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Abstract:



An interferometric synthetic aperture radar (InSAR) phase denoising algorithm using the local sparsity of wavelet coefficients and nonlocal similarity of grouped blocks was developed. From the Bayesian perspective, the double-[image: there is no content] norm regularization model that enforces the local and nonlocal sparsity constraints was used. Taking advantages of coefficients of the nonlocal similarity between group blocks for the wavelet shrinkage, the proposed algorithm effectively filtered the phase noise. Applying the method to simulated and acquired InSAR data, we obtained satisfactory results. In comparison, the algorithm outperformed several widely-used InSAR phase denoising approaches in terms of the number of residues, root-mean-square errors and other edge preservation indexes.
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1. Introduction


In the data processing of interferometric synthetic aperture radar (InSAR), the quality of the retrieved interferometric phase determines the accuracy of final products such as the estimation of ground deformation and digital elevation model (DEM). The phase retrieval is strongly affected by the phase denoising and phase unwrapping. When corrupted random phase noise exists, the result after the phase unwrapping is generally unsatisfactory. Therefore, the phase denoising using filtering is one of fundamental steps to obtain accurate phase estimation.



Numerous filtering approaches in the spatial domain or transformed domain are developed for the denoising. Examining the approaches carefully, one reveals some deficiencies. For instance, the direct filtering methods [1,2] applied in the spatial domain may not preserve details of fringes although the window direction-dependent [3] and size-dependent [4,5,6] methods are able to remedy the preservation difficulty to some degree. With the assumption that the true signal and noise could be separated in the frequency domain after transformation, the denoising is performed by suppressing part of the transformed coefficients. However, if the coherence is low or fringes are dense, the Goldstein filter [7] and its derivative method [8] in the frequency domain cannot offer the well-balanced noise reduction and the preservation of fringe texture. With the consideration of the coherence information of the local neighboring pixels, the joint subspace projection method [9] improves the balance. The method [9] might fail in the area of low correlation if the estimated dimension of noise subspace is not accurate. Phase filtering methods using the wavelet [10,11] and wavelet packets [12] are characteristically of good spatial resolution preservation and high computational efficiency. To ensure the filtering performance in the areas of low coherence and dense fringe, modified shrinkage methods are studied [13,14,15]. The phase filtering using the wavelet packet and simultaneous detection and estimation [15] is able to filter the high frequency information but is not desired for noise removal. The phase filtering in the undecimated wavelet domain using simultaneous detection and estimation [15] has the ability to filter very noisy phase data even if the density of phase fringes is relatively moderate or low. A sparse regulation approach [16], which jointly performs phase noise reduction and despeckling is presented. However, the prior information of interferometric phase is required. An anisotropic diffusion filter is embedded into the wavelet domain [17] to achieve a robust speckle suppression at wide range of speckle variances. A sparse reconstruction method using simultaneous sparse coding (SSC) on the ordered patches [18] is proposed for multichannel POLSAR image filtering.



Nonlocal techniques [19,20] are known to reduce noise while preserving the structures by performing the weighted average of similar patches efficiently. The weight depends on the similarity between the patch centered at the target pixel and other patches in the search window. With the nonlocal similarity principle, block matching with 3D collaborative filtering (BM3D) [21] is investigated, which is based on the enhanced sparse representation in the transform domain. The enhancement of the sparsity is achieved by grouping similar 2-D fragments of the image into a 3-D data array. Due to the similarity between the grouped fragments, the transformation can achieve a highly sparse representation of the true signal. Thus, the noise can be well separated by the shrinkage. Similarly, several advanced patch-based phase filtering methods are later proposed [22,23], of which redundant patterns of the images are exploited and a large set of pixels is selected to estimate each given pixel. With the presence of strong noise or the low signal-to-noise ratio in low-coherence areas, details shared by the similar blocks are probably weakened by the inter-block transform and the simple thresholding function. Thus, the accuracy of the block similarity is adversely impacted.



In this paper, the nonlocal similarity and wavelet-domain sparsity are incorporated into a unified variational framework for the InSAR phase estimation through filtering. The nonlocal similar blocks of interferogram are clustered by grouping, and then the overlapped blocks are shrunk in 2D wavelet domain by the nonlocal wavelet shrinkage function. The nonlocal shrinkage function utilizes double-[image: there is no content] norm restriction enforcing local and nonlocal sparsity constraints by shrinkage operators. This filter combines the intra- and inter-blocks correlation by taking advantage of the self-similarity of overlapped blocks. Thus, the finest details shared by the grouped blocks and the essential unique features of each individual block are revealed. Details are given next.




2. Nonlocal Wavelet Shrinkage Method for InSAR Phase Denoising


2.1. Formulation of InSAR Phase Filtering


The complex interferogram is formed by a pointwise complex multiplication of corresponding pixels between two complex images [image: there is no content] and [image: there is no content]. It consists of an argument processing in which the interferometric phase is wrapped from [image: there is no content] to π. The phase noise can be additively modeled [3,10] as


[image: there is no content]



(1)




where [image: there is no content] is the noise-free InSAR phase. [image: there is no content] is the noise. [image: there is no content] represents the argument of a complex quantity. ∗ indicates the complex conjugate. [image: there is no content] and [image: there is no content] are assumed to be independent from each other. The goal of the phase denoising is to recover [image: there is no content] from ϕ. According to the detailed analysis of [10], the real and imaginary parts of the phase can be modeled as


[image: there is no content]



(2)






[image: there is no content]



(3)




where [image: there is no content] is a factor related to the coherence. [image: there is no content] and [image: there is no content] are defined as statistically equal noise term. They are considered as zero-mean additive noise and independent from [image: there is no content], respectively.



Since the real and imaginary parts of the phase are of periodic characteristics as the phase is wrapped from [image: there is no content] to π. Therefore, the filtering should be performed on the real and imaginary parts separately in order to maintain the phase jumps. When the real and imaginary parts are filtered, the final filtered phase can be extracted. In our patch-based method, the noise in real and imaginary part of every phase image patch are assumed as independent and identical Gaussian noise.




2.2. Modeling of Nonlocal Wavelet Shrinkage Method


For an image x of size [image: there is no content] pixels which is corrupted by random noise v, the additive noise observation model of the patch-based method can be expressed as


[image: there is no content]



(4)




where [image: there is no content] is a patch of size [image: there is no content] pixels that is extracted from y at location i and ordered lexicographically as a column vector [image: there is no content]. [image: there is no content] is the noise-free patch corresponding to [image: there is no content]. [image: there is no content] is the noise patch. Under the assumption that the solution of upper linear inverse problem has a sparse expansion on an preassigned orthonormal basis, the following shrinkage model is introduced for denoising task using regularization with a sparsity constraint. The recovery problem is solved by an [image: there is no content]-minimization problem


αi=argminαi12∥yi-T2D-1αi∥22+λ∥αi∥1



(5)




where λ is the regularization multiplier, [image: there is no content] is the coefficient in some transformed basis, and [image: there is no content] is the linear inverse transform.



Wavelet transform (WT) denoising is very promising because the phase information and noise can be more easily separated in the wavelet domain. For an effective restoration, the wavelet shrinkage coefficients, achieved by solving the objective function in Equation (5), are expected to be as close as possible to the true coefficients. Let us define [image: there is no content] as the true WT coefficients of [image: there is no content] (or a good estimation). The estimated [image: there is no content] may deviate from [image: there is no content] due to the degradation of the observed [image: there is no content]. In order to get approximate coefficients, we need to minimize [image: there is no content]. Here we call it “wavelet coding noise” and build the regularization model as


(αi,βi)=argminαi,βi12∥yi-T2D-1αi∥22+λ1∥αi∥1+λ2∥αi-βi∥p



(6)




where [image: there is no content] is the estimated WT coefficients for patch [image: there is no content], [image: there is no content] is a good estimation of the real WT coefficients for patch [image: there is no content]. [image: there is no content] and [image: there is no content] are the Lagrangian multipliers that are used to balance two regularization terms. p is the regularization norm for “wavelet coding noise” term.



Recently, many statistical approaches emerged as new tools for wavelet-based denoising, such as the Bivariate Shrinkage method [24]. The estimation of clean coefficients is expressed as a Bayesian estimation problem, such as the MAP estimator. In Equation (6), [image: there is no content] is treated as a peer hidden variable that can be utilized to promote more accurate shrinkage method. Under the Bayesian formula, the posterior estimator is formulated as


[image: there is no content]



(7)







According to probability theory, there is a relationship: [image: there is no content]. The distribution of probability [image: there is no content] is characterized by Gaussian distribution as


[image: there is no content]



(8)




where [image: there is no content] is the noise standard deviation of [image: there is no content]. It should be pointed out that the Laplacian distribution for the clean wavelet coefficients is very meaningful [25]. Thus, [image: there is no content] is modeled as the Laplacian distribution


P(αi)=12σαiexp(2∥αi∥1σαi)



(9)




[image: there is no content] is also modeled as a Laplacian distribution


P(γi)=12σγiexp(2∥αi-βi∥1σγi)



(10)




where [image: there is no content] is the standard deviation of the clean coefficients of patch [image: there is no content]. [image: there is no content] is the standard deviation of [image: there is no content].



Substituting Equations (8)–(10) into Equation (7), we obtain


(αi,βi)=argminαi,βi12∥yi-T2D-1αi∥22+2σωi2σαi∥αi∥1+2σωi2σγi∥αi-βi∥1



(11)







From the point view of the Bayesian estimation, we can see that Equation (11) is equivalent to Equation (6). The regularization term of ∥αi-βi∥p should use the [image: there is no content] norm ([image: there is no content]).



Also, we can set [image: there is no content] and [image: there is no content]. It is a double-[image: there is no content] convex optimization problem [26]. It can be solved by alternatively updating [image: there is no content] via iterative algorithm [27] following the iterative shrinkage solution (see Appendix A)


[image: there is no content]



(12)




where [image: there is no content], [image: there is no content], and [image: there is no content]. c is an auxiliary parameter guaranteeing the convexity of surrogate function. j denotes the number of iterations. Subscript i denotes the i-th entry in a vector. The generalized shrinkage operator [image: there is no content] is defined by [27]


[image: there is no content]



(13)




where b is the scalar component of [image: there is no content].




2.3. Nonlocal Estimation of [image: there is no content]


It’s impossible to directly obtain the true WT coefficients of clean interferogram because it cannot be directly measured. Since the [image: there is no content]-periodic nature of the interferometric phase provides abundant self-similar structure, many harmonious patches that we call “groups” can be extracted by clustering or grouping. Figure 1 illustrates the nonlocal self-similar patches in acquired InSAR phase images. The patches in solid line are similar to the reference patch in dash line. In the adaptive estimation strategy, the nonlocal means is introduced in [19]. All similar pixels in its neighborhood can be used to estimate the value. As the patches in one group exhibit perfect similarity, each patch should get some approximately same significant transform coefficients. Inspired by this, the WT coefficients in one similar group can be utilized to get a good estimation of [image: there is no content] in the wavelet domain. It can be computed as the weighted average of those WT coefficients associated with the nonlocal similar patches.


Figure 1. Nonlocal structure of InSAR phase. (Dashed rectangles denote reference patches, and solid rectangles are similar patches.)



[image: Remotesensing 08 00830 g001]






For a patch [image: there is no content], similar patches can be extracted and expressed as a group [image: there is no content]. [image: there is no content] is the number of patches for one group. The k-th coefficient of [image: there is no content] can be estimated by


[image: there is no content]



(14)




where [image: there is no content] is the [image: there is no content]th coefficient of [image: there is no content]. [image: there is no content] is the weight, which determines the contribution factor for patch [image: there is no content] in denoising the reference patch [image: there is no content].





[image: there is no content]



(15)




where ω is the normalization factor with


[image: there is no content]



(16)




h is a constant proportional to the noise deviation and can take values as [image: there is no content]. Since the nonlocal structural self-similarity are utilized to estimate [image: there is no content], the updating of [image: there is no content] is conducted following the iterative shrinkage solution in Equation (A7). Therefore, the local sparsity in wavelet domain and the nonlocal structural self-similarity are combined in phase denoising.





3. Algorithm Implementation


3.1. Parameter Selection


Interferometric phase noise is spatially variant. Therefore, the filtering parameter should be estimated locally and adjusted to obtain a better filtering performance. For a patch [image: there is no content], a local estimator of [image: there is no content] [28] is


[image: there is no content]



(17)




where ‘[image: there is no content]’ is to obtain the median value of M. [image: there is no content] is the gradient of [image: there is no content].



In wavelet domain, the relation of noisy coefficients, clean coefficients, and noise coefficients are formulated as follows


[image: there is no content]



(18)




where [image: there is no content] are noisy coefficients of patch [image: there is no content], [image: there is no content] and [image: there is no content] are clean coefficients, and noise coefficients, respectively. The signal and noise are assumed independent [12]. Hence, [image: there is no content]. The standard deviation of noisy coefficients [image: there is no content] is estimated as the method in [12], which is


[image: there is no content]



(19)




where [image: there is no content] is the mean value of the noisy wavelet coefficients [image: there is no content]. According to the method of [13], the standard deviation of noise WT coefficients is


[image: there is no content]



(20)




where [image: there is no content] represents the wavelet coefficients in the first level HH wavelet subband. After obtaining the values of [image: there is no content] and [image: there is no content], [image: there is no content] is calculated using the relation


[image: there is no content]



(21)




where ‘[image: there is no content]’ is a small positive value. ‘[image: there is no content]’ operation is to ensure [image: there is no content] is not positive. [image: there is no content] can be calculated as [image: there is no content], [image: there is no content] can be setting as [image: there is no content].




3.2. Processing Steps


Figure 2 is the flowchart of the proposed InSAR phase filtering algorithm. As discussed in Section 2.1, the nonlocal structural similarity of the real and imaginary parts of the phase is derived separately. Thus, the filtering is applied to the real and imaginary parts separately. The patches are processed by successively extracting similar patches as one similar group. Grouping is accomplished using the block matching [21]. Each patch is filtered by the nonlocal wavelet shrinkage Equation (A7). Due to the overlapping operation, the patch-based representation is highly redundant. Therefore, the recovery of x from [image: there is no content] becomes an over-determined problem. A final estimation is made by aggregating all of the obtained local estimates using a weighted average. The filtered blocks are then returned to their original positions. The step-by-step description is given next.


Figure 2. Flowchart of the nonlocal wavelet shrinkage method.
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Step 1. Grouping by the block matching:



For each [image: there is no content] size reference patch [image: there is no content] in the original noisy image (real part or imaginary part), find the blocks [image: there is no content] that are similar to the current processed one, and then cluster them together as a group [image: there is no content], i.e., [image: there is no content]. The original noisy image is searched for in a reference block-centered [image: there is no content] neighborhood. This is achieved by the pairwise-testing the similarity between the reference fragment and the candidate fragments located at the nonlocal spatial locations. Here [image: there is no content]-distance is selected in the identification of the similar blocks


d(yi,yl)=∥yi-yl∥22M2



(22)







As the noise will influence the precision of similarity adjudgment, it is reasonable to use a higher threshold [image: there is no content] to select enough similar patches, i.e., [image: there is no content]. In order to restrict the number of similar patches, the K-nearest neighbor strategy is also implemented. [image: there is no content] patches with the smallest dissimilarity are chosen to be the similar patches of the reference patch. For each similar group, weights [image: there is no content] can be calculated and saved, and are used in Step 3 to calculate [image: there is no content].



Step 2. Discrete wavelet transform (DWT):



For every block in each group [image: there is no content], the data are transformed into the wavelet domain.



Step 3. Calculation of nonlocal mean value of wavelet coefficients:



Since nonlocal weights are obtained in Step 1, the nonlocal mean value of the wavelet coefficients in each group is calculated using Equation (15). [image: there is no content] and [image: there is no content] can be calculated by the method of Section 3.1.



Step 4. Nonlocal wavelet shrinkage by double-header [image: there is no content] optimization:



For each group, the wavelet coefficients are shrunk using Equation (A7).



Step 5. Inverse wavelet transform and aggregation:



The filtered data are inversely transformed into the spatial domain. The aggregation or an averaging procedure that takes advantage of the redundancy is carried out. Similar to the BM3D and the nonlocal filtering method based on the higher order singular value decomposition (HoSVD) [23], a processed pixel can be in different groups by the overlapped patches. Thus, the result after the filtering has to be returned to its original position and to be weighted by an averaging of the block-wise estimates.



Step 6. Estimation updating:



The estimation of recovered phase image is updated by


[image: there is no content]



(23)




where δ is a pre-determined positive constant controlling the amount of the noise fed back to the iteration. Then, the procedures from Step 1 to Step 6 is iteratively performed until the changes of estimations between two consecutive loops are less than a threshold. The average change of estimations is expressed as [image: there is no content]. This threshold can be chosen according to your filtering precision, such as 1/50 or even smaller.



Step 7. Phase calculation:



Once the real and imaginary parts of the InSAR phase are estimated, the filtered phase image is obtained from


[image: there is no content]



(24)




where [image: there is no content] represents the argument of a complex quantity.





4. Results


It should be noted that the details preservation is very vital for evaluating the quality of the filtering methods. The structural similarity (SSIM) index offers a direct way to compare the structural similarity of the reference and the filtered image when the reference image is available. The SSIM for two windowed reference patch i and filtered patch j can be expressed as [29],


[image: there is no content]



(25)




where [image: there is no content] and [image: there is no content] are the means of reference patch and the filtered patch, respectively. [image: there is no content] is the covariance of the reference patch and the filtered patch. [image: there is no content] and [image: there is no content] are constants to avoid instability when [image: there is no content] or [image: there is no content] is very close to zero. SSIM is distributed in the interval of [image: there is no content]. The structural preservation quality is worst when SSIM is [image: there is no content] and best when SSIM is [image: there is no content]. A mean SSIM (MSSIM) index [29] is utilized to evaluate the overall quality as [image: there is no content].



The metrics for edge preservation such as root-mean-square errors (RMSEs) [23] and SSIM are not available when the reference/clean phase image is unknown. For acquired InSAR data, the reference/clean image is not available. The no-reference metric Q [30] is shown good visual performance in balancing between denoising and detail preservation, so it can be used as a quantitative measure of true phase image content.



In addition, different wavelet bases (Haar wavelet, Daubechies wavelets, bi-orthogonal spline wavelet) are implemented in the developed algorithm. The searching window is limited within the size of [image: there is no content] pixels. The block size is [image: there is no content] pixels. A fixed value [image: there is no content] is determined in grouping step. The proposed algorithms are implemented in MATLAB R2013b on a 64 bit 3.10 GHz Intel® coreTM i5-2400 computer with 16 Gb random access memory (RAM).



4.1. Simulated InSAR Data


The data are simulated using an available DEM. The interferogram data without noise are [image: there is no content] pixels with different fringe densities (Figure 3). For a single-look interferometric phase, the variance of phase noise can be calculated as [image: there is no content]. Here [image: there is no content] is Euler’s dilograrithm. ρ is the coherence. According to four coherence values of 0.3, 0.5, 0.7, and 0.9, we then add Gaussian noise with zero mean and variance [image: there is no content]. The related interferogram datasets are Data-I (Figure 4A1), Data-II (Figure 4B1), Data-III (Figure 4C1) and Data-IV (Figure 4D1). Noise exists and varies spatially (Figure 4A1–D1). Also, the higher the coherence value is, the less the noise in the InSAR phase data (e.g., Figure 4D1 c.f. Figure 4A1). After three iterations with our developed algorithm, we can obtain satisfactory results. There is significant reduction in noise (e.g., Figure 4A2 c.f. Figure 4A1). The edges of the interferogram is well delineated since the nonlocal wavelet shrinkage method can preserve edges well even though the coherence values are low in phase data. In comparison of the noise-free data (Figure 3) with each filtered phase dataset (Figure 4A2–D2), they look similar. To analyze fringe details preservation, SSIM maps are calculated and shown in Figure 4. Figure 4A3–D3 are SSIM maps between clean phase image and noisy images. Figure 4A4–D4 are SSIM maps between clean phase image and filtered phase images. After filtering, the SSIM values are dramatically increased. Meanwhile, the similarity increases as coherence level increases. For example, the SSIM value in Figure 4D4 are higher than that in Figure 4A4.


Figure 3. Simulated phase data without noise. The white segment is a transect.



[image: Remotesensing 08 00830 g003]





Figure 4. Analysis of simulated data. (A1–D1) are simulated Data-I, Data-II, Data-III, and Data-IV consisting of noise, respectively; (A2–D2) are the filtered results of (A1–D1) by using the proposed method (Here we only show the filtered results with Bior1.5 wavelet); (A3–D3) are SSIM maps of noisy phase image A1 and Figure 3, B1 and Figure 3, C1 and Figure 3, D1 and Figure 3; (A4–D4) are SSIM maps of the filtered phase image A2 and Figure 3, B2 and Figure 3, C2 and Figure 3, D2 and Figure 3; (A5–D5) are difference images of Figure 3 and A2, Figure 3 and B2, Figure 3 and C2, and Figure 3 and D2; (A6–D6) are values of (A2–D2) along the transect shown as a white segment in Figure 3.



[image: Remotesensing 08 00830 g004]






We then compute differences of Figure 3 and Figure 4A2, Figure 3 and Figure 4B2, Figure 3 and Figure 4C2, and Figure 3 and Figure 4D2, respectively, and show the differences as Figure 4A5–D5. Difference exists, varies spatially and can be large (e.g., Figure 4A5). Difference values along the transect (shown as a white segment in Figure 3) for the four difference images are extracted and shown (Figure 4A6–D6). The difference ranges from about [image: there is no content] to 1.5 rad in Figure 4A6, and from about [image: there is no content] to 0.15 rad in Figure 4D6. It is clear the algorithm performs better when the coherence value is high.



The number of residues, RMSEs and MSSIM for each dataset before (Table 1) and after (Table 2) filtering are listed. Comparative experiments are conducted to test the effectiveness and robustness of our proposed method. The transformations are [image: there is no content], the Haar wavelet, [image: there is no content], the Daubechies wavelet with p (p = 2, 4, 6) vanishing moments, [image: there is no content], bi-orthogonal spline wavelet with the vanishing moments of the decomposing and the reconstructing wavelet functions being 1 and [image: there is no content]. From Table 2, we can see that the filtering results with different wavelet bases are very close. The number of residues and RMSEs decrease. For example, the number of residues decrease from 76,502 to 19, and the RMSE from 2.3814 to 0.1059 for Data-I. MSSIM represents the total structural preservation quality. Via comparing Table 1 and Table 2, one can see that MSSIM is above 0.65 even when the phase noise is very high (Data-I). Thus, the performance of the algorithm is quantitatively satisfactory.



Table 1. Number of residues (#), RMSEs and MSSIM of simulated data before filtering.







	

	
Data-I

	
Data-II

	
Data-III

	
Data-IV






	
#

	
76,502

	
57,680

	
33,340

	
7974




	
RMSEs

	
2.3814

	
1.7890

	
1.1673

	
0.4795




	
MSSIM

	
0.0209

	
0.0503

	
0.1111

	
0.2816










Table 2. Number of residues (#), RMSEs and MSSIM of simulated data after filtering with different wavelet bases.







	

	
Data-I

	
Data-II

	
Data-III

	
Data-IV






	
Filtering Methods

	
#

	
RMSEs

	
MSSIM

	
#

	
RMSEs

	
MSSIM

	
#

	
RMSEs

	
MSSIM

	
#

	
RMSEs

	
MSSIM




	
Haar

	
23

	
0.1115

	
0.6774

	
0

	
0.0222

	
0.8232

	
0

	
0.0094

	
0.8828

	
0

	
0.0037

	
0.9265




	
Db2

	
34

	
0.1273

	
0.6609

	
0

	
0.0249

	
0.8164

	
0

	
0.0102

	
0.8781

	
0

	
0.0040

	
0.9236




	
Db4

	
27

	
0.1138

	
0.6774

	
0

	
0.0231

	
0.8222

	
0

	
0.0096

	
0.8821

	
0

	
0.0038

	
0.9254




	
Db6

	
30

	
0.1186

	
0.6722

	
0

	
0.0241

	
0.8191

	
0

	
0.0099

	
0.8802

	
0

	
0.0039

	
0.9233




	
Bior1.3

	
19

	
0.1074

	
0.6828

	
0

	
0.0219

	
0.8244

	
0

	
0.0093

	
0.8834

	
0

	
0.0037

	
0.9261




	
Bior1.5

	
19

	
0.1059

	
0.6854

	
0

	
0.0219

	
0.8246

	
0

	
0.0092

	
0.8828

	
0

	
0.0037

	
0.9255











4.2. Acquired InSAR Data


The algorithm is further applied to three acquired datasets (Figure 5A1–C1). Data-V (Figure 5A1) and Data-VI (Figure 5B1) are from the airborne C-band SAR using repeat-pass interferometry. Fringes in Data-VI are not as clearly visible as those in Data-V. Data-VI is much noisier than Data-V. Coherence values in Data-V are high (Figure 5A2), but low in Data-VI (Figure 5B2). Data-VII is acquired by the SIR-C/X-SAR mission. Data-VII is selected because the variable fringe density (Figure 5C1) and low-coherence values (Figure 5C2) in mountainous areas.


Figure 5. Analysis of acquired interferometric data. Data-V (A1), Data-VI (B1) and Data-VII (C1) are acquired interferogram data. (A2–C2) are the coherence values of (A1–C1), respectively. (A3–C3) are filtered results using the proposed method.
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Interferogram data after filtering are shown in Figure 5A3–C3. When the coherence is high (Figure 5A2), the filtering performs well (Figure 5A3). The fringes are clearly delineated. The performance is satisfactory (Figure 5B3) even if the interferogram is very noisy (Figure 5B1) and the coherence is low (Figure 5B2). The fringes are better depicted (c.f. Figure 5B3 vs. Figure 5B1). The filtered result (Figure 5C3) is still acceptable although the fringes may be not very well delineated in low coherence area. For further analysis on noise reduction and structural preservation, number of residues and metric Q before and after filtering are given in Table 3 and Table 4. Via using our proposed method, the number of residues decreases significantly. Overall, the method performs satisfactorily for the interferogram data of variable fringe densities and coherence values.



Table 3. Number of residues (#) and metric Q of acquired dateset before filtering.







	

	
Data-V

	
Data-VI

	
Data-VII






	
#

	
42,863

	
54,673

	
51,599




	
metric Q

	
0.0964

	
0.0596

	
0.0445










Table 4. Number of residues (#) and metric Q of acquired dateset after filtering with different wavelet bases.







	

	
Data-V

	
Data-VI

	
Data-VII






	

	
#

	
Metric Q

	
#

	
Metric Q

	
#

	
Metric Q




	
Haar

	
219

	
7.6778

	
228

	
6.5505

	
313

	
6.0949




	
Db2

	
243

	
7.4972

	
222

	
6.5601

	
293

	
6.0813




	
Db4

	
307

	
7.0544

	
249

	
6.4012

	
315

	
6.0873




	
Db6

	
309

	
7.0296

	
233

	
6.4854

	
317

	
6.1029




	
Bior1.3

	
328

	
6.8942

	
266

	
6.3551

	
312

	
6.0660




	
Bior1.5

	
267

	
6.3835

	
304

	
6.0703

	
322

	
6.0596












5. Discussion


5.1. Comparison with Several Interferometric Phase Filters


Several interferometric phase filtering methods are compared. They are frequency domain method (Goldstein [7]), wavelet interferometric phase filter (WInPF) [11], nonlocal based methods (BM3D method [21], modified patch-based locally optimal Wiener (PLOW) method [28] and nonlocal filtering method based on HoSVD (NlHoSVD) [23]).



In simulate experiment, pixels are clustered by using LARK-based K-means cluster in PLOW method methods. In BM3D method, 3D transform is implemented by exploiting 2D bior1.5 wavelet transform for the inter-block and 1D ‘Haar’ wavelet for intra-blocks. In NLHoSVD method, similar patches are formed as a “order-3 tensor” and then HOSVD is applied to the order-3 tensor.



Results from the simulated data using the methods are presented in Figure 6. Quantitative assessment is tabulated in Table 5. Four points are summarized in the comparison study (Figure 4 vs. Figure 6, Table 2 vs. Table 5).


Figure 6. Filtered results of simulated Data-I, Data-II, Data-III and Data-IV. (A1–D1) are results using the Goldstein method; (A2–D2) are results by the WInPF; (A3–D3) are results using PLOW method; (A4–D4) are results using BM3D method; (A5–D5) are results by the nonlocal filtering method based on HoSVD.
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Table 5. Quantitative assessment of filtered results for simulated data using several widely-used filtering methods (# is the number of residues).







	

	
Data-I

	
Data-II

	
Data-III

	
Data-IV






	
Filtering Methods

	
#

	
RMSEs

	
MSSIM

	
#

	
RMSEs

	
MSSIM

	
#

	
RMSEs

	
MSSIM

	
#

	
RMSEs

	
MSSIM




	
Goldstein

	
43,145

	
1.5159

	
0.0299

	
4077

	
0.4093

	
0.1243

	
472

	
0.1917

	
0.4354

	
71

	
0.1601

	
0.6853




	
WInPF

	
3943

	
0.7911

	
0.2127

	
1081

	
0.2500

	
0.4385

	
143

	
0.0875

	
0.6338

	
23

	
0.0325

	
0.7972




	
PLOW

	
889

	
0.3277

	
0.4441

	
38

	
0.0635

	
0.6919

	
0

	
0.0167

	
0.8317

	
0

	
0.0083

	
0.8759




	
BM3D

	
1184

	
0.2420

	
0.4215

	
22

	
0.0606

	
0.6639

	
0

	
0.0135

	
0.8518

	
0

	
0.0044

	
0.9160




	
NlHoSVD

	
93

	
0.2089

	
0.6345

	
0

	
0.0374

	
0.8300

	
0

	
0.0152

	
0.8913

	
0

	
0.0052

	
0.9351










	(1)

	
The Goldstein method and the WInPF method show large numbers of errors in almost all the areas of phase image, especially in areas of low coherence value and high fringe density. The number of residues increases with the increase of noise level. The texture in the region of dense fringes is not well preserved.




	(2)

	
The noise suppressing performance of nonlocal based methods is superior than Goldstein and WInPF methods. According to PLOW based on LARK feature method, some phase noise still exists since one cluster may have different noise levels. Some fringes in Figure 6A3 are broken or merged with neighboring fringes.




	(3)

	
The filtering performance of BM3D is comparable to NLHoSVD when the coherence is relatively high. Its details preservation are probably weakened with the presence of strong noise or low signal-to-noise ratio in low-coherence areas. The performance of NlHoSVD is better than that of Goldstein, WInPF, BM3D or PLOW. However, the filter employs the simple hard thresholding method such that the nonlocal similarity might not be fully exploited.




	(4)

	
Dataset-by-dataset, the proposed method has the least number of residues and the smallest RMSE (Table 2 c.f. Table 5). In the simulation experiment of Data-II, Data-III and Data-IV, the numbers of residues are all zeros. In addition, the method overcomes the problems of the discontinuity and blurring, and suppresses the phase residues of grainy noise even in areas of low coherence and high fringe.







Similarly, the four methods are used to the acquired data. Pixels are clustered according to their coherence in modified patch-based locally optimal Wiener (PLOW) method [28]. As examples, filtered results for Data-VII are given in Figure 7. From the left to right, the results are from the Goldstein, WInPF, modified PLOW, BM3D and NlHoSVD. Close-up views of area within the white rectangle A and B are shown in the second and third row, respectively. The average coherence value of area A is 0.37 and area B is 0.27.The coherence of area B is very low (See the coherence Figure 5C2). Overall, all methods reduce noise. The Goldstein filter may introduce some artifacts in the areas of severe-phase variation and low coherence, especially in the regions affected by the grainy noise. As compared to results from the Goldstein method, both WInPF methods and nonlocal based methods improve the performance of noise reduction and effectively suppress the residues. The filtered results from WInPF method become worse in the area of low coherence with broken fringes and spike-like fringes (Figure 7B2,B3). However, the modified PLOW, BM3D and NlHoSVD methods significantly suppress noise even in the relatively low-coherence area A. In the very low coherence area B, filtering result of NlHoSVD method is better than the modified PLOW and BM3D methods. The close-up view of the area within the rectangle area A and B from the proposed method is shown in Figure 8. Comparing Figure 7 and Figure 8, we can see that our method in area B is more smooth than other methods. Clearly, the filtered result has the least amount of blurring and discontinuity in phase fringes. The proposed method has the smallest number of residues and the smallest RMSEs (Table 4 c.f. Table 6). In the aspect of detail preservation, metric Q is utilized as a quantitative measure of true phase image content. It can be seen that our proposed method can obtain the highest metric Q. From this point of view, our proposed method is superior to the other methods. The processing time for each method is also given in Table 6. The Goldstein method is the fastest one with 0.2 s, and the NlHoSVD is the slowest one with 665.8 s. The processing time of the proposed method is 546.0 s.


Figure 7. Results for acquired Data-VII after several phase filtering methods. (A1) Goldstein; (B1) WInPF; (C1) Modified FLOW; (D1) BM3D; (E1) NlHoSVD. (A2–E2) Close-up views within the rectangle areas A are shown in the second row, respectively. (A3–E3) Enlarged area B are shown in the third row, respectively.
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Figure 8. Results for acquired Data-VII after our proposed filtering methods with different wavelet bases. (A1) Haar; (B1) Db2; (C1) Db4; (D1) Bior1.3; (E1) Bior1.5. (A1–E1) Close-up views within the rectangle areas A are shown in the first row, respectively. (A2–E2) Enlarged area B are shown in the second row, respectively.
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Table 6. Performance comparison of different methods.







	
Filtering Methods

	
#

	
Metric Q

	
Computational Time






	
Interferogram of Data-VII

	
51,599

	
0.0445

	
-




	
Goldstein

	
21,043

	
1.7703

	
0.2




	
WInPF

	
3279

	
2.0228

	
0.4




	
Modified PLOW

	
2066

	
4.9825

	
650.8 s




	
BM3D

	
659

	
5.8600

	
303.1 s




	
NlHoSVD

	
346

	
5.8994

	
665.8 s




	
Our method

	
322

	
6.0596

	
546.0 s











5.2. Fast and Efficient Realization


Although the filtering result of our method is convincing, the computational efficiency is intuitively low because it needs pixel-wise window group matching in which the Euclidian distance between similar patches and the weights in the image is computed. For a [image: there is no content] phase image with [image: there is no content] searching window and [image: there is no content] patch size, the complexity of the block matching is [image: there is no content] by setting [image: there is no content] pixel steps between neighboring processed patches. However, the computational complexity can be reduced by restricting the searching size of similar window, steps and patch size. Once the window size and patch size is chosen, further expedients are utilized to improve the computational efficiency in the following:



The Summed Squares Image (SSI) scheme and Fast Fourier Transform (FFT) are proposed [31] to speed up the calculation of similarity among blocks. The Euclidian distance between image blocks is transformed to computation of convolution and summation of squares. In particular, to calculate the distance d between patch [image: there is no content] and [image: there is no content], we assume the patch size is [image: there is no content], then the distance is


d=∥N1-N2∥2=∑x∑y(S1(x,y)-S2(x,y))2=∑x=12s+1∑y=12s+1(S12(x,y))+∑x=12s+1∑y=12s+1(S22(x,y))-2∑x=12s+1∑y=12s+1S1(x,y)S2(x,y)=∑x=12s+1∑y=12s+1(S12(x,y))+∑x=12s+1∑y=12s+1(S22(x,y))-2∑x=12s+1∑y=12s+1S1(x,y)S3(2s+1-x+1,2s+1-y+1)=∑x=12s+1∑y=12s+1(S12(x,y))+∑x=12s+1∑y=12s+1(S22(x,y))-2S1(x,y)*S3(m,n)



(26)




where [image: there is no content] and [image: there is no content] are the corresponding pixels in image patch [image: there is no content] and [image: there is no content], respectively. [image: there is no content] is the mirrored image of [image: there is no content] with [image: there is no content] and [image: there is no content] (Figure 9).


Figure 9. A mirrored image.
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The first and second terms in Equation (26) need to calculate the sum of squares [31] for any block. The sum of squares for each pixel in any rectangles of the image can be got using SSI. For example in Figure 10, the sum of squares in rectangle A can be expressed as


[image: there is no content]



(27)






Figure 10. Using SSI to compute the summed squared pixels in rectangle D.
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To calculate the sum of squares in rectangle D, only 3 addition operations are required,


KD=SA⋃B⋃C⋃D+SA-SA⋃C-SA⋃B=K(x2,y2)+K(x1,y1)-K(x1,y2)-K(x2,y1)



(28)







With the SSI, the sum of squares for each pixel in any rectangle can be derived only by additional operations. Since each pixel in the original image is only processed once, the computational complexity for computing the SSI is [image: there is no content]. The third term is calculated by convolution with multiplifications under the FFT. In order to accelerate the algorithm, convolution and summation of squares are utilized in calculating [image: there is no content]-distance.



In our experiments, convolution and summation of squares are utilized in calculating Euclidian distance. The processing time of accelerated method is 176.6 s. The computational time is reduced and accelerated 3.1 times with respect to the original method.





6. Conclusions


In order to preserve fringe details in InSAR denoising processing, especially when dealing with a low-coherence and high-noise area, we develop an InSAR phase filtering algorithm in wavelet domain that utilizes the local sparsity of wavelet coefficients and nonlocal similarity of grouped blocks. In the algorithm, the double-[image: there is no content] norm restriction is used, which enforces the local and nonlocal sparsity constraints by efficient shrinkage operators. The nonlocal similar blocks of interferogram are clustered by block matching, and then the overlapped blocks are shrunk in 2D wavelet domain by the nonlocal wavelet shrinkage function. The filter combines the intra- and inter-blocks correlation. Thus, the finest details shared by the grouped blocks and the essential unique features of each individual block are revealed.



Four sets of simulated phase data and three sets of acquired data are used to assess the performance of the proposed method. The simulated InSAR datasets are with high-dense fringes and different level of noise. Results demonstrate the algorithm’s ability to filter noise and to preserve fringe texture even in areas of low coherence and high fringe density. Three acquired datasets with variable fringe densities are analyzed. The outcomes are satisfactory.



For comparison, four widely-used interferometric phase filtering methods are applied to the datasets. Qualitative assessments show that the proposed method outperforms the state-of-the-art with lower root-mean-square error, and less noisy fringes.
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Appendix A. How to Solve l1 − l2 Optimization Problem


In Section 2.2, the objective function of the optimization problem is


f(αi,βi)=12∥yi-T2D-1αi∥22+λ1∥αi∥1+λ2∥αi-βi∥1



(A1)







Iterative-shrinkage algorithm [26] is utilized to solve this [image: there is no content] optimization. According to [26], the following surrogate function is introduced


[image: there is no content]



(A2)







To ensure the function is strictly convex, its Hessian need to be positive: [image: there is no content]. So [image: there is no content] (The maximal eigenvalue of the matrix [image: there is no content]). After adding Equation (A2) to Equation (A1), then the surrogate objective function becomes


f˜(αi,βi,α0)=12∥yi-T2D-1αi∥22+λ1∥αi∥1+λ2∥αi-βi∥1+c2∥αi-α0∥22-12∥T2D-1αi-T2D-1α0∥22



(A3)







Reorganizing Equation (A3), we can obtain


f˜(αi,βi,α0)=lconst+λ1∥αi∥1+λ2∥αi-βi∥1+c2∥αi-v∥1



(A4)




where [image: there is no content]. Then, we minimize the scalar function


[image: there is no content]



(A5)




with respect to t, and obtain


[image: there is no content]



(A6)




where [image: there is no content], [image: there is no content], b is the scalar component of [image: there is no content]. Therefore, the iterative shrinkage solution is


[image: there is no content]



(A7)




where [image: there is no content].
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