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Abstract: Spatially varying haze is a common feature of most satellite images currently used for
land cover classification and mapping and can significantly affect image quality. In this paper,
we present a high-fidelity haze removal method based on Haze Optimized Transformation (HOT),
comprising of three steps: semi-automatic HOT transform, HOT perfection and percentile based dark
object subtraction (DOS). Since digital numbers (DNs) of band red and blue are highly correlated
in clear sky, the R-squared criterion is utilized to search the relative clearest regions of the whole
scene automatically. After HOT transform, spurious HOT responses are first masked out and
filled by means of four-direction scan and dynamic interpolation, and then homomorphic filter is
performed to compensate for loss of HOT of masked-out regions with large areas. To avoid patches
and halo artifacts, a procedure called percentile DOS is implemented to eliminate the influence
of haze. Scenes including various land cover types are selected to validate the proposed method,
and a comparison analysis with HOT and Background Suppressed Haze Thickness Index (BSHTI)
is performed. Three quality assessment indicators are selected to evaluate the haze removed effect
on image quality from different perspective and band profiles are utilized to analyze the spectral
consistency. Experiment results verify the effectiveness of the proposed method for haze removal
and the superiority of it in preserving the natural color of object itself, enhancing local contrast,
and maintaining structural information of original image.
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1. Introduction

In recent years, an increasing number of projects and applications are carried out relying on
moderate or high-resolution satellite images. Given the constraints of satellite orbital characteristics and
atmospheric conditions, comprehensive satellite data with haze-affected scenes are usually obtained.
Due to the existence of haze, the image is degraded by the scattering of atmosphere more or less,
resulting in reduction of contrast and difficulty in identifying object features [1–3]. As a consequence,
haze removal from satellite images would normally be treated as a pre-processing step for ground
information extraction [4,5].

Theoretically, it is feasible to remove haze from hazy images via atmospheric correction techniques,
of which the desirable characteristics should involve robustness (i.e., applicable to a wide range of
haze conditions), ease-to-use (i.e., minimal and simple operator) and scene-based since there typically
is paucity of ancillary data [5].
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Liang et al. [6,7] proposed a cluster matching technique for Landsat TM data based on
an assumption that each land cover cluster has the same visible reflectance in both clear and hazy
regions. The demand for existence of aerosol transparent bands makes it impractical for high-resolution
satellite imagery, since visible bands and the near-infrared band are contaminated by haze more or
less. It was noted that haze seems to be a major contributor to the fourth component of tasseled-cap
(TC) transformation [8,9]. However, the applicability of the method based on TC transformation is
problematic due to the sensitivity to certain ground targets and the necessity to properly scale the
estimated haze values.

Zhang et al. [10] proposed a haze optimized transformation (HOT) method for haze evaluation,
assuming that digital numbers (DNs) of band red and blue will be highly correlated for pixels within the
clearest portions of a scene and that this relationship holds for all surface classes. HOT combined with
dark object subtraction (DOS) [11] has been shown to be an operational technique for haze removal
of Landsat TM and high-resolution satellite data [10,12]. Although this technique provides good
results for vegetated areas, some surface classes (water bodies, snow cover, bare soil and urban targets)
can induce low or high HOT values that eventually result in under-correction or over-correction
of these targets [10,13]. Liu et al. [14] developed a technique to remove spatially varying haze
contamination, comprising three steps: haze detection, haze perfection, and haze removal. This method
uses background suppressed haze thickness index (BSHTI) to detect relative haze thickness and virtual
cloud point (VCP) for haze removal. Artificial intervention is necessary to outline thick haze and clear
regions and set parameters during subsequent processing [14,15]. It is stressed that the two methods are
relative atmospheric correction techniques in view of the fact that most image classification algorithms
(e.g., unsupervised clustering and supervised maximum likelihood classification) do not require
absolute radiometric calibration.

Makarau et al. [16] presented a haze removal method that calculates a haze thickness map
(HTM) based on a local non-overlapping search of dark objects. Assuming an additive model of the
haze influence, the haze-free signal at the sensor is restored by subtracting the HTM from the hazy
images. Makarau et al. [17] continue to develop a novel combined haze/cirrus removal that uses
visible bands and a cirrus band to calculate the HTM in [17]. This method is fast and parameter-free
since it is independent of critical and time-consuming cirrus parameter estimation. Shen et al. [18]
developed a simple but highly efficient and effective method based on the homomorphic filter (HF) [19]
for the removal of thin clouds in visible remote sensing images. Three stages are included in this
method: cut-off frequency decision, thin cloud removal, and the mosaicking of the cloudy and
cloud-free sub-images.

He et al. [20] observed that in most of the non-sky patches of haze-free outdoor images, at least
one color channel has very low intensity at some pixels. They proposed an efficient haze removal and
depth map estimation method for outdoor colored RGB images based on dark channel prior calculation.
Dark channel prior was applied for haze removal of remote sensing image in [21]. Instead of soft
matting method, Long et al. [21] refined the atmospheric veil with a low-pass Gaussian filter. In order
to eliminate the color distortion and oversaturated areas in the restored images, the transmission is
recomputed, which can lead to good results and sufficient speed.

In this paper, we present an effective method based on the HOT transformation for haze or
thin clouds removal in visible remote sensing images. We intend to gain a high-fidelity haze-free
image especially in RGB channels for the sake of visual recognition and land cover classification.
Our proposed method is comprised of three steps in sequence: semi-automatic HOT transform,
HOT perfection and percentile DOS with detailed description in the following sections. To verify the
effectiveness of our proposed method, experiments on Landsat 8 OLI and Gaofen-2 High-Resolution
Imaging Satellite (GF-2) images are carried out. The dehazed results are compared with those of
original HOT and BSHTI. Meanwhile, three quality assessment indicators are selected to evaluate the
image quality of haze removed results from various perspectives and band profiles are utilized to
analyze the spectral consistency. The conclusion is given at the end of this paper.
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2. Proposed Method

Through MODTRAN simulations, Zhang et al. [10] found out that DNs of band red and blue are
highly correlated in clear sky or thin cloud conditions for Landsat TM data. In the two-dimensional
spectral space consisting of band red and blue, a clear line (CL) can be defined, whose direction
depends on the characteristics of the scene. The distance of a given pixel from the CL is proportional to
the amount of haze that characterizes the pixel, thus making it possible to estimate the haze component
to subtract from the original data. The direction of the CL can be expressed by its slope angle θ,
and hence HOT, the transformation that quantifies the perpendicular displacement of a pixel from this
line can be given by Equation (1):

HOT = B1 sin θ − B3 cos θ (1)

where B1 and B3 are the pixel’s DNs of band blue and red, respectively.
Equation (1) is derived from a CL through the origin supposing an ideal atmosphere without

background aerosols. If the scattering effect of the background aerosols is taken into consideration,
the position of the CL would shift, but its slope would not change appreciably since the background
aerosol effect is linearly related to other path scattering effects.

Zhang et al. [10] illustrated that diverse atmospheric conditions could be detected in detail by HOT.
Nevertheless, some surface types could potentially trigger spurious HOT responses. These classes
include snow cover, shadows over snow, water bodies and bare soil. Moro and Halounova [12] confirmed
that man-made features could also induce wrong HOT response. These types are called sensitive targets
hereafter. The sensibility of HOT response can lead to over-correction or under-correction of sensitive
targets and color distortion in RGB synthetic image of haze removal results.

To overcome the shortcomings of original HOT method, a high-fidelity haze removal method
based on HOT is proposed and described in next section. It should be noted that haze here means
contamination by spatially varying, semitransparent cloud and aerosol layers, which can arise from
a variety of atmospheric constituents including water droplets, ice crystals or fog/smog particles [10].
Three stages are included: semi-automatic HOT transform, HOT perfection and percentile DOS.
In the first stage, the relative clearest regions of the whole scene are located automatically through
R-squared criterion. In the second stage, spurious HOT responses are first masked out and filled by
means of four-direction scan and dynamic interpolation, and then homomorphic filter is performed to
compensate for loss of HOT of masked-out regions with large areas. Finally, a procedure similar to
DOS is implemented to eliminate the influence of haze. In this stage, each band of original images
is sliced into different layers according to different HOT response and percentiles of histograms are
utilized to determine the adjusted DNs of each layer.

2.1. Semi-Automatic HOT Transform

In order to generate the HOT map of the whole scene, the clearest portions of a scene must be
delineated beforehand. As mentioned before, the clearest regions should at least meet the following
two conditions:

Condition one (C1): Have relative lower radiances of visible bands.
Condition two (C2): Band blue and red radiances are highly correlated.
The two conditions are useful for us to identify the clearest regions. Thus, we use

a non-overlapping window scanning the original image to search regions where the two conditions are
met at the same time. We can simply use 64 (0.25 × 256) as a threshold of C1 after stretching the range
of radiance to 0–255. As for C2, R-squared is used to measure how well a regression line approximates
band radiances of pixels within each window. Generally, an R-squared of 1.0 (100%) indicates a perfect
fit. The formula for R-squared is:
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R (X, Y) = Cov (X, Y)/ [StdDev (X)× StdDev (Y)] (2)

where X and Y are two vectors representing band blue and red, respectively; and Cov and StdDev are
shorthand of covariance and standard deviation, respectively. We choose 0.95 as the threshold of C2.
Those windows whose R-squared values are greater than 0.95 and means of visible bands are lower
than 64 are stored for a more accurate estimation of the slope of CL. The size of the window should
be adjusted according to the real distribution of haze and clouds. By the experimental analysis, it is
suggested that the minimum window size had better ensure a field size of 3 km × 3 km. For each
stored window, the regression coefficient k is calculated as Equation (3):

k =

n
n
∑

i=1
xiyi −

n
∑

i=1
xi

n
∑

i=1
yi

n
n
∑

i=1
xi

2 − (
n
∑

i=1
xiyi)

2 (3)

where n is the total number of pixels in each window; and xi and yi are radiances of band blue and red,
respectively. All regression coefficients of stored windows can be represented by a vector K.

Ideally, the clearest regions should contain dense vegetation to reduce impact of sensitive
targets. However, there can be cloudless and homogeneous regions with large areas in a scene,
whose R-squared values may also greater than 0.95 but regression coefficients are not consistent with
dense vegetation regions. Typical examples include water surface such as a lake or a river, shadows of
clouds or mountains. These regions are mixed in the stored windows, thus the mean of k are likely
to be influenced due to its sensibility to extreme values. A feasible solution is to substitute mean for
median. It has been proven to be suitable in our experiments. Therefore, we can calculate the slope θ

by solving an arc tangent function:

θ = arctan(median(K)) (4)

Finally, HOT transformation is applied to each pixel to generate a HOT map (hereafter H0)
of the whole image through Equation (1). Figure 1d shows the HOT map of Figure 1a. Overall,
HOT map reflects the relative intensity of the haze properly. However, spurious HOT responses also
exist, especially in the regions corresponding to sensitive targets. If using it as the reference for DOS,
serious color distortion would appear in the dehazed image, as shown in Figure 1b. Hence, refinement
is required to gain a more accurate estimation. Figure 1e–h show all HOT maps during the process
of HOT perfection and Figure 1c is the final dehazed result of our proposed method. Next, we give
a detailed description of HOT perfection and percentile DOS.

2.2. HOT Perfection

2.2.1. Valid Pixel Set

Experiment in [10,12] proved that HOT combined DOS technique provided good results for
vegetated areas. Thus, we can treat vegetation cover areas as effective region for utilizing HOT to
assess relative haze thickness and the corresponding part in initial HOT map as valid pixel set. In order
to extract the valid pixel set, we demand for a universal mask. The normalized difference vegetation
index (NDVI) can achieve this goal easily since it owns the ability to assess whether the target being
observed contains live green vegetation or not. The formula for NDVI is:

NDVI = (ρnir − ρr)/(ρnir + ρr) (5)

where ρnir and ρr stand for the spectral reflectance measurements acquired in band near-infrared and
red, respectively. The NDVI varies between −1.0 and +1.0. In general, the NDVI of an area containing
a dense vegetation canopy will tend to positive values while clouds, water and snow fields will be
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characterized by negative values. In addition, bare soils tend to generate rather low positive or even
slightly negative NDVI values. Hence, the threshold (hereafter T1) between 0.1 and 0.3 of NDVI is
suggested to extract dense vegetation.
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difference (RBSD), equal to DNs of band blue minus that of band red, as an assistant. Their locations 
and boundaries are obvious in the grey-scale map of RBSD, thus the threshold (T2) can be determined 
through histogram after two or three attempts of threshold classification. Combing NDVI with RBSD, 
a general mask can be designed to get rid of sensitive targets. 
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pixels. Then, invalid pixels are masked out from H0 and the values of them are inferred from the 
valid pixel set. Figure 1e shows the masked-out HOT map. 
  

Figure 1. Dehazing of Landsat 8 OLI data (subset): (a) hazy image RGB true color band combination
(similarly hereafter) (22 August 2015; scene ID: LC81230342015234LGN00); (b) dehazed result of
original HOT method; (c) dehazed result of the proposed method; and (d–h) HOT maps during HOT
perfection, whose gray scale is shown in (i). The north arrow and scale bar are suitable for (a–h).

However, in our experiments we find some man-made features whose colors are close blue or
red are neglected. Observed that the absolute differences of these features between band blue and red
are much higher than valid pixel set, we therefore recommend utilizing red-blue spectral difference
(RBSD), equal to DNs of band blue minus that of band red, as an assistant. Their locations and
boundaries are obvious in the grey-scale map of RBSD, thus the threshold (T2) can be determined
through histogram after two or three attempts of threshold classification. Combing NDVI with RBSD,
a general mask can be designed to get rid of sensitive targets.

Pixels with NDVI values higher than T1 and RBSD values lower than T2 are regarded as valid
pixels. Then, invalid pixels are masked out from H0 and the values of them are inferred from the valid
pixel set. Figure 1e shows the masked-out HOT map.
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2.2.2. Scanning and Interpolation

We adopt a four-direction scan and dynamic interpolation method to gain the filled value of
masked-out areas, which can maintain the spatial continuity and local correlation of surface features.
In this section, the detail of this method is described.

Assuming the valid pixels are labeled as 1 and others 0, we firstly consider a simple situation
as shown in Figure 2a, whose masked-out areas are located inside the whole image. Next, start the
first scan from the upper left corner following the direction from left to right and then top to bottom.
When scanning to a pixel labeled 0 such as the pixel at row 2 and column 4, a local window with
a radius of 3 pixels is used to search valid pixels surrounding it. The average HOT value of all valid
pixels in this window is regarded as the value of that pixel and the value is filled into the current
matrix. Now, the state of the matrix is as Figure 2b. The same process is repeated until reaching to
the lower right corner. As the state of matrix is changed every time coming across a pixel labeled 0,
this process is called dynamic interpolation.
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Then, scan the mask-out HOT map from the other three directions as shown in Figure 2c in which
the long arrows represent the direction of scanning line and the short arrows stand for the moving
direction of scanning line. It is stressed that four scans are independent of each other, originating from
the initial masked-out HOT map. The four matrices of four scanning results are added up to compute
the average to generate our final result of interpolation (hereafter H1).

More complex situation should be taken into consideration, such as Figure 2d. When scanning
from the upper left corner and locating at row 1 and column 1, we cannot find any valid pixel in the



Remote Sens. 2016, 8, 844 7 of 18

pixel’s 3 × 3 neighborhood. Hence, its tag remains unchanged and its HOT value is still null. If we
changed the starting point, such as upper right, this problem will be solved successfully. We find that
all masked-out areas are surrounded by valid pixels in at least two directions of the four in Figure 2c.
Thus, after four-direction scan and dynamic interpolation, all masked-out areas are filled and the
influence of valid pixels in different directions has been delivered to the point to be interpolated.
In addition, this process is efficient and only takes 13 s for an image of size 7771 × 7901 pixels.

Figure 1f shows the interpolation result of Figure 1e. Spurious HOT responses are corrected
after interpolation and the contrast of different haze intensity becomes more vivid. However,
another problem occurs in large-scale mask-out areas, such as water surface or thick haze. With the
increase of distance, the influence of valid pixels is weakened, resulting in the lower HOT value of
central pixels of a large masked-out regions than marginal pixels, such as the area labeled by red
rectangular in Figure 1f. Therefore, compensating for these areas is required.

2.2.3. Homomorphic Filter for Compensating

There is a common characteristic of large-scale haze and water surface that their spatial
distributions are locally aggregated and continuous. The property is transferred to the original
HOT map through HOT transformation. Therefore, large-scale haze or clouds and water surface are
assumed to locate in the low-frequency of H0 [22,23]. In this section, we utilize a homomorphic filter
method to extract the low-frequency information of H0. The algorithm is described as follows:

(1) H0 is expressed as Equation (6) [18]:

H0 = f (x, y) = i(x, y)× r(x, y) (6)

where i(x,y) is the low-frequency information to enhance and r(x,y) is the noise to suppress.
(2) Logarithmic transformation: convert the multiplicative process of Equation (6) to an additive one

z(x, y) = ln f (x, y) = ln i(x, y) + ln r(x, y) (7)

(3) Fourier transformation: transform z(x,y) from space domain to frequency domain F{z(x,y)} = F{ln
i(x,y)} + F{ln r(x,y)}, simplified as:

Z(u, v) = Fi(u, v) + Fr(u, v) (8)

where Fi(u,v) and Fr(u,v) represent the Fourier transformation of ln i(x,y) and ln r(x,y).
(4) Filtering: use a Gaussian low-pass filter H(u,v) to enhance the low-frequency information

including large-scale haze or water surface, and meanwhile suppress the high-frequency
information including noise:

S(u, v) = H(u, v)Z(u, v) = H(u, v)Fi(u, v) + H(u, v)Fr(u, v) (9)

and H(u,v) is defined as:

H(u, v) = exp[−D2(u, v)
2σ02 ] (10)

σ0 denotes the cut-off frequency, u and v are the coordinates, and D(u,v) denotes the distance
between the (u,v) coordinate and the origin of Z(u,v). The cut-off frequency, which is used to separate
the high and the low frequencies, should be adjusted according to actual situation. In general,
the smaller cut-off frequency means more enhancement of low-frequency information. In our
experiments, σ0 is fixed to 10.

(1) Inverse Fourier transformation:
s(x, y) = F−1 {s(u, v)} (11)
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(2) Exponential transformation:
g(x, y) = exp[s(x, y)] (12)

Figure 1g shows the result of g(x,y) (hereafter H2) for Figure 1d. It can be seen that background
noise relating to land cover types has been suppressed while the main or relative large-scale haze has
been enhanced. H2 can be used to evaluate relative haze thickness at a large scale but may neglect
some details, such as small haze patches or silk ribbons. H1 preserves the details but underestimate
the haze thickness of large-scale haze or water surface. Thus, fusion of H1 and H2 can provide a more
accurate estimation of haze. The final HOT map (hereafter H) is obtained as:

H = λH1 + (1− λ)H2 (13)

where λ ∈ [0, 1] is used to weight the contribution of H1 and H2 in the final result. λ is fixed to 0.5 in
our experiments unless otherwise stated. Figure 1h shows the final HOT map of Figure 1a.

2.3. Percentile DOS

After HOT perfection, spurious HOT responses of sensitive targets have been eliminated and
H provides us correct evaluation of relative haze thickness. If slicing each band of original images
into different layers to ensure the HOT responses of each layer are the same or vary in a small range,
we can consider the atmosphere condition of each layer is homogeneous and it becomes reasonable
to apply DOS method for haze removal. Utilizing histograms of each layer, we determine a curve
ψ = DN (HOT) (The blue curves in Figure 3 shows an example of band blue), reflecting the relationship
between the lower-bound DN value and HOT level. We quantify the level of migration of a given layer
by the offset of its lower-bound level relative to that of a selected reference layer and this migration
determines the adjusted DN of pixels in this layer. For example, supposing the lower bound of the
selected reference is 70 and that of a given layer (HOT ∈ (0.50, 0.55]) is 87, the adjusted DN of pixels in
this layer should be 17, equal to 87 minus 70. That is to say, pixels with an observed HOT level between
0.50 and 0.55 should have its DN of band blue reduced by 17 during the radiometric adjustment phase.
In addition, we usually choose the minimal lower-bound value as the reference. This procedure is
used to adjust all visible bands for which the histogram analysis has been done.
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However, experiments show that the lower-bound values often appear unstable, especially for
band blue which is notoriously noisier than others. Thus, the adjusted values determined by ψ tend to
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jump up and down between adjacent HOT levels, finally leading to many patches and halo artifacts in
the dehazed image, such as Figure 4a. An effective approach to solve this problem is to replace the
lower-bound with percentiles of histograms. Figure 3 shows the curves of 25th/50th/75th percentiles
for band blue, illustrating percentiles are more stable than the lower-bound. Hence, the adjusted values
determined by percentiles between adjacent HOT levels will change smoothly. As a result, the dehazed
image shows a stronger integrity and patches and halo artifacts disappear as shown in Figure 4b.
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Haze removal above is a “relative” method as the effect of the atmosphere is just adjusted to
a homogenous background level. The traditional DOS method is applied to finish our radiometric
adjustment. Figure 1c shows the final haze removal result of Figure 1a.

3. Results

To test the effectiveness of our proposed methodology, we applied it to several scenes covering
representative surface cover types including sensitive targets and encompassing a broad spectrum
of atmospheric conditions. The data used in our study includes Landsat 8 OLI and GF-2 images.
Spatial resolution of the former is 30 m and that of the latter is 4m in visible and near-infrared
spectral bands. The thresholds of NDVI in our experiments are determined according to the criteria in
Section 2.2.1 unless otherwise stated.

Figure 5 shows the result of haze removal of Landsat 8 OLI data, whose parameters are listed
in Table 1. The results of the proposed method are compared with those of original HOT and BSHTI.
Visually, all of the three methods can remove haze and thin clouds to a certain degree by correcting the
values of the hazy pixels. However, the color cast is serious in the results of original HOT, and the
spectra of the clear pixels are changed as well as the cloudy pixels, as the second row of Figure 5
shows. Contrarily, the result of the proposed method is pleased with a good apparent recovery of
surface detail and it preserves features’ natural color properly, as shown in the third row of Figure 5.
Overall, the proposed method removes haze and thin clouds while fragmentary small haze patches
or silk ribbons remain, which correspond to thick cloud in original images, especially in Figure 5j.
BSHTI removes haze and clouds completely, as the last row of Figure 5 shows. However, there exist
unexpected patches and halo artifacts in dehazed results which appear at the junction between thin and
thick haze regions, especially in the lower-right corner of Figure 5n. Furthermore, we select two typical
samples for careful comparison of the proposed method and BSHTI in Figure 6. Their locations are
labeled in Figure 5 by red rectangle.
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Figure 5. Haze removal results of Landsat 8 OLI data. (a–d) four original images covered by thin
haze or clouds; (e–h) results of original HOT; (i–l) results of our proposed methodology; (m–p) results
of BSHTI. The scale bars at the bottom are used for figures of the corresponding column. The red
rectangles represent the location of samples of Figure 6.

Table 1. Parameters of the Landsat 8 OLI data sets.

Figure 5a Figure 5b Figure 5c Figure 5d

Landsat scene ID LC81230322013276L
GN00

LC81230332015266
LGN00

LC8123033201
5218LGN00

LC8123039201
6157LGN00

WRS path 123 123 123 123
WRS row 32 33 33 39

Acquired date 3 October 2013 23 September 2015 6 August 2015 5 June 2016
Solar elevation angle 43.30◦ 47.67◦ 60.83◦ 69.06◦

Solar azimuth angle 156.79◦ 152.03◦ 133.12◦ 106.44◦

Figure 6a covers a suburban area including many colorful man-made features. The proposed
method wipes out haze entirely and visibility of dehazed image has been significantly improved.
Houses are clearly visible and the boundaries of them can be easily distinguished. By contrast,
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it becomes more difficult to distinguish houses in Figure 6c since their boundaries are mixed up
with surrounding land cover types. Meanwhile, the colors of man-made features is changed greatly.
This indicates that the proposed method behaves well in enhancing local contrast and preserving
features’ natural color compared with BSHTI. A possible reason may be that BSHTI has treated all
cover types as background noise without distinction, resulting in weakness of the differences between
different types in its results. Similar situation occurs in Figure 6f, in which boundaries of riversides are
blurred. The color of the transition zone from the river to land is very close to that of water surface,
contrary to the reality. In fact, BSHTI has changed the color and texture of water surface compared
to the original image while the proposed method maintains the general tone of the original image,
as shown in Figure 6e. In addition, it seems that the small island in the river becomes a little smaller
along with the erosion of its boundary, which implies that BSHTI might have destroyed the structure
of the original image in the process of removing haze.
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Figure 6. Close-up of two typical samples. Their locations are labeled in Figure 5 by red rectangle.
(a) the original image from Figure 5b; (b) result of our proposed method; (c) result of BSHTI;
(d) the original image from Figure 5d; (e) result of our proposed method; (f) result of BSHTI.

Although our proposed method is initially designed to remove haze in RGB channels, we find
that the method is also suitable for haze removal in other bands, such as coastal/aerosol band (band 1),
near infrared band (band 5), and short wave infrared (band 6, and band 7) of Landsat 8 OLI data.
In general, longer wavelengths of the spectrum are influenced by haze much less. Thus, we just cut
out the subset of Figure 5b which is affected relative seriously in longer wavelength for an observation
of dehazed effect on these bands. Figure 7 shows the dehazed results in other spectral bands of
Landsat 8 OLI data. It is clear that the effect of haze has been eliminated and visibility of results has
been significantly enhanced.
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Figure 7. Dehazed results in other spectral bands of Landsat 8 OLI data. (a–d) original images;
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Figure 8 shows the results of haze removal on GF-2 images with a spatial resolution of 0.8 m after
fusing full-color and multi-spectral bands. The image of Figure 8a is acquired on 2 September 2015
containing rich green vegetation. The image of Figure 8d covers a rural area locating at the northern
of China and it is acquired on 12 February 2015 when crops have not grown up. The lack of dense
vegetation makes it difficult to implement the proposed method since the valid pixels are not enough
to infer out HOT values of masked-out regions. Thus, the previous criteria (varying in 0.1–0.3) for the
determination of the NDVI thresholds becomes unsuitable in this case. We have achieved the goal of
removing haze by means of lowering the threshold of NDVI (varying between −0.2 and −0.1) when
designing the general mask. Overall, both methods provide us with intuitively content dehazed results.
That is to say, our proposed method and BSHTI are also suitable for eliminating haze of high-resolution
satellite images.

For Figure 8, the color of bare soil in our results is more in line with the real state than that of
BSHTI’s. In the upper left corner of Figure 8b, the boundary of bare ground and the surrounding
vegetation is clear, and the color difference is obvious, whereas small bare soil blocks are mixed up
with vegetation around them and their areas turn to become small in Figure 8c. As for Figure 8f,
the color of the whole image seems close green, which may lead to the wrong judgment that there is
a lot of green vegetation on the surface.

According to the experimental results, we can come to the conclusion that the proposed method
provides a more satisfying result for haze removal. All mentioned above suggest that the proposed
method is more capable of preserving the natural color of object itself, enhancing local contrast,
and maintaining the structural information of original images. However, our analysis is likely to be
biased as it can be influenced by different perspective or personal preference. Thus, more objective
discussion should be introduced to determine which method is a high-quality implementation of haze
removal. In the next section, three indices are chosen for our discussion.
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Figure 8. Haze removal results of GF-2 images. (a) the original image for vegetation area; (b) result
of our proposed method; (c) result of BSHTI; (d) the original image for rural area; (e) result of our
proposed method; (f) result of BSHTI. The north arrow and scale bar are suitable for (a–f).

4. Discussion

4.1. Quality Assessment of Dehazed Results

It is known that haze removal is a pre-processing step for subsequent applications or information
extraction. Thus, our haze removal methods should provide us with results which are helpful for
computer recognition and classification under the premise of ensuring accuracy. We consider less
image distortion, higher structural similarity and stronger local contrast as the basic criterion to be
met. Therefore, we choose three quality assessment indicators to evaluate our results: (1) Visual
Image Fidelity (VIF) [24] to measure difference of pixels before and after haze removal; (2) Universal
Quality Index (UQI) [25] to compare the structural similarity of images; and (3) Contrast-To-Noise
Ratio (CNR) [26] to evaluate local contrast enhancement of dehazed results. We briefly review them in
the following.

VIF relies on three models: Natural Scene Statistics model, distortion (channel) model and Human
Visual System (HVS) model. VIF models natural images in the wavelet domain using Gaussian Scale
Mixtures and assumes the coefficients in the wavelet domain are uncorrelated. It explains visual
distortion of human vision as the noise of internal neurons. VIF is defined as Equation (14):
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where C and s denotes the vector and scalar random field from the reference signal; and E and F
denote visual signal at the output of HVS model from the reference and the test images, respectively.
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from each-band in the reference and the test images, respectively. K represents the total numbers
of sub-bands.

UQI is a mathematically defined image quality assessment index. Let x = {xi|i = 1, 2, . . . , N} and
y = {yi|i = 1, 2, . . . , N} be the reference and the test image signals, respectively. The mathematical
definition of UQI is given by Equation (15):

UQI =
4σxyxy

(σx2 + σy2)[(x)2 + (y)2]
(15)

where x = 1
N

N
∑

i=1
xi, y = 1

N

N
∑

i=1
yi, σx

2 = 1
N−1

N
∑

i=1
(xi − x)2, σy

2 = 1
N−1

N
∑

i=1
(yi − y)2, and σxy =

1
N−1

N
∑

i=1
(xi − x)(yi − y).

CNR is similar to signal-to-noise ratio (SNR), but is based on a contrast rather than the raw signal.
CNR provides us with more precise evaluation than SNR when there is a significant bias in an image
resulting from haze et al. One way to define contrast-to-noise ratio is:

CNR =
|SA − SB|

σN
(16)

where SA and SB are signal intensities for signal structures A and B, respectively; and σN is the standard
deviation of the image noise. In [20], two Gaussian kernels are used to estimate structure B and image
noise while the original input image are used as structure A. It is stated that the value of CNR in
Table 2 is not the direct computing result according to Equation (16). In order to expose the change
before and after haze removal, we use the differences of CNR values between the original images and
dehazed results as the values listed in Table 2.

Table 2 lists the values of different objective quality assessment indices for haze removal results of
Figure 5b,c and Figure 7a,d, which are subsets of the whole images. The original hazy data are used as
the reference images and dehazed results are the test images. It is stressed that all these values are
calculated in RGB channels.

Table 2. Image quality assessment results for dehazed images.

VIF UQI CNR

PM * BSHTI PM BSHTI PM BSHTI

Figure 5b −0.0766 −0.1105 0.8481 0.6868 4.2339 −7.8331
Figure 5c −0.0015 −0.0041 0.8367 0.6320 4.7505 −0.7602
Figure 8a −0.0297 −0.0594 0.8038 0.6455 4.7502 −4.5422
Figure 8d −0.0452 −0.0276 0.4698 0.3989 −4.8098 −11.4610

* PM means the proposed method.

In general, the closer VIF gets to zero, the less serious image distortion. According to the
data, some distortions happen in all dehazed images. However, this does not mean the true
distortion in dehazed results because there could be great differences between the pixels in original
image and haze removed image especially when heavy haze exists. Thus, the image distortion
in our results is acceptable and it can come down to the direct consequence of haze removal.
For Figure 5b,c and Figure 7a, VIF values of the proposed method are much closer to 0 than BSHTI
while it is inverse for Figure 8d. Regarding these statistical values, it implies that the proposed method
behaves well in most cases while BSHTI is more capable of dealing with the situation where there is
a lack of vegetation. For Figure 5b, the absolute values of VIF are much larger than others, which is in
accord with the fact that Figure 5b contains much heavier haze.
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The structural similarity is independent of the contrast and color of the image. It can be seen that
both methods gain relatively high values of UQI, which means strong ability to preserve structural
information. The contrast of UQI indicates that the proposed method is superior to BSHTI in this
aspect. Meanwhile, note that UQI values of Figure 5b,c and Figure 7a are much larger than those of
Figure 8d, which implies that we can benefit from dense vegetation when removing haze and CNR
shares the same characteristic.

For the first three figures, CNR values of the proposed method are positive values while that of
BSHTI are negative numbers, that is to say, the local contrast has been enhanced in the haze removed
image of the proposed method while weakened in the result of BSHTI. Whereas, the proposed method
also shows poor effect on local contrast enhancement for Figure 8d. It proves again that the proposed
method would benefit from dense vegetation in some way. Nevertheless, we can consider the proposed
method as an outstanding one to clear out the influence of haze since all results of it have larger CNR
values compared with BSHTI’s.

In summary, the discussion above leads to the conclusion that the proposed method is superior
in maintaining structural information of original image and enhancing local contrast to BSHTI
based approach. Both methods lead to image distortion in haze removal results more or less but
it is acceptable.

4.2. Analysis of Spectral Consistency

A quantitative evaluation of a dehazing method is a difficult task as the appropriate hazy data
together with ground truth are difficult to collect. Since a strict validation is not possible, we choose
a pair of hazy and haze-free images for analysis of spectral consistency. The images have minimal time
difference and minimal difference of the Sun/sensor geometry, which allows us to use the haze-free
image as a reference and to perform an evaluation of the dehazing method by a comparison of the
spectral information. The detailed information on the data is given in Table 3.

Table 3. Parameters of hazy and haze-free (reference) data sets.

Hazy Haze-Free (Reference)

Landsat scene ID LC81960292013195LGN00 LC81970292013186LGN00
WRS path 196 197
WRS row 29 29

Acquired date and time(UTC) 14 July 2013, 10:25:28 5 July 2013, 10:31:39
Solar elevation angle 61.99◦ 63.11◦

Solar azimuth angle 138.04◦ 137.32◦

Figure 9 illustrates the dehazed results for a Landsat 8 OLI sub-scene. Visual interpretation
of the dehazed image (Figure 9b) and comparison to the reference (Figure 9c) using a true color
RGB composition confirm that the proposed method performs well. We intend to compare the
channel intensity profiles in the hazy, dehazed and reference image to analyze the spectral consistency.
Figure 10 presents band profiles (Figure 9a, vertical red line) of coastal/aerosol band (band 1, 0.433 µm),
blue band (band 2, 0.483 µm), near infrared band (band 5, 0.865 µm), short wave infrared1 (band 6,
1.610 µm) for the original hazy (red line), dehazed (green line) and reference (blue line) images.

The original and dehazed profiles have similar shapes in the haze-free region (right part of the
graph in Figure 10), illustrating that the dehazing process outside the haze regions does not modify
the spectral properties of the original data. Meanwhile, these two spectra have the same shape as the
reference image spectrum. In the hazy region (left part of the graph), the dehazed profile illustrates
a noticeable dehazing enhancement of the band intensities together with a preservation of the surface
structure as it has the same shape as the profile of the reference image. It means that the method
produces spectrally consistent dehazed data. The difference between the dehazed and reference spectra
can be attributed to residual scene coregistration errors, different atmospheric conditions, and residual
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haze thickness errors. The differences in long wavelength range are minimal due to the weak effect of
haze and atmospheric conditions.Remote Sens. 2016, 8, 844 16 of 18 
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Figure 10. Band profiles (Figure 9a, vertical red line) taken from the original hazy (red line),
dehazed (green line) and reference (blue line) images: (a) coastal/aerosol band (band 1, 0.433 µm);
(b) blue band (band 2, 0.483 µm); (c) near infrared band (band 5, 0.865 µm); and (d) short wave infrared
(band 6, 1.610 µm).

We have applied the proposed method to a full-size Landsat 8 OLI data (3 October 2013; scene ID:
LC81230322013276LGN00), whose size is 7771 × 7901 pixels. The result is partially displayed in
Figure 5i. The execution time to handling four bands (RGB and NIR) is approximately 506 s on Intel
Xeon E3-1225, using an MATLAB implementation of the algorithm.

In all, the proposed method produces high-fidelity and spectrally consistent haze removal results.
The color of RGB composites is close to that in reality, which is helpful for visual interpretation.



Remote Sens. 2016, 8, 844 17 of 18

Spectral consistency ensures that haze removal would not influence other algorithm relying on
spectral information of images. The dehazed data are expected to be used as data sources of land
cover classification and mapping, surface change detection and other applications involving ground
information extraction.

5. Conclusions

In this paper, we propose a high-fidelity haze removal method for visible remote sensing data.
This method is effective in removing haze and thin clouds and can result in haze-free images with
high color fidelity. Three steps are included in our proposed method: semi-automatic HOT transform,
HOT perfection and percentile DOS. First, a non-overlapping window is utilized to search the relative
clearest regions of the whole scene automatically through the R-squared criterion. Second, NDVI and
RBSD are used to design a general mask for the sake of masking out spurious HOT responses from
the original HOT map. The masked-out areas are filled by means of four-direction scan and dynamic
interpolation, and then homomorphic filter is performed to compensate for loss of HOT of masked-out
regions with large areas. Then, each band of original images is sliced into different layers according to
different HOT responses and percentiles of histograms are utilized to determine the adjusted DNs of
each layer. Finally, DOS procedure is implemented to eliminate the influence of haze.

Experiments on several remote sensing data with medium and high spatial resolutions,
including Landsat 8 OLI and GaoFen-2 images, validate the effectiveness of the proposed method.
The halo artifacts are significantly smaller in our dehazed results. Image distortion exists in
haze removal results more or less but it is acceptable. Comparative analysis verifies that the
proposed method is superior in preserving the natural color of object itself, enhancing local contrast,
and maintaining structural information of original images. As BSHTI treats all land cover types
as background noise without distinction, differences between objects are weakened which leads to
difficulty in land cover classification and mapping. Band profiles show that the dehazed result shares
the similar spectral characteristic with the reference (haze-free) image in all spectral bands.

However, the proposed method is out of work at the area or in the season of sparse vegetation
as it depends on a valid pixel set, such as the northwest arid area, the northern winter. Meanwhile,
patches and halo artifacts arise in the results of Gaofen-2 images when zooming in the resulting image
to a large scale. We consider it a substantial limitation of this method in view of that slicing the
image might destroy the local integrity of land cover types. Anyway, it indicates the requirements of
further improvements.
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