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Abstract: A timely and accurate crop yield forecast is crucial to make better decisions on crop
management, marketing, and storage by assessing ahead and implementing based on expected
crop performance. The objective of this study was to investigate the potential of high-resolution
satellite imagery data collected at mid-growing season for identification of within-field variability
and to forecast corn yield at different sites within a field. A test was conducted on yield monitor
data and RapidEye satellite imagery obtained for 22 cornfields located in five different counties
(Clay, Dickinson, Rice, Saline, and Washington) of Kansas (total of 457 ha). Three basic tests were
conducted on the data: (1) spatial dependence on each of the yield and vegetation indices (VIs) using
Moran’s I test; (2) model selection for the relationship between imagery data and actual yield using
ordinary least square regression (OLS) and spatial econometric (SPL) models; and (3) model validation
for yield forecasting purposes. Spatial autocorrelation analysis (Moran’s I test) for both yield and
VIs (red edge NDVI = NDVIre, normalized difference vegetation index = NDVIr, SRre = red-edge
simple ratio, near infrared = NIR and green-NDVI = NDVIG) was tested positive and statistically
significant for most of the fields (p < 0.05), except for one. Inclusion of spatial adjustment to model
improved the model fit on most fields as compared to OLS models, with the spatial adjustment
coefficient significant for half of the fields studied. When selected models were used for prediction to
validate dataset, a striking similarity (RMSE = 0.02) was obtained between predicted and observed
yield within a field. Yield maps could assist implementing more effective site-specific management
tools and could be utilized as a proxy of yield monitor data. In summary, high-resolution satellite
imagery data can be reasonably used to forecast yield via utilization of models that include spatial
adjustment to inform precision agricultural management decisions.

Keywords: high-resolution satellite imagery; forecasting corn yields; spatial econometric;
within-field variability

1. Introduction

Reliable crop production forecasts help producers, consumers, researchers, policy makers,
and grain marketing agencies make informed decisions on soil and plant management, crop selection,
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marketing, storage, and transport [1–5]. Statistical and mechanistic models have been used to make
such crop forecast but existing models are applicable only for large-scale yield prediction, i.e., regional
or state level. As crop management progresses from large-scale blanket management to precision
agriculture (PA), it requires technologies that evaluate within-field variation and provide reasonable
yield forecasts. Precision agriculture is the application of a set of technologies and principles for
managing spatial- and temporal-variability associated with the aspects of agricultural production,
in order to improve input efficiency and primarily increase the economic return of the farming
system [6–8]. In the major agricultural regions of the world, introduction of yield monitor technologies
coupled with Global Positioning Systems (GPS) made implementation of PA practical. Digital maps
of grain yield obtained from yield monitors allow analysis of the spatial variability within an area
of production [9]. Interpretation of these digital maps, however, is often difficult because pattern
of grain yield variability is permanently influenced by spatial (terrain attributes, erosion classes
and soil properties) and temporal (soil pathogens, diseases and production issues in planting the
crop) factors [10]. In such cases, interpretation of the true spatial pattern of grain yield require
years of accumulated yield maps (temporal-analysis), soil and crop management data, and weather
information [11,12].

Coupling remote sensing and high-resolution spatio-temporal data collected at multiple
growth stages, with yield monitor information has the potential to contribute to site-specific crop
management [12,13]. For example, the leaf area index (LAI) is a key variable to estimate the foliage
canopy and to forecast growth and crop yields [14]. Rapid- and regional-estimation of LAI via
utilization and integration on models of data collected from remote sensors such as satellite imagery
provides a large benefit in assessing in-season plant traits [14]. High-resolution satellite imagery
(multispectral or hyperspectral) can provide valuable data on the status and health of crops, depending
on the interaction and the relationship between electromagnetic radiation (EMR) and foliage [12].
Utilization of satellite imagery facilitates the identification of within-field variability and dry matter
production in order to improve in- and after-season management decisions [13,15]. Currently, the
normalized difference vegetation index (NDVI) is most commonly and widely used vegetation index
to assess crop growth and yield. Normalized difference vegetative index (VI) is sensitive to low
LAI (i.e., LAI < 2–3), but saturates at medium to high LAI and yield [15]. A few VIs have shown
greater sensitivity to higher LAI and biomass, such as the simple ratio [15], or the green NDVI
(NDVIG) [14]. Indices that incorporate the reflectance of red-edge bands such as the red-edge triangular
vegetation index (RTVI) and red edge NDVI (NDVIre) have increased potential for estimating LAI
and biomass [14]. Most of the reported red-edge indices were derived from narrow band field
spectroradiometers [15,16]. Thus, estimation of NDVI and red-edge indices from satellite imagery
enhanced the power of characterizing within-field variability at a large-scale.

In the application of satellite data to PA, crop information is required at sufficiently high spatial
and temporal resolutions to enable within-field monitoring. The latter data resolution can be obtained
from the RapidEye satellite platform, which is the first commercial high-resolution constellation of
satellites with a red-edge band. As a constellation of five, the RapidEye satellite platform can provide
imagery over relatively large areas (swath of 77 km) at a spatial resolution of 5 m and a temporal
resolution of one day, increasing the rate of success to acquire cloud-free imagery data. RapidEye’s
traditional broadband and red-edge indices were evaluated for grassland biomass and nitrogen [17],
forest LAI [18], crop canopy chlorophyll content [19], wheat ground cover and LAI [20] and for
forecasting yield at regional scale [21,22], but this satellite platform has not been used to forecast
within-field variation for grain yield in corn (Zea mays L.).

To date, yield forecasts based on satellite imagery are not only used for large scale prediction
but the models used to predict grain yield with VIs were mainly classical ordinary least squares
(OLS)-based simple or multiple regression techniques [4–23]. These models did not take spatial
autocorrelation structure into account, which, in turn, affects the crops site-specific function estimation,
leading to inflated variance and most likely wrong conclusions. As demonstrated by Anselin [24],
spatial correlation of regression residuals should be critically considered in the analysis of yield



Remote Sens. 2016, 8, 848 3 of 16

monitor data. Following this rationale, the application of spatial econometric methods incorporates
a simultaneous autoregressive model of order one for the error term (SAR error model or SPL) and
considers spatial neighborhood dependence structure [24–26].

Previous studies portrayed the benefits of using high-resolution satellite imagery for identifying
within-field variation [13–27] and provided a solid foundation for developing and extending this
procedure to multiple sites and evaluation years. The current research project provides novel points in
the evaluation of multiple fields in diverse site-years and in exploring the utilization of econometric
models for accounting for the spatial variation in corn production. Corn is the major summer
annual crop in the United States, accounting for more than 30 million ha−1 harvested annually [28].
The objective of this study was to investigate the potential of high-resolution satellite imagery data
collected at mid-growing season for identification of within-field variation and to reliably forecast corn
yield at varying site-years.

2. Materials and Methods

2.1. Study Area and Data Description

The analysis was conducted on end-season yield monitor data and mid-season (overall between
V12 to R3 growth stages [29]. RapidEye satellite imagery of 22 commercial production corn fields
located in five different counties (Clay, Dickinson, Rice, Saline, and Washington) of the state of Kansas
(from 2011 to 2015), US was used. Each of the farmer fields had one year worth of data for the years
from 2011 to 2015 (Table 1). The earliest corn planting data in the region were from the first week
of April, with 50% planting date for the entire state attained by last week of April and latest corn
harvest by early October (USDA-NASS). Fertilizer application rates, crop management and tillage
practices varied between fields and were chosen by the farmer, but each farmer managing more than
one field used similar practices on their fields. No-till (direct seeding), conservation and reduced
tillage practices are widespread for the corn production systems in the Great Plains region, including
Kansas [30].

Table 1. Descriptive information for each farm field collected during 2011–2015 related to county,
latitude and longitude, total area (in hectares, ha), date for imagery acquisition (RapidEye platform),
final grain yield (adjusted to 155 g·kg−1 grain moisture, expressed in Mg·ha−1) and year of yield
monitor data.

Field County Latitude(◦) Longitude
(◦)

Area
(ha)

Imagery
Acquisition (Date)

Final Yield
(Mg·ha−1)

Yield Monitor
(Year)

F1 Clay −97.1561 39.5427 15 19 August 2013 6.0 2013
F2 Dickinson −97.2091 39.0396 10 21 August 2015 6.6 2015
F3 Clay −97.2430 39.5135 65 19 August 2013 8.6 2013
F4 Rice −98.1857 38.3291 31 2 August 2014 7.1 2014
F5 Saline −97.4505 38.6361 24 5 July 2015 8.6 2015
F6 Dickinson −97.2369 39.0443 14 8 September 2011 4.8 2011
F7 Dickinson −97.2934 39.0639 18 19 September 2013 8.8 2013
F8 Dickinson −97.3178 38.9742 19 19 August 2013 6.9 2013
F9 Dickinson −97.3179 38.9777 37 19 August 2013 6.8 2013
F10 Dickinson −97.3222 38.9763 11 19 August 2012 8.6 2012
F11 Dickinson −97.3510 38.9959 20 8 August 2012 8.9 2012
F12 Dickinson −97.2547 39.0403 12 21 August 2015 6.7 2015
F13 Clay −97.2331 39.5586 24 2 July 2011 6.4 2011
F14 Washington −97.2068 39.5744 23 2 July 2012 6.3 2012
F15 Clay −97.2173 39.5369 13 19 August 2013 9.5 2013
F16 Washington −97.2132 39.5912 25 19 August 2013 6.1 2013
F17 Washington −97.2151 39.5898 27 21 August 2013 7.0 2013
F18 Dickinson −97.2467 39.0446 5 8 July 2014 6.2 2014
F19 Saline −97.6010 38.6562 17 8 July 2014 8.7 2014
F20 Saline −97.4254 38.7302 13 13 August 2013 9.5 2013
F21 Saline −97.4379 38.7145 19 8 July 2013 11.5 2013
F22 Saline −97.5983 38.6562 15 8 July 2014 9.1 2014
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A total of 22 mid-season (July–August) RapidEye images were used from the growing seasons
of 2011–2015 (Table 1). The RapidEye image was collected during a critical period for determining
the grain yield of corn (approximately 20 days before and 20 after flowering) and it consists of blue
(440–510 nm), green (520–590 nm), red (630–685 nm), red-edge (690–730 nm), and near infrared (NIR)
(760–850 nm) spectral bands at 5 m ground sampling distance at nadir. Indices selected for evaluation
used a combination of visible, near-infrared and red-edge bands (Table 2), including NDVI, red edge
normalized difference vegetation index (NDVIre), red edge simple ratio (SRre) and green NDVI
(NDVIG). The RapidEye image was orthorectified by the vendor.

Table 2. Description, acronym, equations, and references for all vegetation indices (VIs).

Index Abbreviation Equation Reference

Near infrared NIR
Normalized difference vegetation index NDVIr (RNIR − RED)/(RNIR + RRED) [31]

Green normalized difference vegetation index NDVIG (RNIR − RGREEN)/(RNIR + RGREEN) [32]
Red-edge normalized difference vegetation index NDVIre (RNIR − REDEDGE)/(RNIR + RREDEDGE) [33]

Red-edge simple radio SRre RNIR/REDEDGE [33]

Corn grain yield was georeferenced using a yield monitor system (grain mass flow and moisture
sensors) and grain yield was measured on three-second intervals and recorded using equipped with
DGPS. Grain yield data were adjusted to 155 g·kg−1 grain moisture, spatially located and analyzed
with ArcGIS Geospatial Analyst (ArcGIS v10.3, Environmental System Research Institute Inc. (ESRI),
Redlands, CA, USA). The data points located approximately 20 m from the borders of the sites were
deleted before the analysis because the combination was unlikely to be full [34,35]. Yield measurements
assumed to be erroneous were excised by standard protocol if the observations were more than three
standard deviations (SDs) from the mean, as were yield data recorded when the harvester changed
direction or speed significantly [11,36]. All geostatistical evaluation was conducted with the ArcGIS
Geospatial Analyst (ArcGIS v10.3). A final 5 m × 5 m grid cell size was chosen because it reflects the
scale of variability associated with the VIs of Rapid Eye image.

2.2. Data Analysis

A workflow on data analysis and all steps required for the meta- and global-functions
(entire database, training and validation datasets) is presented in Figure 1.
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As an initial step, spatial autocorrelation analysis was conducted on yield and VIs (NIR, NDVI,
NDVIG, NDVIre, and SRre) data of each field using Moran’s [37] test (Table 3). Moran’s I statistic
measures the strength of spatial autocorrelation in a response among nearby locations in space as a
function of cross-products of the neighboring weighted deviations from the mean. Moran’s I coefficient
values near 1 and −1 indicate strong positive and negative autocorrelation, respectively. Coefficient
values near 0 support the null hypothesis of no spatial autocorrelation. Spatial correlation analysis
was conducted using GeoDa software 1.4.6 [38].

Table 3. Moran’s I test (MI) to vegetation indices (VIs) obtained from mid-season high-resolution
satellite imagery and yield monitor data.

Field NIR SRre NDVIr NDVIG NDVIre Yield

MI p-Value MI p-Value MI p-Value MI p-Value MI p-Value MI p-Value

F1 0.13 *** 0.08 * 0.11 *** 0.12 *** 0.10 ** 0.08 ***
F2 0.14 *** 0.10 *** 0.12 *** 0.10 ** 0.12 *** 0.09 ***
F3 0.18 *** 0.15 *** 0.17 *** 0.16 *** 0.16 *** 0.12 ***
F4 0.06 * 0.07 ** 0.05 * 0.06 * 0.09 * 0.09 **
F5 0.17 *** 0.14 *** 0.16 *** 0.18 *** 0.16 *** 0.13 ***
F6 0.20 *** 0.20 *** 0.22 *** 0.20 *** 0.21 *** 0.25 ***
F7 0.14 *** 0.10 *** 0.12 *** 0.10 ** 0.12 *** 0.09 *
F8 0.10 *** 0.12 *** 0.13 *** 0.12 *** 0.13 *** 0.11 **
F9 0.13 *** 0.11 *** 0.11 *** 0.11 *** 0.12 *** 0.10 **

F10 0.19 *** 0.19 *** 0.20 *** 0.20 *** 0.19 *** 0.16 ***
F11 0.28 *** 0.23 *** 0.29 *** 0.25 *** 0.26 *** 0.24 ***
F12 0.24 *** 0.20 *** 0.21 *** 0.19 *** 0.17 *** 0.17 ***
F13 0.16 *** 0.14 *** 0.12 *** 0.13 *** 0.12 *** 0.11 ***
F14 0.06 * 0.07 * 0.08 * 0.07 * 0.08 ** 0.09 **
F15 0.14 *** 0.15 *** 0.14 *** 0.14 *** 0.15 *** 0.14 ***
F16 0.13 *** 0.10 ** 0.11 *** 0.11 *** 0.12 *** 0.10 ***
F17 0.15 *** 0.14 *** 0.14 *** 0.13 *** 0.12 *** 0.12 ***
F18 0.16 *** 0.14 *** 0.16 *** 0.15 *** 0.15 *** 0.13 ***
F19 0.12 *** 0.12 *** 0.13 *** 0.11 *** 0.12 *** 0.1 **
F20 0.16 *** 0.13 *** 0.14 *** 0.16 *** 0.14 *** 0.15 ***
F21 0.14 *** 0.10 ** 0.12 *** 0.10 *** 0.12 *** 0.09 ***
F22 0.29 *** 0.26 *** 0.25 *** 0.27 *** 0.27 *** 0.15 ***

* Significant at the alpha = 0.05 error level; ** Significant at the alpha = 0.01 error level; *** Significant at the
alpha = 0.001 error level.

In order to identify an appropriate model that describes the relationship between end-season
observed corn yields as a function of VIs of mid-season high-resolution imagery data for each field.
Two models are considered, first is the classical linear regression model assuming that the errors are
independent and identically distributed (i.i.d.). Ordinary least squares (OLS) is known as an efficient
method for estimating the unknown parameters for this model, therefore we will call this baseline
model as “OLS” model. Both the response variable corn yield and predictor variables VIs, as well
as the regression errors, exhibit spatial autocorrelation as Moran’s I test shows, the i.i.d. assumption
is violated. This leads us to consider the application of the spatial error model (Anselin [24]),
which is called “spatial econometric” model in this paper, to account for the spatial interaction
(spatial autocorrelation) and spatial structure (spatial heterogeneity) in the datasets. To be more
specific, this spatial regression model can be expressed as:

y = Xβ + u with u = λWu + ε (1)

where y is a vector (n by 1) of observations on the dependent variable, X is an n by p matrix
of observations on the explanatory variables, and u is an error term that follows a simultaneous
autoregressive (SAR) specification with spatial autoregressive coefficient λ. In the spatial autoregression,
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the vector of errors is expressed as a sum of a vector ε (n by 1) of independent and identically distributed
innovation terms and a so-called spatially lagged error λWu. The latter boils down to a weighted average
of errors in the neighboring locations. The selection of neighbors is formally specified in the n by n
spatial weights matrix W. In this study, W was created using the distance-based K-Nearest Neighbor
Spatial Weights, because the database was irregular [39]. For this spatial econometric model, the
parameter estimation is achieved by maximum likelihood estimation method. In comparison, the
classical OLS model is simply given by y = Xβ + ε, where ε is a vector of i.i.d error terms. While
applying to dataset, ordinary estimation method is used to estimate the parameters. To simplify
equations from 22 (Figure 2) to two global models (Figure 3), fields were grouped into two clusters
(Figure 1). Before grouping fields, the database (5 m × 5 m grid) for yield and VIs was randomly
sampled to generate 600 observations per field. The yield data were normalized to lessen the effect
of years, which allows comparison across site-years [40,41]. Clustering analysis divided two groups,
i.e., fields with spatial autocorrelation in error term (λ values significant, p ≤ 0.05) and without spatial
autocorrelation (λ values insignificant, p > 0.05). Five independent fields (F1, F11, F13, F21 and F22);
two from those fields that need spatial adjustment, two fields from those that did not require spatial
adjustment, and one from all fields, were randomly selected and kept aside for validation analysis
(Figure 1). From the remaining training data, two global models were developed to predict end-season
observed yield in fields with and without spatial autocorrelation. The two models developed with
training dataset were validated with the testing dataset (fields that were not used in the database to
build both models, but to validate the models (Figure 1). In the case of OLS and spatial (SPL) models,
two fields randomly selected were F1–F13 and F11–F22, respectively. To further simplify matters,
all training datasets, irrespective of whether they require spatial adjustment or not, were combined and
one SPL model was developed and validated with the one validation dataset selected (F21).
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At all steps above that require model selection, stepwise-regression procedure (SAS Institute, 2002)
was used to determine the variables (VIs) that significantly contributed to yield prediction models for
each field or global meta-functions. The stepwise-regression method repeatedly alters the model by
adding or removing VIs until the only remaining VIs are above the 0.05 significance level.

Model performance was assessed using statistical criteria proposed by Akaike (AIC) [24,26].
Accuracy of estimation and model fitting was evaluated using the Root-Mean Square Error (RMSE)
and Pseudo R2 [42]. In addition, spatial predictions from each model were visually compared with
geostatistical interpolation of yield from the dataset for each field and for the global meta-function.

3. Results

3.1. Spatial Autocorrelation on Yield and Imagery Data

Spatial autocorrelation analysis conducted using global Moran’s I test (MI) on vegetation indices
(VIs) and yield monitor data is presented in Table 3. In general, the autocorrelation (Moran’s I test)
for all variables was positive and statistically significant indicating yield or VI values that are closer
in space to one another are more similar and the relation decreases as distance increases. The spatial
autocorrelation for corn yield was stronger (MI > 0.15) for fields F6, F10, F11, F12, and F20 compared
with others (MI < 0.15). Similarly, spatial autocorrelation of VI values (NIR, SRre, NDVIr, NDVIG,
and NDVIre) were stronger (MI > 0.15) for fields F3, F6, F10, F11, F12, and F22, with few other fields
(F13, F20, and F18) demonstrating strong spatial autocorrelation only for specific VIs (Table 3).

3.2. Comparison of Models for Relationship between Observed Yield and Satellite Data

The VIs were independent variables in empirical regression models developed to estimate final
yield (dependent variable). Results of the model calibration indicated that the SPL regression models
have a much better ability in predicting the within-in field variation with significantly lower AIC
values as compared to the OLS models for almost all fields (Table 4). The AIC fit criterion of the OLS
model were improved by approximately 4%, estimated by calculating the relative difference between
AIC for OLS versus SPL (ranging from 0.1% to 42%), when spatial error dependence was included in
the model. Additionally, the AIC fit criterion of the OLS model increased by 6% when compared only
with models that have significant λ values (F2, F5, F6, F9, F10, F11, F12, F14, F15, F16, F17, F18, F19, F20,
F21, and F22) (Table 4). The VIs retained varied across the multiple farmer fields evaluated. For the
model evaluation, the ranking of the most commonly retained VIs were as follows: NDVIre (13 fields),
NDVIG (11 fields), NDVI (10 fields), NIR (five fields) and SRre (four fields). The comparison of the
magnitude of the λ values (larger values indicate higher spatial autocorrelation) indicated that the
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fields with significant λ values (p < 0.05) have a higher spatial continuity relative to when λ values were
not significant (Table 4). In summary, SPL outperformed OLS methods (Table 4). For fields presenting
better fit with the SPL models, a significant λ value reflected a very strong spatial correlation in errors.
By accounting for spatial dependence, regression coefficients of the models changed, which improved
the mapping of intra-field yield variation.

Table 4. Multiple linear regression models (for the ordinary least-square (OLS_ and spatial econometric
(SPL)) including the vegetation indices (VIs) obtained from mid-season high-resolution satellite imagery
as predictors of the end-season yield monitor data.

Field Models Equations AIC

F1 OLS Yield (Mg·ha−1) = −7.8 *** + 0.12(NIR)+20.0 ***(NDVIre) 238.6
SPL Yield (Mg·ha−1) = −6.9 *** + 0.11(NIR) + 20.2 ***(NDVIre)+ 0.28(λ) 236.8

F2 OLS Yield (Mg·ha−1) = −1.8 * + 8.2 **(NDVIG) + 1.16 ***(SRre) 80.3
SPL Yield (Mg·ha−1)= −0.3 + 7.8 **(NDVIG)+ 1.18 ***(SRre)+ 0.58 ***(λ) 72.6

F3 OLS Yield (Mg·ha−1)= −9.1 *** − 14.9 *(NDVI) + 26.5(NDVIG) + 34.0 ***(NDVIre) 346.8
SPL Yield (Mg·ha−1)= −9.2 *** − 14.7 *(NDVI) + 26.52(NDVIG) + 33.91 ***(NDVIre) − 0.06(λ) 344.8

F4 OLS Yield (Mg·ha−1) = −1.1 + 28.5 ***(NDVI) + 17.7(NDVIG) − 30.85 ***(NDVIre) 284.2
SPL Yield (Mg·ha−1) = −1.7 + 29.2 ***(NDVI) + 16.91(NDVIG) − 30.89 ***(NDVIre) + 0.23(Wu) 281.9

F5 OLS Yield (Mg·ha−1) = −4.8 *** + 23.6 ***(NDVI) 391.4
SPL Yield (Mg·ha−1) = −4.8 *** + 23.7 ***(NDVI) + 0.04 *(λ) 391.3

F6 OLS Yield (Mg·ha−1) = −0.9 * + 12.7 ***(NDVIG) 108.2
SPL Yield (Mg·ha−1) = −1.42 * + 13.8 ***(NDVIG) + 0.02 *(λ) 104.2

F7 OLS Yield (Mg·ha−1) = 3.5 ** + 0.12 **(NIR) 106.8
SPL Yield (Mg·ha−1) = 3.5 ** + 0.12 **(NIR) − 0.04(λ) 106.6

F8 OLS Yield (Mg·ha−1) = −3.1 *** + 2.2***(SRre) + 11.4***(NDVIG) 110.5
SPL Yield (Mg·ha−1) = −3.2 *** + 2.2 ***(SRre) + 11.7 ***(NDVIG) + 0.02(λ) 110.5

F9 OLS Yield (Mg·ha−1) = −4.69 *** + 0.95(NDVIG) + 24.1 ***(NDVIre) 111.2
SPL Yield (Mg·ha−1) = −4.7 *** + 0.47(NDVIG) + 24.5 ***(NDVIre) − 0.14 *(λ) 110.5

F10 OLS Yield (Mg·ha−1) = −8.6 ** + 0.57 ***(NIR) − 6.5 ***(SRre) + 20.8 ***(NDVIG) 252.5
SPL Yield (Mg·ha−1) = −8.1 ** + 0.48 ***(NIR) − 5.2 ***(SRre) + 21.5 ***(NDVIG) + 0.27 *(λ) 250.0

F11 OLS Yield (Mg·ha−1) = 0.46 + 32.36 ***(NDVIre) 342.5
SPL Yield (Mg·ha−1) = 0.53 + 32.09 ***(NDVIre) − 0.22 *(λ) 341.8

F12 OLS Yield (Mg·ha−1) = 2.2 * + 0.15 ***(NIR) − 7.4 ***(NDVIG) 31.8
SPL Yield (Mg·ha−1) = 2.0 * + 0.17 ***(NIR) − 9.6 **(NDVIG) + 0.39 *(λ) 28.0

F13 OLS Yield (Mg·ha−1)= −0.25 + 0.13 ***(NIR) + 22.9 ***(NDVIre) − 14.7 ***(NDVI) 104.0
SPL Yield (Mg·ha−1) = −0.15 + 0.12 ***(NIR) + 22.8 ***(NDVIre) − 14.6 ***(NDVI) + 0.09(λ) 103.7

F14 OLS Yield (Mg·ha−1) = −2.8 *** + 23.9 ***(NDVIre) 239.0
SPL Yield (Mg·ha−1) = −4.2 *** + 27.6 ***(NDVIre) + 0.63 ***(λ) 220.6

F15 OLS Yield (Mg·ha−1) = 4.1 *** + 5.1 ***(NDVI) + 4.9 ***(NDVIre) 12.7
SPL Yield (Mg·ha−1) = 3.1 *** + 6.0 ***(NDVI) + 5.9 ***(NDVIre) + 0.36 ***(λ) 7.3

F16 OLS Yield (Mg·ha−1) = −17.3 *** + 34.9 ***(SRre) + 16.7 ***(NDVIG) 181.7
SPL Yield (Mg·ha−1) = −18.7 *** + 33.7 ***(SRre) + 23.2 ***(NDVIG) + 0.71**(λ) 165.5

F17 OLS Yield (Mg·ha−1) = −12.4 *** + 31.4 ***(NDVI) 236.3
SPL Yield (Mg·ha−1) = −12.6 *** + 31.6 ***(NDVI) + 0.2 **(λ) 234.5

F18 OLS Yield (Mg·ha−1) = −26.5 *** + 17.8 ***(NDVI) + 41.8 ***(NDVIre) 239.8
SPL Yield (Mg·ha−1) = −26.4 *** + 20.8 ***(NDVI) + 37.8 ***(NDVIre) + 0.15 ***(λ) 234.6

F19 OLS Yield (Mg·ha−1) = −20.9 *** + 15.9(NDVI) + 36.1 ***(NDVIG) 323.6
SPL Yield (Mg·ha−1) = −20.0 *** + 17.2(NDVI) + 32.6 ***(NDVIG) + 0.39 **(λ) 321.1

F20 OLS Yield (Mg·ha−1) = −6.2 *** + 12.7 ***(NDVI) + 14.4 ***(NDVIre) 348.2
SPL Yield (Mg·ha−1) = −6.2 *** + 12.7 ***(NDVI) + 11.5 ***(NDVIre) + 0.21 *(λ) 346.9

F21 OLS Yield (Mg·ha−1) = −6.9 *** + 0.85 (SRre) + 6.0 **(NDVI) + 16.2 ***(NDVIG)
+ 12.1 ***(NDVIre)

604.9

SPL Yield (Mg·ha−1) = −7.1 *** + 0.69 (SRre) + 6.2 **(NDVI) + 14.6 ***(NDVIG)
+ 14.3 ***(NDVIre) + 0.35 ***(λ)

592.5

F22 OLS Yield (Mg·ha−1) = −21.59 *** + 57.38 ***(NDVIre) 296.3
SPL Yield (Mg·ha−1) = −20.07 *** + 54.47 ***(NDVIre)+ 0.27 ***(λ) 292.5

Notes: The statistically significant coefficients are indicated by asterisks, where * indicates p < 0.05; ** indicates
p < 0.01; and *** indicates p < 0.001. Parameters with no asterisks are therefore not significant at the 0.05 level.

Notwithstanding the level of significance for λ value, SPL regression models presented tend to
have smaller AIC and therefore show better trade-off between the goodness of fit of the model and the
complexity of the model (Table 4). Following this rationale, the scatter plots were developed utilizing
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the SPL model validation for all fields (Figure 2). Pseudo coefficient of determination (R2) for all fields
ranged from 0.29 to 0.70 units, with approximately 50% of the fields presenting pseudo R2 values
above 0.5 units (Figure 2). End-season yield monitor data reflected a yield variation ranging from
2 to 14 Mg·ha−1 across all farms evaluated. The results indicated that the spatial models provided
consistent predictions, with low RMSE values and higher R2 for the estimated versus observed yield
data. The RMSE difference between estimated- and observed-yields was approximately of 1 Mg·ha−1

(ranged between 0.1 and 2.8 Mg·ha−1) for all 22 fields.

3.3. Spatial and OLS Model Variables and Validation Performance

Based on each field evaluation (Table 4), a training dataset was prepared including all models that
resulted in a lack of spatial autocorrelation, OLS model, for fields: F3, F4, F7, and F8 (Figure 1). All four
fields were utilized and an overall equation was determined in order to estimate yields. Estimated
yield resulted by the OLS model showed similarity to the observed yield at harvest, with an adequate
coefficient of determination (R2 = 0.47) and root mean square error of 1.4 Mg·ha−1 (Figure 3a). Similar
to the OLS model, a training dataset was built for the SPL model including fields F2, F5, F6, F9, F10, F12,
F14, F15, F16, F17, F18, F19, F20, and F21, following the steps proposed in the framework presented
in Figure 1. The SPL model was utilized to fit estimated versus observed yields, which presented
a low RMSE (1.28 Mg·ha−1), high correlation (R2 = 0.48), and with all observations close to 1:1 line
(Figure 3b). Better performance, slightly higher coefficient of determination, and lower RMSE on
forecasting yields was documented for the SPL model (Figure 3b) as compared to the overall OLS
model (Figure 3a).

After clustering into two groups, OLS vs. SPL groups, and variables were selected, out of five
VIs, the NDVIre and NDVIG were statistically significant in both OLS and spatial models, whereas
NIR was only significant in the spatial model (Table 5). Predictive yield maps were prepared with
the validation data (based on framework in Figure 1). Both selected models provided significant
predictors for yield (p < 0.05) within their respective cluster. The regression models developed were
applied to each respective training datasets (OLS and SPL datasets) and predictive corn yield maps
were generated from those models (Figure 4).

Table 5. Meta-functions for the ordinary least-square (OLS) and spatial econometric (SPL) models
including the vegetation indices (VIs) obtained from mid-season high-resolution satellite imagery
as predictors of the end-season yield monitor data, observed corn yield for all fields evaluated in
this study.

Models Equations

OLS Yield (Mg·ha−1)= −2.47 ** + 0.11 *(NIR) + 9.22 *(NDVIG) + 3.85 ***(NDVIre)
SPL Yield (Mg·ha−1)= −10.43 ** + 0.31 **(NIR) − 9.21 *(NDVIG) + 16.59 ***(NDVIre) + 0.31 ***(λ)

Notes: The statistically significant coefficients are indicated by asterisks, where * indicates p < 0.05; ** indicates
p < 0.01; and *** indicates p < 0.001. Parameters with no asterisks are therefore not significant at the 0.05 level.
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Figure 4. Predicted corn yield maps generated based on the simple meta-function (OLS) for two fields
(F1 and F13) without spatial autocorrelation (a); and yield map based on the spatial meta-function (SPL)
for two fields (F11 and F22) with spatial correlation (b) all versus end-season yield data (yield monitor).

As a last step, based on the framework proposed in Figure 1, a final global meta-function was
developed with the entire database (22 fields), excluding one field (F21) that was randomly chosen as
to validate the calculated function. Equation (2) shows the global meta-function for yield prediction
(dependent variable) and respective VIs (independent variables) and constants. The validation of this
model is showed of Figure 6.

Predicted Yield = −6.21 * + 0.22 **(NIR) + 9.14 *(NDVIre)
with spatial coefficient 0.32 ***(λ)

(2)

where the statistically significant coefficients are indicated by asterisks, where * indicates p < 0.05;
** indicates p < 0.01; and *** indicates p < 0.001. Parameters with no asterisks are therefore not
significant at the 0.05 level.

For the meta-model, only the NDVIre and NIR were retained when compared with all Vis tested
in the model, and the spatial factor (λ) was statistically significant (p < 0.05). Yield was adequately
predicted by the meta-model (Figure 5). A predictive yield map was obtained via implementation of the
meta-model and validated with the F21 (Figure 6). For both variables, comparable yield environments
from the estimated yield based on mid-season high-resolution imagery and the end-season yield
monitor data were documented (Figure 6).
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Similar spatial (λ) coefficients were documented when the SPL model included only the fields
with significant spatial factor (λ) (Table 5) as compared when the entire database was considered
to build the SPL model (Equation (2)). Final validation presented in Figure 4b (for two fields) and
Figure 6 (for one field) portrayed similar yield estimation, even when diverse databases were utilized
but considering spatial (λ) factor adjustment (SPL model).

In summary, spatial dependence for the intra-field yield variation was reflected in 16
(λ is significant at p < 0.05) out of 22 fields total (70% of the total database), improving model estimation
(Table 4; Figures 1 and 2). Implementation of this model was stable across fields and years
(from 2011 to 2015). The latter was reflected in the global meta-function that utilized NIR and NDVIre
indices for yield prediction (with a significant spatial dependence). The meta-function overestimated
yield in the low productivity zones within the field but reflected comparable yields for the average
productivity environments.

4. Discussion

Yield monitor information is a critical input for the spatial modeling analysis with a large potential
for improving daily-farmer operations [9,43,44]. Nonetheless, the yield monitor data are relevant for
off-season (after harvest) farming management decisions. As highlighted by Yang [13], utilization of
in-season remote sensing imagery has a tremendous potential to produce an “on-the-go” impact on the
farming operations. The current study provides data at a large-scale (multiple sites across the state and
years) related to the potential utilization of mid-season high-resolution satellite imagery as a proxy for
yield monitor data. Related to satellite data, yield forecast model was not necessarily influenced by
the timing (early July to mid-September) of collection, which is only restricted to the environmental
conditions explored for all site-years evaluated in this study. A similar finding was reported by
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Shanahan et al. [45], portraying highest comparable correlation coefficients (close to 0.8 units) between
yield and NDVIG from late vegetative to mid-reproductive stages in corn (early July to September).

The first main result of our analysis indicated a spatial dependence and spatial autocorrelation in
all evaluated variables. This result is consistent with the bases of PA and it further affirms the need
for site-specific agriculture. Yield and imagery data of each field showed a significant autocorrelation
indicating significant within-field variability and dependence of values that are closer in space than
values at a further distance. Our result agrees with previous research results on field level spatial
variation and autocorrelation on corn yield [46–48] and VI [27,49,50]. An in depth study of the
main reason behind a significant variation in yield and growth will follow this paper, but based on
literature, soil nutrient and other resource variation, slope, production and management history of
each area, drainage, and level of competition between neighboring plants can be cited. Variation
in yield within a field was not same, i.e., in some fields the variation was as low as 33% and in
some it was more than 140%. This suggests that the benefit of adopting PA technology could vary in
similar percentage from field to field and from one farmer to another depending on site, environment,
and management conditions.

The second and the most important outcome from this study showed the potential of mid-season
VIs to predict yield with reasonable precision. The degree of precision was greater (up to ~70%) for
fields that had significant variability and lower for fields that yielded relatively uniformly across all
areas (~30%). Application of PA is crucial for fields that inherently have variability and, therefore, use
of high-resolution satellite imagery can be critical for site-specific management. Previous investigations
reflected significant correlation between mid-season VIs and final yield at the regional-scale [23,27]
but there is scarce information for application of high-resolution satellite imagery data for intra-field
level [13] management.

As related to the independent variables calculated from imagery data to predict yield (VIs gathered
from the mid-season high-resolution imagery data), the NDVIre was the most retained VI in regression
models developed for each field (Table 4). Thus, the VI that better explained the variation in yield was
the NDVIre. Therefore, satellite images with the red edge band present a potential to provide higher
level of accuracy in forecasting corn yields. This level of accuracy is perhaps result of not only to the
sensitivity of the red-edge wavelength to chlorophyll concentration but also due to the plant scattering
properties inherent in the crop biomass [51]. A strong relationship of ground-truthing NDVIre with
corn yield was found at V12 stage (twelve developed leaves) [52]. The same authors also documented a
stronger relationship of the VIs analyzed but with total biomass. Similar studies used NDVI to predict
yield for different crops and imagery data gathered from different satellites [53–56]. However, NDVI
tends to saturate at medium to high LAI and yield [15]. Notwithstanding of the main role highlighted
for the NDVIre, it is imperative to mention that both NDVIG and NDVI were also retained in most
field regression models, which reflects the potential of these indices for predicting the intra-field yield
variation. At a regional-scale [57], the NDVIG explained a greater proportion of the variation of corn
yield. Similar outcome was documented when the VIs was collected in field experiments from aircraft
at varying growth stages during the corn growing season [45].

The meta-function overestimated yield for the low productivity zones within the field. There are
plausible agronomic explanations for this yield overestimation. The first one is that the timing of the
VIs collection; i.e., values are at the highest peak at mid-season in corn [58] related to the peak in
leaf area. Second, the possibility of post-flowering biotic or abiotic stress conditions that could have
severely reduced expected final yield [59]. In addition, spectral reflectance signatures of crops are
primarily influenced by physical properties of plants (e.g., chlorophyll content, mesophyll structure,
canopy architecture, and biomass). Positional misalignment and the difference in spatial resolution
between the image and the yield monitor data could also be sources of uncertainty. End-season yield
data were re-projected to improve spatial alignment with the RapidEye image collected at mid-season.
Discrepancies could have been introduced during the transformation of the data, which would have
influenced the predictive power of the model. Future research can focus on aggregating data-layers
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from soil-weather-and-management practices for increasing the amount of variation that can be
explained via the utilization of mid-season high-resolution satellite imagery in forecasting within-field
and site-specific yield variation.

The third main result of our analysis demonstrates inclusion of spatial adjustment in models
used for predicting yield. Due to significant spatial correlation demonstrated for yield, models
predicting yield should strongly consider the evaluation of spatial correlation. Spatial adjustment
to models predicting yield from imagery data is not well studied but our finding of considering
spatial adjustment, rather than simple OLS regression, agrees with several researchers [24,60–62].
Furthermore, models developed for multiple fields by training similar fields demonstrate reasonable
performance predicting yields.

In this study, normalized difference VIs based on ratios of two multispectral bands were tested
for their effectiveness in predicting corn yield. More exhaustive analysis of spectral indices (such as
simple ratios and differences) and angle indices derived from the angle formed by three spectral bands
in a multispectral signature plot [63], in conjunction with new data analysis methodologies, such as
machine learning, data meaning, among others, may improve accuracy of yield estimation.

From a practical standpoint, producers, consumers, researchers, policy makers, and grain
marketing agencies could use high-resolution satellite imagery to determine the spatial within-field
variability prior to harvest in order to make informed decisions based on the crop yield forecast report.
Spatial representation of predictive yield also provides valuable information such as size, proximity,
spatial arrangement, and connectivity of low and high-productive areas, which simple statistics or
numerical data do not provide. The predictive yield maps at a resolution that can resolve variability of
yields and its spatial patterns would be valuable for farmers in planning their sub-field scale land use in
order to achieve their production goals. In concomitant, identification of different management zones
within-fields would allow growers to move more quickly and effectively to variable rate technologies
(i.e., seed, fertilizer, chemical inputs, and machinery use), providing not only agronomic improvements
and better cost-effective field management but also critical benefits from environmental and economic
standpoints of the farming systems.

5. Conclusions

This study investigated the potential of high-resolution satellite imagery data collected at
mid-season for identification of within-field variability and to forecast corn yield at different sites
within a field. Two regression models (OLS and SPL) were evaluated. The most striking outcomes
of this research were: (1) The regression model using the NDVIr, NIR and NDVIre showed high
performance for predicting yield within field. (2) Although within-field corn yield can be modeled and
predicted by remote sensing imagery with the OLS method, the remote sensing imagery is only capable
of capturing large scale variation and predicting general trends in the grain yield dataset. To model
and predict the significant portion of small scale, local variation in the datasets, spatial prediction
methods such as spatial regression is needed. (3) The creation of a single algorithm (meta-function)
can generate a stable model over site-years with high performance for predicting within-field yields.
(4) The predictive yield map (obtained from the SPL model) showed a clear similarity to the end-season
yield monitor data (observed yields).

While further research is still needed, this study is one of the first to demonstrate the utilization of
mid-season high-resolution satellite imagery to deliver actionable data for forecasting within-field corn
yield variation. In addition to determining the robustness of the model using multiple site-years across
a region, future studies should evaluate multiple timing of data collection via high-resolution satellite
imagery, and more exhaustively exploring other spectral indices and model techniques (e.g., random
forest regression) for further improving within-field yield prediction accuracy.
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