the training dataset.
We computed the kappa observer agreement index, κ, that estimates the extent to which correct values
in the classification matrices are due to true agreement rather than to pure chance [46–48].

As a complementary means to obtain independent insight about the relationships among cover
classes, we also mapped all the spectra to a two-dimensional manifold using a discrete Self-Organizing
Map (SOM) [49–52] with size 15 × 15. Then, we fitted a two-dimensional Gaussian to the set of
spectra of each class on the manifold, and represented them on the map. We used our own computer
code, written in C++, for the SOM, the Gaussian fit and the graphical output. Due to the topology
preservation capabilities of the SOM, this is an interesting way of visualizing the relations among
classes according to their spectra. In addition, this provides an alternative source of information about
the potential for discrimination between classes, obtained by a methodology which is independent
and fundamentally different from the PCA-LDA analysis.

3. Results

As shown in Figure 3, the most important region for discrimination among cover classes was in
the visible and near UV (380 nm to 700 nm), with the relative importance of spectral bands then steeply
decreasing towards the NIR region, from 700 nm onwards, where the spectral signatures gradually
converged for most classes except bare ground and Andreaea.

The alga Prasiola, the flowering plant Deschampsia and moss mats of Sanionia showed a marked
red edge, with a ratio between the reflectance at 750 nm and at 680 nm varying between 3.5 to 4.8,
four to five times higher than that of bare ground. This contrasts with the weak red edge shown by
lichens, especially the crustose lichen aff. Lecanora, Xanthoria, Sphaerophorus, Usnea and Himantormia,
with values of the 750 nm/680 nm ratio between 1.5 and 2.3, which is 50% to 80% higher than that of
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bare ground. The lichens Psoroma and Ramalina showed more marked red edges, with values of the
750 nm/680 nm ratio between 2.3 and 2.1, which is c. 2.5 times than in ground. Andreaea showed the
lower ratio, but we have to keep in mind that this class appears in patches where this moss is mixed
with rocks.

4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0 9 5 0 1 0 0 0
0 . 0

0 . 1
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λ [ n m ]

 B a r e  g r o u n d       a f f .  L e c a n o r a       R a m a l i n a              A n d r e a e a
                                    S t e r e o c a u l o n        U s n e a                   S a n i o n i a
                                    P s o r o m a              S p h a e r o p h o r u s     P r a s i o l a
                                    H i m a n t o r m i a       X a n t h o r i a             D e s c h a m p s i a

Figure 3. Average reflectance spectra of the thirteen cover classes studied. The shadowed background
shows the relative importance of each wavelength for Principal Component Analysis-Linear
Discriminant Analysis (PCA-LDA) discrimination among classes. The noisy 757–774 nm region
was excluded.

Looking at the spectral patterns shown by different lichens, we can distinguish different types.
Himantormia and Psoroma showed similar spectral patterns, with low reflectance in all the visible
range, and a gradual increase from the red and near infrared regions, with a modest green edge in
Psoroma. The reflectance peaks observed for other lichens at about 460 nm, 500 nm and 560 nm were
lacking or very weak in these two lichens. The patterns shown by Usnea and Ramalina were similar
and contrasted with those of other lichens, although the red edge was more conspicuous in Ramalina,
and Usnea showed a gradual increase in reflectance in the near infrared in contrast with the nearly
constant reflectance shown by Ramalina in this region. Both showed a remarkable peak at about 460 nm,
and lower peaks at 500 nm, 550 nm and 600 nm. The crustose lichen aff. Lecanora and Stereocaulon can
also be grouped for their distinct pattern. Both lichens showed relatively high reflectance in the near
UV and violet region, in contrast with all other species, that showed a local minimum in this region
at c. 415 nm. From 450 nm to 680 nm their pattern was similar to that of other lichens such as Usnea,
especially in the case of the crustose lichen. Then, Stereocaulon showed a more marked red edge than
the crustose lichen, whose red edge was the most modest among the lichens studied. Sphaerophorus
and Xanthoria showed rather similar patterns, with maximum absorption in the blue region and then
a gradual increase in reflectance up to the near infrared region. Xanthoria is a brightly orange lichen
and shows a steep increase in reflectance from the minimum observed in the blue region to the orange
region, and then a modest increase in the red, with a weaker red edge than that of Sphaerophorus.

The first five principal components explained an accumulated 99.4% of the total variance,
see Table 2. There were significant differences between cover classes for all PCs. All PCs added
significant (P < 0.001) predictive power to the discriminant function. The stepwise method selected
the five PCs to be added in its final step in five canonical discriminant functions.
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Table 2. Explained variance of each of the first five principal components (PC) and test of equality of
group means using a Multivariate Analysis of Variance (MANOVA): Wilks’ Lambda (Λ), F-test statistic,
degrees of freedom (df1,2) and significance (P).

PC Variance Λ F df1,2 P

#1 57.9% 0.017 1826.114 12, 377 <0.001
#2 32.5% 0.195 129.428 12, 377 <0.001
#3 4.9 % 0.089 322.444 12, 377 <0.001
#4 2.5% 0.093 306.053 12, 377 <0.001
#5 1.7% 0.068 431.742 12, 377 <0.001

The full PCA-LDA partition resulted in 91.8% of cases being correctly classified (κ = 0.91),
91.3% (κ = 0.91) using leave-one-out cross-validation (hit ratio 11.9 times greater than chance;
Tables 3 and 4).

Bare ground, the crustose lichen aff. Lecanora, Stereocaulon, Himantormia and Andreaea were
the most clearly distinguishable: 100% of cases belonging to these classes were correctly identified
and no cases of other classes were wrongly classified in these classes (Tables 3 and 4). In contrast,
Deschampsia and Prasiola were the classes most frequently confused (mainly with each other), with 73%
and 63% correct classification in the original classification (Table 3) and 70% and 60% in the
cross-validated classification (Table 4). The rest of errors came from Ramalina and Usnea, which showed
some degree of confusion with each other, Sanionia with Prasiola, and Sphaerophorus with Sanionia,
with Xanthoria and in a lesser degree with Psoroma, but all with correct classification above 80%.

Table 3. Error matrix of Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA)
classification of the full dataset (n = 30 spectra per class; Overall Accuracy OA = 91.8%, κ = 0.91).
Rows: True class; Columns: Predicted. The boldfaced values in the diagonal are the number of correctly
classified samples in each class. The last two columns give the producer’s and user’s accuracy.

True Pred. Bare Crus. Ster. Ram. Usn. Psor. Him. Spha. Xan. Andr. San. Desc. Pras. Prod. User

Bare ground 30 0 0 0 0 0 0 0 0 0 0 0 0 100% 100%
Crus. aff. Lec. 0 30 0 0 0 0 0 0 0 0 0 0 0 100% 100%
Stereocaulon 0 0 30 0 0 0 0 0 0 0 0 0 0 100% 100%

Ramalina 0 0 0 29 1 0 0 0 0 0 0 0 0 96.7% 87.9%
Usnea 0 0 0 4 26 0 0 0 0 0 0 0 0 86.7% 96.3%

Psoroma 0 0 0 0 0 30 0 0 0 0 0 0 0 100% 96.8%
Himantormia 0 0 0 0 0 0 30 0 0 0 0 0 0 100% 100%
Sphaerophorus 0 0 0 0 0 1 0 24 2 0 3 0 0 80.0% 100%

Xanthoria 0 0 0 0 0 0 0 0 30 0 0 0 0 100% 93.8%
Andreaea 0 0 0 0 0 0 0 0 0 30 0 0 0 100% 100%
Sanionia 0 0 0 0 0 0 0 0 0 0 28 0 2 93.3% 82.4%

Deschampsia 0 0 0 0 0 0 0 0 0 0 0 22 8 73.3% 73.3%
Prasiola 0 0 0 0 0 0 0 0 0 0 3 8 19 63.3% 65.5%

The PCA-LDA results were coherent with the SOM mapping of the spectra to a 2D manifold,
see Figure 4. The ellipses represent two-dimensional Gaussian fits (µ, σ) to the sample set of each cover
class in the 2D manifold. The inherent topology-preserving nature of the SOM allows to visualize the
relationships between classes. In the resulting mapping, bare ground on one corner and tightly close
Deschampsia and Prasiola on the opposite “green” corner clearly represent two extremes. The other
two opposite corners were occupied by the “orange” Xanthoria on one side and the Andreaea moss
on the other. Close to bare ground were the crustose lichen aff. Lecanora and Stereocaulon on one side,
and Himantormia and Psoroma on the other. Halfway between the Andreaea corner and the “green”
corner were the lichens Ramalina and Usnea, close to each other. Last, Sphaerophorus and Sanionia
were located between the “orange” corner and the “green” corner, with Sanionia midway between
Prasiola and Sphaerophorus. In spite of the fundamentally different nature of the analytical procedures



Remote Sens. 2016, 8, 856 10 of 15

involved in PCA-LDA and in SOM mapping, all these spatial relationships derived from the SOM,
regarding relative positions, proximity and neighbourhood relations, showed a good match with the
PCA-LDA results in Tables 3 and 4.

Table 4. Error matrix of leave-one-out PCA-LDA classification (n = 30 spectra per class; OA = 91.3%,
κ = 0.91). Rows: True class; Columns: Predicted. The boldfaced values in the diagonal are the
number of correctly classified samples in each class. The last two columns give the producer’s and
user’s accuracy.

True Pred. Bare Crus. Ster. Ram. Usn. Psor. Him. Spha. Xan. Andr. San. Desc. Pras. Prod. User

Bare ground 30 0 0 0 0 0 0 0 0 0 0 0 0 100% 100%
Crus. aff. Lec. 0 30 0 0 0 0 0 0 0 0 0 0 0 100% 100%
Stereocaulon 0 0 30 0 0 0 0 0 0 0 0 0 0 100% 100%

Ramalina 0 0 0 29 1 0 0 0 0 0 0 0 0 96.7% 87.9%
Usnea 0 0 0 4 26 0 0 0 0 0 0 0 0 86.7% 96.3%

Psoroma 0 0 0 0 0 30 0 0 0 0 0 0 0 100% 96.8%
Himantormia 0 0 0 0 0 0 30 0 0 0 0 0 0 100% 100%
Sphaerophorus 0 0 0 0 0 1 0 24 2 0 3 0 0 80.0% 100%

Xanthoria 0 0 0 0 0 0 0 0 30 0 0 0 0 100% 93.8%
Andreaea 0 0 0 0 0 0 0 0 0 30 0 0 0 100% 100%
Sanionia 0 0 0 0 0 0 0 0 0 0 28 0 2 93.3% 82.4%

Deschampsia 0 0 0 0 0 0 0 0 0 0 0 21 9 70.0% 70.0%
Prasiola 0 0 0 0 0 0 0 0 0 0 3 9 18 60.0% 62.1%

Figure 4. Gaussian fits of the cover spectra in a self-organizing mapping (SOM) to a 2D manifold.
The SOM preserves the topology of the high-dimensional feature space, allowing for visualization of
the relationships between cover classes.

4. Discussion

Our study shows that it is possible to differentiate among the representative taxa in the Antarctic
vegetation using their spectra in the near ultraviolet (UV), visible and near-infrared (NIR) part of
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the spectrum. The results are encouraging in regard to the use of hyperspectral imagery to map
the distribution of different vegetation types in the ice-free areas of Antarctica, which could greatly
facilitate monitoring of changes along time in response to environmental changes such as global
warming and increasing human disturbance. Remote sensing monitoring would allow reducing the
costs and also the environmental impacts associated with field surveys.

According to our results, the spectral ranges that would optimize discrimination between
vegetation elements are in the near-UV and visible region, whereas the importance of the bands
decreases sharply in the NIR region. This is consistent with previous laboratory analyses of spectra of
subartic lichens [24,26,53,54]. Note that our study also covers mosses, an alga and a vascular plant,
but 60% of our target classes are lichens, in consonance with their abundance in the region, and factors
allowing the separability among lichens must necessarily have significant weight in the results.
Reflectance in the visible range (400 nm to 700 nm) is mostly derived from tissue pigments, while tissue
cell structure and biomass determine the reflectance in the NIR region (700 nm to 1300 nm) [55,56].
The red edge, which was more conspicuous in the alga Prasiola, the flowering plant Deschampsia
and moss mats dominated by Sanionia, is produced by the combination of the strong chlorophyll
absorption in the red region and its strong reflectance in the NIR [57]. The slope of this red edge is
correlated with total chlorophyll concentration and water content [55,58]. The red edge is characteristic
of vascular plants and “green” vegetation in general. In fact, this characteristic is extensively used
for detection of vegetation, using classical vegetation indexes (e.g., NDVI). In lichens, despite the
presence of chlorophyll in the inner algal cells, this red edge is usually absent or very weak [24],
which would explain the low performance of NDVI to detect vegetation in Antarctica [22,23]. This is
because most lichens have other pigments in the cortex that mask the chlorophyll (e.g., melanins,
that result in a nearly black thallus). The low reflectance in the visible wavelengths shown by the dark
coloured lichens Psoroma and Himantormia might be an adaptation to favor the heating of the thallus in
the stressful low temperature environments typical of the region (see also [24] for subarctic lichens).
The green peak, increased reflectance observed in the green region (around 550 nm), is also related to
chlorophyll concentration, and was most conspicuous in the vascular plant Deschampsia and the alga
Prasiola, but could be also observed in some of the lichens, such as Usnea, Ramalina and Stereocaulon.

Previous studies have suggested that analyses based on the spectrum of only one species of
lichen would be sufficient for mapping lichen habitats in the Antarctic tundra [26], with reference
to the results in [23]. Note, however, that the aim of [23] was the discrimination of rocks covered by
lichens in order to avoid the influence of lichens on mineralogical studies. The authors looked for
some unifying spectral trait that would allow treating several lichen species as a single target class,
while at the same time maximizing the difference with exposed quartzite rock. They found a region
in the SWIR range, 2.0 µm to 2.4 µm, where the spectra of five different lichen species differed only
in level but not in shape. Thus, normalization sufficed to equalize the lichen spectra in that range,
in a way that would allow good discrimination of rocks covered by lichen from bare quartzite rock,
taking advantage of the characteristic absorption peak of quartzite at 2.2 µm, not present in the lichen
spectra. The aim of [26] was mapping lichen coverage in Antarctica. The authors projected pixel
reflectance values of Landsat 7 and 8 onto three endmember spectra corresponding to three different
lichen species after performing the SWIR-equalizing normalization suggested in [23]. Note, however,
that Landsat sensors are multispectral sensors with a spectral resolution significantly lower than the
spectral resolution of field spectrometers and hyperspectral sensors. Band 7 of Landsat 7 integrates
the whole 2.09–2.35 µm range into a single reflectance value. The band has been narrowed a bit in
Landsat 8, down to 2.11–2.29 µm, but upon inspection of the normalized quartzite and lichen spectra
shown in Figure 5b of [23], it is not clear that the integration of 180 nm (260 nm in Landsat 7) could
preserve the discriminant capabilities of the full resolution spectra. In addition, the authors used all
Landsat bands, not only band 7 where the normalized lichen spectra are equalized. Therefore, it is
plausible that the equalized SWIR values may have had less weight on their results than it may seem.
The authors concluded that the spectrum of only one species of lichen would be enough for mapping



Remote Sens. 2016, 8, 856 12 of 15

lichens in Antarctica, but at the same time they recognized that the maps obtained with different
spectra had some differences, and recommended that future work should investigate the possibility
that different types of vegetation could be discriminated by their spectral differences.

The variability shown among lichens in our study suggests that knowledge about the spectral
characteristics of different lichen types is important to properly identify lichen presence. In fact,
there were drastic differences between some lichens in the region of the spectrum covered by our
study, and no common patterns for all lichens was found. This would hinder or totally prevent
detection of some lichens in detailed vegetation studies if based on the spectrum of only one lichen
species. Lichens share the terrain with other vegetation types, such as mosses, algae and vascular
plants. Simplified generalizations of the findings in [23] can lead to important biases when mapping
the cover of different vegetation classes. Our study assesses the simultaneous separability of all these
vegetation types, and shows a mosaic of separable classes in which classes at the extremes may be
easily separable (e.g., bare soil from the vascular plant Deschampsia), but all classes can be found mixed
with each other on the terrain in a mixture where some of the classes may act as intermediate links of
blurring agents if a simple solution for the discrimination of just the most different classes is chosen
(e.g., NDVI). Our results suggest that in order to increase the accuracy and reliability of detailed
vegetation mapping in Antarctica, the spectral characteristics of all representative taxa in the region
must be taken into account.

In addition, the changing environmental conditions in relation to climate warming and to
increasing human presence in the Antarctic is expected to cause changes in vegetation distribution
patterns, with contrasting responses being expected for different taxa, both in magnitude (sensitivity
to changes) and direction (some might expand while others might retreat). Changes in vegetation can
occur at very short-term scales, for instance due to trampling by humans [59] or indigenous animals
(e.g., seals [60]), or at longer time scales, for instance due to climate change and glacial and permafrost
retreat [6,29,61]. Reliable detailed mapping of different vegetation classes is important for monitoring
changes in distribution at these time scales. A large number of bands and high spectral resolutions are
needed for detailed discrimination, such as those provided by hyperspectral imagery.

Technical development and miniaturization of hyperspectral sensors are making imaging
spectrometry more accessible at lower costs. Airborne imaging spectrometers on board light
aircraft can significantly reduce the costs of acquisition, facilitating a more continuous monitoring
of the distribution of vegetation communities [31]. This is especially welcomed in Antarctica,
where remoteness and harsh conditions in the field make remote sensing techniques especially
advantageous. In this respect, the recent availability of hyperspectral sensors for low-cost unmanned
aerial vehicles (UAVs) represents a major turning point for environmental research in general and
for operational monitoring in the relatively small ice-free areas of Maritime Antarctica in particular.
We have just shown that the spectral traits of the vegetation of Barton Peninsula could allow detailed
vegetation mapping with a Visible Near Infra-Red (VNIR) hyperspectral sensor flying at low altitude
and high spatial resolution, at least in what respects spectral separability. Spectral mixture, rugged
topography, low sun, and rapidly changing extreme weather conditions are surmountable challenges
that must be tackled in order to build a successful operational unmanned aerial system for long-term
detailed vegetation monitoring in the region.

5. Conclusions

Our study shows that the most common vegetation taxa in ice-free areas of Antarctica can be
distinguished by their reflectance spectra at ground level in the near-UV, visible and NIR parts of the
spectrum. Wavelengths below 750 nm are the most relevant for simultaneous discrimination among all
these taxa. This is the first study addressing simultaneously the spectral separability of several species
of lichens and mosses, an alga and a vascular plant. This is relevant because all these types of vegetation
tend to appear mixed in the region, and studies targeting just one or a few types will be hindered by
the inevitable presence of other vegetation types with intermediate spectral characteristics. This study
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provides a useful baseline for future studies aiming at developing instrumentation and/or designing
operational missions to monitor detailed vegetation changes in Maritime Antarctica. Upscaling to the
airborne or spatial sensor level, requiring a surface model, a spatial distribution model and a radiative
transfer model, can help in this aim. Alternatively, high-resolution VNIR hyperspectral sensors on
board low altitude, low speed UAVs can provide experimental data to test robust spectral unmixing
approaches using field spectrometry endmembers.
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