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Abstract: In Arctic regions, a major concern is the release of carbon from melting permafrost that could
greatly exceed current human carbon emissions. Arctic rivers drain these organic-rich watersheds
(Ob, Lena, Yenisei, Mackenzie, Yukon) but field measurements at the outlets of these great Arctic
rivers are constrained by limited accessibility of sampling sites. In particular, the highest dissolved
organic carbon (DOC) fluxes are observed throughout the ice breakup period that occurs over a
short two to three-week period in late May or early June during the snowmelt-generated peak
flow. The colored fraction of dissolved organic carbon (DOC) which absorbs UV and visible light is
designed as chromophoric dissolved organic matter (CDOM). It is highly correlated to DOC in large
arctic rivers and streams, allowing for remote sensing to monitor DOC concentrations from satellite
imagery. High temporal and spatial resolutions remote sensing tools are highly relevant for the study
of DOC fluxes in a large Arctic river. The high temporal resolution allows for correctly assessing
this highly dynamic process, especially the spring freshet event (a few weeks in May). The high
spatial resolution allows for assessing the spatial variability within the stream and quantifying DOC
transfer during the ice break period when the access to the river is almost impossible. In this study,
we develop a CDOM retrieval algorithm at a high spatial and a high temporal resolution in the Yenisei
River. We used extensive DOC and DOM spectral absorbance datasets from 2014 and 2015. Twelve
SPOT5 (Take5) and Landsat 8 (OLI) images from 2014 and 2015 were examined for this investigation.
Relationships between CDOM and spectral variables were explored using linear models (LM). Results
demonstrated the capacity of a CDOM algorithm retrieval to monitor DOC fluxes in the Yenisei River
during a whole open water season with a special focus on the peak flow period. Overall, future
Sentinel2/Landsat8 synergies are promising to monitor DOC fluxes in Arctic rivers and advance our
understanding of the Earth’s carbon cycle.
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1. Introduction

Recent observations and climate model projections have identified the Arctic terrestrial ecosystem
as a key area for climate change issues. At the global scale, the highest changes in temperatures are
projected to occur at high latitudes, with an 8 ◦C increase expected by the end of the 21th century [1].
Satellite observations have shown a rapid reduction in sea ice, as well as a significant decrease in spring
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snow-cover in Arctic Regions [2]. Changes in air temperature and snow cover promote widespread
permafrost degradation [3] and alterations in related biogeochemical circuits [4].

A major concern is the release of carbon from melting permafrost that could greatly exceed current
human carbon emissions [5]. Permafrost covers 24% of the exposed land surface area in Arctic regions,
and permafrost soils contain half of the organic carbon stored in soils [6]. Arctic rivers drain these
organic-rich watersheds (Ob, Lena, Yenisei, Mackenzie, Yukon) [7,8]. Despite their potential impact on
the Arctic Ocean and the global climate [9–11], dissolved organic carbon (DOC) fluxes are less studied
than their counterparts in lower latitudes, mainly due to remoteness or logistical constraints.

Field measurements at the outlets of the great Arctic rivers are constrained by limited accessibility
of sampling sites. In particular, the highest DOC fluxes are observed throughout the ice breakup
period; this occurs over a short two to three-week period in late May or early June during the
snowmelt-generated peak flow (up to 80% of the annual flow [9,12–14], when sampling is extremely
difficult. As a consequence, the DOC fluxes to the Arctic Ocean are consistently undersampled. Passive
optical remote sensing has been identified as a relevant source to supplement the spatial and temporal
DOC concentration field measurements. Indeed, chromophoric dissolved organic matter (CDOM)
(coloured fraction of dissolved organic matter (DOM)) may be highly correlated to DOC and is already
used as a proxy to monitor DOC concentrations in oceans [15,16], lakes [17–20], or rivers [21,22]. Most
of the CDOM absorbance occurs between 200 and 440 nm and decreases exponentially with increasing
wavelength. The typical optical proxy for dissolved organic matter is the absorbance at 440 nm [23].
Hence, in a spaceborne multispectral imager, the influence of CDOM absorption is expected to be the
largest in the blue band. However, due to the potentially important atmospheric correction in this part
of the spectrum, its use remains problematic [19]. Recently, CDOM has been explored to quantify DOC
concentrations in the Arctic Ocean [20,24] and great Arctic rivers [25,26].

Numerous algorithms have been developed to retrieve CDOM values from remotely-sensed
imagery (for a review, see [23,27,28]). Among these algorithms, the most currently used are
empirical models [19,25,29], semi-analytical models [20,26,30], and matrix inversion models [31,32].
Semi-analytical models require both empirical and bio-optical data (for example, the above and
in-water upwelling radiance) to describe relationships between water constituents and water surface
reflectance. The matrix inversion models are based on a similar scheme, but also require prior
knowledge of the water constituents, such as absorption coefficients or absorption slopes [28].
These parameters are not always available, which make these models complex or even impossible to
calibrate. Hence, empirical algorithms are more frequently used. The main drawbacks of empirical
models are: (i) they require a large sample size, which may be complex in Arctic regions mainly due to
logistical constraints; and (ii) they are very sensitive to local environmental conditions and, therefore,
not applicable to other sites without additional field data.

In addition to the sample size and hydrological conditions, some parameters may influence the
response of the CDOM/DOC retrieval algorithm.

• The spectral properties of the platform/instrument can significantly impact outputs of the CDOM
algorithms. Zhu et al. [28] showed that CDOM algorithms applied to freshwater ecosystems
with high total suspended solids (TSS) content could be significantly improved by selecting
bands with wavelengths longer than those currently used for the ocean environment. Band
combinations enable exploration of the non-linear or linear relationships between the CDOM
and the band reflectance [19,33,34]. Band ratios are often used as model variables and provide
good results [19,33,34]. Nonetheless, band multiplications (known as the “interaction term” in
exploratory statistical analyses [35]) are seldom used within models when it could be a relevant
technique to evaluate the combined effects of spectral bands on the levels of CDOM or DOC.

• High TSS values are likely to mask the CDOM/water reflectance relationship. Unlike CDOM,
abundant sediment particles strongly reflect visible light [36]. Hence, the expected statistical
relationship between CDOM and water reflectance can be inversed (negative to positive),
indicating that the CDOM signal is “masked” by the TSS signal [28].
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• A time lag between field sample and satellite acquisition can weaken the correlation between
remotely sensed data and field data [19]. Strictly sub-satellite in situ DOC observations are
complicated; hence, published studies are based on a sparse temporal sampling, sometimes with
a time lag of up to 13 days [25].

• Most of atmospheric correction algorithms use a variation of the “black pixel” assumption.
The premise of this assumption is that the water-leaving reflectance in the NIR is negligible since
the absorption coefficient for water strongly increases in this part of the spectrum. However this
assumption does not hold in turbid waters or in waters with a high content of optically active
particles like CDOM. In addition, the blue wavelengths currently used to detect CDOM being far
away from NIR bands, aerosol extrapolation is often imprecise causing atmospheric correction
failures in these short wavelengths [37].

Low-resolution satellite sensors, such as MODIS, SeaWiFS, or MERIS, have been successfully
used to map CDOM and DOC in oceans [30,38]. These sensors benefit from daily or weekly resolution,
which generally implies more accurate atmospheric corrections. Nonetheless, their spatial resolution is
too low to evaluate the CDOM and DOC estimations in Arctic rivers. In these ecosystems, high spatial
resolution satellite images are required for the following reasons:

• A high spatial resolution satellite image allows for evaluation of the spatial heterogeneity within
the stream, which cannot be determined by in situ sampling. Hence, these data enable better
evaluation of the uncertainties in carbon flux calculations derived from field sampling.

• High spatial resolution allows for the characterization of river composition during the ice break
period, when river sampling is nearly impossible. Evaluating the CDOM/DOC at the start of
the freshet period requires extracting the water reflectance values between floating ice-breaks of
decametric size, which is not possible at low resolution.

High-resolution sensors, such as Landsat Thematic Mapper (TM), Advanced Land Imager (ALI),
or Operational Land Imager (OLI), have appropriate spatial resolution; however, their repeat orbit
cycle of ~16 days is an important limitation of monitoring DOC dynamics in the freshet period when
dramatic changes in DOC concentrations are observed within days. The Sentinel 2 mission will provide
high-resolution multispectral images with a temporal resolution of five days that are well suited for
DOC monitoring in Arctic rivers. Moreover, Sentinel 2/Landsat 8 synergies will increase the probability
of cloud-free images. Meanwhile, ESA proposed the Take 5 experiments before de-orbiting the SPOT4
and SPOT5 satellites. The objective was to simulate Sentinel 2 data for a short-time period (five months)
and to ensure that appropriate remote sensing methods were developed by the research community.

This study aimed to evaluate the potential of high spatio-temporal optical resolution remote
sensing to retrieve DOC concentrations in the Yenisei River. We sought to develop a model at a high
spatial and a high temporal resolution to achieve the following: (1) evaluate the DOC dynamics in
the open-water season, with a special focus on the freshet period (a few weeks into May and June);
and (2) evaluate the spatial heterogeneity of the DOC in the river stream. We used extensive DOC
and DOM spectral absorbance datasets from 2014 and 2015. Twelve SPOT5 (Take5) and Landsat 8
(OLI) images from 2014 and 2015 were examined for this investigation. The specific objectives were:
(1) find an optimal spectral band configuration to calibrate a CDOM empirical algorithm in the Yenisei
River based on SPOT5 and Landsat 8 images; (2) evaluate the predictive performance of the developed
model to map the CDOM and DOC in the Yenisei River and on other large Arctic river systems; and
(3) discuss the potential use of high spatio-temporal remote sensing data to monitor DOC fluxes in
Arctic rivers.

2. Data and Methods

2.1. Study Site

The Yenisei River is the largest Arctic river in terms of annual runoff (630 km3 [39]) and basin
area (2.58 m·km2 [40]) as well as the largest contributor of carbon and nitrogen transported to the
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Arctic Ocean [13,28]. The basin area at the basin outlet in Igarka (67◦28′19′ ′N, 86◦33′31′ ′E, Figure 1)
is 2.44 million km2, of which 32% is underlain by continuous permafrost, 12% is discontinuous
permafrost, and 45% is sporadic isolated permafrost [41]. The high flow period lasts from mid-May to
mid-July, with peak daily discharges occurring in two weeks in late May and early June and exceeding
180,000 m3·s−1. The streamflow is heavily altered by the presence of large dams on the main channel
of the Yenisei and its largest tributary, the Angara [42]. Although organic carbon fluxes of the Yenisei
have been widely covered in many publications [13,14,43–45], an understanding of the DOC temporal
variations is lacking.
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Figure 1. Map showing the sampling site of DOC and CDOM in the Yenisei River. In 2015, SPOT5 
Take5 acquisitions were synchronous with field measurements. Water-leaving reflectances at the 
sampling location were extracted from an extraction mask. 

2.2. Sample Collection and Treatment 

Field campaigns were conducted in Igarka, northern Siberia, ~300 km from the basin’s outlet. 
These campaigns were conducted for two years, from February to September in 2014 and 2015, with 
the highest temporal resolution during the open-water season (approximately every eight days from 
May to September), including the freshet period (a few weeks in May and June). Overall, 28 field 
samples were available in 2014 and 41 in 2015 and were carried out always at the same point in the 
middle of the river to avoid contamination from the underlying soil and vegetation near the reaches 
(Figure 1, e.g., 67°26.91′′N ± 00°01′′00–86°25, 58′′E ± 00°01′′00). In 2015, the sampling frequency was 
increased, and measurements were synchronized with SPOT5 Take5 acquisitions (i.e., on the same 
day in the morning) every five days from 9 April 2015 to 6 September 2015. From mid-May to the 
start of July, the field sampling frequency was almost daily. 

These samples have been analysed for a number of biogeochemical parameters; here, we focus 
on the DOC concentrations (mg/L), CDOM (m−1), and TSS concentrations (mg/L). 

DOC was analysed on filtered samples (GF/F membrane) after acidification (HCl) to pH 2 using 
a TOC-V CSH analyser (Shimadzu, Japan). The UV absorption spectra of the filtered samples were 
measured with a spectrophotometer (Secoman Uvi light XT5) in a 1 cm quartz cell from 190 to 700 
nm with a 1 nm resolution. The baseline was determined with ultra-pure water. The CDOM values 
were retrieved at 440 nm [23]. The values were converted into absorption coefficients (in units of m−1) 
using Equation (1): 2.303 ⁄  (1) 

where  is the absorbance and  the cell path length in meters. 

Figure 1. Map showing the sampling site of DOC and CDOM in the Yenisei River. In 2015, SPOT5 Take5
acquisitions were synchronous with field measurements. Water-leaving reflectances at the sampling
location were extracted from an extraction mask.

2.2. Sample Collection and Treatment

Field campaigns were conducted in Igarka, northern Siberia, ~300 km from the basin’s outlet.
These campaigns were conducted for two years, from February to September in 2014 and 2015, with
the highest temporal resolution during the open-water season (approximately every eight days from
May to September), including the freshet period (a few weeks in May and June). Overall, 28 field
samples were available in 2014 and 41 in 2015 and were carried out always at the same point in the
middle of the river to avoid contamination from the underlying soil and vegetation near the reaches
(Figure 1, e.g., 67◦26.91′ ′N ± 00◦01′ ′00–86◦25, 58′ ′E ± 00◦01′ ′00). In 2015, the sampling frequency was
increased, and measurements were synchronized with SPOT5 Take5 acquisitions (i.e., on the same day
in the morning) every five days from 9 April 2015 to 6 September 2015. From mid-May to the start of
July, the field sampling frequency was almost daily.

These samples have been analysed for a number of biogeochemical parameters; here, we focus on
the DOC concentrations (mg/L), CDOM (m−1), and TSS concentrations (mg/L).

DOC was analysed on filtered samples (GF/F membrane) after acidification (HCl) to pH 2 using
a TOC-V CSH analyser (Shimadzu, Japan). The UV absorption spectra of the filtered samples were
measured with a spectrophotometer (Secoman Uvi light XT5) in a 1 cm quartz cell from 190 to 700 nm
with a 1 nm resolution. The baseline was determined with ultra-pure water. The CDOM values were
retrieved at 440 nm [23]. The values were converted into absorption coefficients (in units of m−1) using
Equation (1):

a (λ) = 2.303A (λ) /l (1)

where a (λ) is the absorbance and l the cell path length in meters.
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2.3. Extraction of Water-Leaving Reflectance

The study area was selected for the SPOT5 Take5 (ST5) mission. Twenty-five ST5 images were
acquired from 9 April 2015 to 6 September 2015 at 10 m resolution and a return interval of five
days. Nine images were acquired during the ice-period and were, therefore, left unused (e.g., from
9 April 2015 to 19 May 2015). Six images were cloudy, and four images were contaminated by haze,
leading to biased reflectance values. Finally, only six ST5 scenes were retained for this analysis. We also
used Landsat 8 (OLI, e.g., L8O) archives (30 m, 16 days) for 2014 and for adding scenes in 2015. Overall,
12 satellite images were selected (Table 1). The largest difference between sampling data and satellite
acquisition date was four days.

Table 1. List of the available SPOT5 Take 5 and Landsat 8 scenes to calibrate an empirical CDOM
retrieval algorithm in the Yenisei River during the open-water-season in 2014 and 2015.

Satellite Sensor Acquisition Date Nearest Sampling Date of DOC

Landsat 8 OLI 22 May 2015 22 May 2015
SPOT5 HRV (Take5) 3 June 2015 3 June 2015

Landsat 8 OLI 11 June 2014 13 June 2014
SPOT5 HRV (Take5) 13 June 2015 13 June 2015
SPOT5 HRV (Take5) 18 June 2015 18 June 2015
SPOT5 HRV (Take5) 23 June 2015 24 June 2015

Landsat 8 OLI 13 July 2014 11 July 2014
SPOT5 HRV (Take5) 13 July 2015 13 July 2015
SPOT5 HRV (Take5) 18 July 2015 18 July 2015

Landsat 8 OLI 22 July 2014 23 July 2014
Landsat 8 OLI 8 August 2015 12 August 2015
Landsat 8 OLI 8 September 2014 9 September 2014

The remotely sensed data were atmospherically corrected and converted into surface reflectance
values using the MACCS processor for ST5 scenes [46] and the L8SR algorithm for L8O scenes [47].
MACCS determines the aerosol content, the cloud and cloud shadows based on a multitemporal
algorithm, while L8SR is a single-date algorithm. As ST5 does not acquire in the blue channel, we only
used two spectral bands: green and red wavelengths (e.g., 500–590 nm and 610–680 nm, respectively).

A mask was then manually drawn using GIS software to define the image region where the water
reflectance values were to be extracted. This mask had a 15 km north-south extent. Its limits were
drawn to 300 m from the riverbanks to avoid contamination by the bank vegetation and the river bed
reflectance in shallow water (Figure 1). Finally, we only kept pixels with surface reflectance values
below 0.01 to compute the average reflectance in the mask for each band. The goal was to remove
pixels affected by sun glint effect or residual ice breaks that were not filtered out by the MACCS and
L8SR processors.

2.4. CDOM Algorithm Development

Field-collected CDOM (a440, m−1, N = 69) measurements were used as the dependent variable in a
linear regression against the DOC measurements (mg/L) to estimate the relationships of CDOM/DOC
in the Yenisei River.

To find the optimal CDOM retrieval algorithm, we considered the relationships already identified
in lakes, oceans, or rivers [19,25]. Kutser et al. [19] demonstrated the high performance of a
green/red ratio to retrieve CDOM (a420) in 39 lakes in Finland and Southern Sweden (r2 > 0.73).
This algorithm was also successfully applied to different datasets [23,28] (r2 > 0.8) with high CDOM
values (a440 = 3.4 m−1). Given that SPOT5 and Landsat 8 have these spectral bands, we hypothesized
that it could be a relevant model to retrieve the CDOM in the Yenisei River. Griffin et al. [25] also
reported an efficient CDOM retrieval algorithm based on the combination of red and green/blue ratios
in the Arctic river Kolyma. A similar structure was tested to evaluate the benefits of incorporating an
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additional band to a band combination on model performances. Finally, models incorporating band
multiplication (interaction term) were tested to estimate their capability to retrieve the CDOM.

2.5. Statistical Analyses

All statistical analyses were performed using R 2.3.0.1 software (R Development Core Team 2014,
Vienna, Austria) and the “vegan” R package. The relationships between CDOM and the explanatory
variables were explored using linear models (LM). The goodness-of-fit was quantified by examining
the amount of explained variance (r2), and the root mean square error (RMSE) was also assessed to
evaluate the predictive performances of the models.

Overall, seven linear models were tested (Table 2). First, the relationships between CDOM and
green or/and red bands were explored Models (1)–(3); second, we focused on models incorporating
spectral band combinations. We first evaluated the capacity of the model proposed by Kutser et al. [19]
to retrieve CDOM in the Yenisei River, e.g., a green/red ratio Model (4). Model (5) also aimed to
analyse the statistical relationships between a green-red combination and the CDOM but with an
interaction term, e.g., a green: red interaction. Subsequently, the structure of the model developed
by Griffin et al. [25] was investigated. While a first model based on green and green/red ratios was
performed Model (6), a second model was built on green and a green: red interaction to retrieve the
CDOM in the Yenisei River Model (7). The best statistical model was used to retrieve CDOM and the
derived equation from the linear regression between CDOM and DOC was then applied to retrieve
DOC concentrations (Figure 2).

Table 2. Linear regressions tested to retrieve CDOM from green and/or red wavelengths in the
Yenisei River.

Explanatory Variables Description

Model (1) with green
Model form: E(y) = β0 + β1
Green β1 Green band

Model (2) with red
Model form: E(y) = β10 + β11
Red β11 Red band

Model (3) with green and red
Model form: E(y) = β20 + β21 + β22
Green β21 Green band
Red β22 Red band

Model (4) with a green/red ratio
Model form: E(y) = β30 + β31
Green/Red β31 Ratio term between the Green band and the Red band

Model (5) with an green: red interaction
Model form: E(y) = β40 + β41
Green: Red β41 Interaction term between the Green band and the Red band

Model (6) with green and a green/red ratio
Model form: E(y) = β50 + β51 + β52
Green β51 Green band
Green/Red β52 Ratio term between the Green band and the Red band

Model (7) with green and green: red interaction
Model form: E(y) = β60 + β61 + β62
Green β61 Green
Green: Red β62 Interaction term between the Green band and the Red band
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Figure 2. Methodological flowchart illustrating the general procedure to retrieve DOC concentrations.
The Step 1 corresponds to the computation of the DOC model retrieval and the Step 2 indicates the
procedure used to predict CDOM values. The Step 3 shows how the DOC model retrieval is finally
used to predict DOC concentrations.

2.6. Maps Production

Since no additional exploitable scenes were available in 2014 and 2015 in the study site, DOC maps
were produced according to a cross-validation principle (leave-one-out method). In the leave-one-out
cross validation, only a single observation is selected for validation (e.g., the date for which the map
was derived), and all the remaining observations are used as training data. This process is then
repeated such that each observation in the sample is used once as the validation data.

In our case, this procedure was used to predict DOC concentrations at each acquisition date.
The single observation selected for validation corresponds to the satellite scene for which the map was
derived. Then, we repeated the process until one map was predicted for each date available in our
sample set (i.e., 12 times). The maps were produced on the maximum available river channel extent
in the ST5 scenes (60 km north-south). The dates were also reorganized according to a theoretical
open-water season (i.e., combined 2014 and 2015) to illustrate the potential of high-temporal remote
sensing data to map seasonal DOC fluxes.

3. Results

A summary of the laboratory measurements is given in Table 3. The DOC concentrations ranged
between 5.03 mg/L and 15.58 mg/L (mean = 8.30, std = 2.93, N = 12) from May to September
(i.e., combined 2014 and 2015). The CDOM range was from 1.26 to 10.43 m−1 (mean = 4.93 m−1,
std = 2.62−1, N = 12). As expected, the highest DOC and CDOM values were observed in May
and June (mean = 10.24 mg/L, std = 2.80, N = 6), e.g., during the peak flow period. The TSS
concentrations were found to vary between 2.63 and 19.90 mg/L and were strongly correlated with
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DOC measurements (r2 = 0.74, p < 0.001, N = 11), indicating that high DOC concentrations occur
during high TSS concentrations.

Table 3. DOC concentrations, CDOM absorption, TSS concentrations, and surface reflectances (SR) at
the field sample location.

Sampling Date Gap *
(in Days)

DOC
(mg/L)

a440
(m−1)

TSS
(mg/L) SRblue SRgreen SRred

22 May 2015 0 15.58 10.43 19.90 0.03705 0.03832 0.01526
3 June 2015 0 10.72 7.23 17.57 0.01793 0.02628 0.02260

13 June 2014 2 9.63 7.71 8.32 0.03576 0.03303 0.01721
13 June 2015 0 9.43 5.76 17.75 0.01913 0.02260 0.02536
18 June 2015 0 8.00 3.96 10.97 0.01983 0.02245 0.03267
24 June 2015 1 8.13 6.17 11.90 0.02354 0.02982 0.03519
11 July 2014 2 6.78 4.42 6.73 0.01761 0.01724 0.01489
13 July 2015 0 7.11 3.43 3.23 0.02418 0.02586 0.03697
18 July 2015 0 8.47 2.24 - 0.02337 0.02199 0.03054
23 July 2014 1 5.03 2.72 2.63 0.02258 0.01857 0.01504

12 August 2015 4 4.53 1.27 3.50 0.03096 0.02352 0.01782
9 September 2014 1 6.26 3.87 6.17 0.01929 0.01739 0.00640

* Gap in days between the satellite acquisition date and the nearest sampling date of DOC.

The CDOM was strongly correlated with the DOC (DOC = 2.13 + 1.24 × (CDOM), r2 = 0.84,
p < 0.001). It can, therefore, be used as a proxy to retrieve the DOC concentrations in the Yenisei River
(Figure 3). The relationship was computed using all available field samples in 2014 and 2015 (N = 69).
This strengthened the statistical relationship CDOM/DOC and improved the DOC retrieval after
computation of an empirical model.
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Figure 3. Relationship between DOC and CDOM in the Yenisei River (DOC = 2.13 + 1.24 × (CDOM),
R2 = 0.84, p-value < 0.001). 69 field observations were used from February 2014–September 2014 and
April 2015–September 2015.

The model outputs listed in Table 4 show that the best-performing model was based on the
green band and a green-red band interaction Model (7). The model exhibited both a high explanatory
capability and a high predictive power (r2 = 0.76, RMSE = 1.21). The second best-performing model
was built on a similar scheme, but a green-red ratio was included Model (7). Nonetheless, we observed
moderate statistical performances from this model (r2 = 0.54, RMSE = 1.68). In addition, the algorithm
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proposed by [19] did not achieve the expected results (Model (4), r2 = 0.25, RMSE = 2.17), and its
counterpart (e.g., with an interaction term, Model (5)) did not provide a satisfying performance
(r2 = 0.19, RMSE = 2.25). Finally, models based on green or red bands Models (1) and (2) expressed
poor performances (r2 < 0.22, RMSE > 2). The joint incorporation of two spectral bands into a linear
model showed better results (Model (3), r2 = 0.44, RMSE = 1.86) but was still not sufficient to retrieve
the CDOM in our study site. Indeed, the effects of independent variables in a multiple linear regression
model depend on other variables included in the model. Consequently, these results show that the
effects of green band on CDOM exclusively depend on the presence of the green: red interaction.
Without it, green band cannot explain a significant part of the CDOM variance.

Table 4. Results of linear regression explaining CDOM at 440 nm (m−1). Slashes are used to express
spectral bands ratio, whereas semicolons are used to express spectral bands interaction.

Model Dataset Explanatory Variables Estimates p-Value R2 RMSE

Model (1) Yenisei Intercept 3.703 n.s 0.02 2.47
Green 50.7 n.s

Model (2) Yenisei Intercept 0.917 n.s 0.22 2.20
Red 160.58 n.s

Model (3) Yenisei Intercept 0.8719 n.s 0.44 1.86
Green −269.2196
Red 423.4267 *

Model (4) Yenisei Intercept 11.022 ** 0.25 2.17
Green/Red −6.308 n.s

Model (5) Yenisei Intercept 3.105 * 0.19 2.25
Green: Red 2764.630 n.s

Model (6) Yenisei Intercept 10.819 ** 0.54 1.68
Green 195.221 *

Green/Red −11.004 *
Model (7) Yenisei Intercept 10.606 *** 0.76 1.21

Green −681.477 **
Green: Red 16410.925 ***

Model (8) Kolyma 1 Intercept 5.823 *** 0.41 3.24
Green −128.390 *

Green: Red 1602.988 *
1 Dataset published in [23]; *** p-value < 0.001; ** p-value < 0.01; * p-value < 0.05, n.s = non-significant.

In view of the previous results, Model (7) was selected to retrieve the CDOM in the Yenisei River.
A significant negative relationship (−681.477, p < 0.01) between the CDOM and green reflectance values
reflects the CDOM absorption of visible light at shorter wavelengths. The green-red interaction had a
significant positive effect (16,410.925, p < 0.001) on the CDOM, suggesting that the effect of green band
must be interpreted in relation to the red band. The distribution of TSS concentrations was examined
under the assumption that they strongly reflect visible light at longer wavelength. The TSS histograms
(Figure 4) tended to exhibit two distinct groups of samples with different concentration levels: one
with less than 15 mg/L (N = 9) and the other with more than 15 mg/L (N = 3). A negative relationship
was observed between the green band and the CDOM when only samples with TSS < 15 mg/L were
considered (Figure 5). When the TSS concentrations were low or moderate, the increase of the green
reflectance values led to a decrease of the CDOM, as expected. In a situation of high TSS concentrations,
increased green reflectance values did not lead to decreased CDOM.
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Figure 5. Statistical relationships between surface reflectance (SR) values in red and green bands and
CDOM at 440 nm (m−1) for the two groups of field sample observed from the histogram of frequency
(Figure 4). For low or moderate TSS concentrations (TSS < 15 mg/L), the surface reflectance values in
green are negatively correlated to CDOM whereas for high concentrations of TSS (TSS > 15 mg/L),
the surface reflectance values are positively correlated to CDOM. In the red band, the surface reflectance
values are positively correlated to CDOM for the two groups of field sample.

The DOC maps produced from equations derived in Figure 6a,b) showed an expected trend
evolution from 22 May 2015 to 8 September, with a linear decrease in colour intensity (Figure 7).
The highest values of predicted DOC, e.g., between 14 and 20 mg/L, were mapped during May
and June, whereas lower DOC patterns (e.g., <7 mg/L) were predicted as early as the end of July
(22 July 2014). At each date, the spatial variability of the predicted DOC in the river channel was
moderate (from 0.87 mg/L to 2.22 mg/L). Nonetheless, more intense predicted DOC variations were
evident from the upper to the lower part of the meander. Sharp spatial variations in the predicted
DOC were also visible near the cloud mask boundaries (13 July and 18 July).
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Figure 6. (a) Relationship between predicted CDOM at 440 nm (m−1) and measured CDOM at
440 nm (m−1) (CDOMpredicted = 1.15 + 0.76 × CDOMmeasured, R2 = 0.76, p-value < 0.001, RMSE = 1.2).
(b) Relationship between predicted DOC in mg/L and measured DOC in mg/L (DOCpredicted = 0.02
+ 0.99 × DOCmeasured, R2 = 0.79, p-value < 0.001, RMSE = 1.4).
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Figure 7. Mapped DOC during a theoretical open-water season. The best CDOM retrieval algorithm
Model (6) was applied on a broader extent (available maximum extent on SPOT5 scenes) to produce
estimates of DOC. The maps were produced by a cross-validation method (leave-one-out) and
reorganized following a seasonal chronological order, e.g., from 22 May to 8 September (by merging
the two years).

4. Discussion

4.1. CDOM and DOC Estimation in Arctic Rivers

Our results demonstrate the capacity of a CDOM algorithm retrieval to estimate the DOC
concentrations in the Yenisei River. The CDOM was predicted with an error of 1.2 m−1, and the
DOC was predicted with an error of 1.4 mg/L. These findings corroborate the conclusions from
previous studies, indicating that CDOM is strongly correlated with DOC in Arctic rivers and constitutes
an interesting proxy to supplement and extrapolate DOC measurements in time and space [40,41].
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Moreover, the study conducted by [26] recently showed the capability of in situ optical techniques
to accurately estimate the amount and timing of terrigenous DOC concentrations in six major Arctic
rivers. According to this study, simple absorbance proxies were able to trace dissolved lignin phenol
concentrations and seasonal changes of DOM composition in all watersheds studied. Among them,
Yenisei expressed the lowest correlation between DOC and CDOM measurements (r2 = 0.66, p < 0.001).
Therefore, similar applications to the present study could be potentially tested on other Arctic rivers to
improve our understanding of the DOC fluxes from all rivers that flow into the Arctic Ocean.

4.2. Spectral Band Configuration and CDOM Algorithms in Arctic Rivers

The model developed in this study showed better performances than all the other models tested.
The models based on one band (e.g., green or red without any combinations; Models (1) and (2)) or two
bands were not successful. This demonstrates that linking only one of the two bands with the CDOM
is not sufficient to explain its variability. In other words, the CDOM variations on the Yenisei River
depended on several drivers that were only captured by using different parts of the visible spectrum
via a band combination. However, the incorporation of a single band combination in a model was
also insufficient. For example, the algorithm proposed by [19] from a green-red ratio showed poor
performances on our data. Using band ratios may be effective if the created range via a band ratio is
wider than those of the band alone. Zhu et al. [28] showed that a band ratio is more effective when one
band is selected within the range of 400–450 nm and the other band is selected within the range of
630–650 nm. In our case, the green-red ratio allowed us to create a variable with a standard deviation
higher than the green or red band (stdgreen/red = 0.20, stdgreen = 0.08, stdred = 0.07) and covered similar
parts of the spectrum recommended by [28]; however, the amount of variance explained remained
low. Using a single green-band interaction led to similar observations. Although the model indicated
significant effects on the CDOM, the green-red interaction only explaining a small fraction of the
CDOM variability.

Coupling the green band with a green-red interaction was the most effective band configuration.
The green band had a significant negative effect on the CDOM in relation with the CDOM exponential
decrease with an increase of wavelengths (e.g., <550 nm). The green-red band interaction also had
a significant effect on CDOM, i.e., the effect of surface reflectance in the red on the green/CDOM
statistical relationship. We found contrasting effects of the green band, depending on TSS, which was
expected to reflect visible light at longer wavelengths (Figure 7). In the situation of low or moderate
TSS concentrations, a negative effect of surface reflectance in the green was observed, indicating that
other water constituents do not interfere on the expected relationship between the CDOM and the
optical remote sensing signal. A positive effect was found in the case of high TSS concentrations,
revealing that the noise in the CDOM signal is caused by a significant amount of suspended matter.

These findings reinforce the conclusions of previous studies stating that the algorithm performance
can be improved by using an additional longer wavelength because of the significant amounts of
particulate matter [28]. These findings highlight the importance of jointly analysing these different
signals. Evidence for a potential interactive effect of shorter and longer wavelengths has already
been observed in the monitoring of the CDOM in lakes or coastal oceans [19,28]. Brezonick et al. [23]
showed differences in the spectra slopes of CDOM in the range of ~570–650 nm for low CDOM levels
and high CDOM levels. For low CDOM waters, the spectra declined with increasing wavelength,
whereas the opposite trend occurred for high CDOM waters. Hence, because the CDOM levels on
the Yenisei River typically belong to the second group, this explains why this method was effective at
retrieving the CDOM. Note that the identified TSS level threshold (15 mg/L) is consistent with that
mentioned by [25]. Finally, the ARCTIC-Gro project provided point measurements from 2008 to 2014
in six Arctic watersheds (between April and September; [48]). While the Yenisei River contained the
lowest TSS concentrations, with an average of 11.3 ± 8.5 mg/L, the other rivers showed much higher
TSS values, from 42.0 ± 38.5 mg/L in the Kolyma to 94.6 ± 82.8 mg/L in the McKenzie. Therefore,
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the development of an effective CDOM algorithm retrieval on all Arctic rivers during the whole
open-water season is uncertain.

Indeed, even if the developed empirical model showed high performances, its transferability
to different arctic river systems is not straightforward. Applying the model that was successfully
calibrated in this study on Kolyma data [25] led to poor results (Table 4, Model (8), r2 = 0.41,
RMSE = 3.24 m−1). This result emphasizes that the empirical CDOM retrieval algorithm is not easily
transposable to other sites, mainly because of the diverse biogeochemical conditions (DOC and TSS
concentrations, chlorophyll, turbidity, etc.), which imply different statistical relationships between the
CDOM and the water leaving reflectance [26]. The characteristics of the sensors used can also play
a major role. Our model was calibrated from SPOT5 and Landsat 8 data with specific atmospheric
corrections. The model can therefore be non-suited to water leaving reflectance from different sensors,
as was used in [25] (e.g., Landsat 7). Finally, our model was calibrated to monitor the seasonal
DOC concentrations. The model developed using only July and August CDOM/remote sensing
relationships did not allow for inter-annual fluxes because, during these months, the CDOM values
were moderate (between 1.38 and 6.45 m−1). The model developed was valid for a wide range of
CDOM values because it included DOC measurements during the freshet period.

4.3. High Spatio-Temporal Resolution Remote Sensing Data and CDOM in Arctic Rivers

The CDOM algorithm developed in this study is based on high spatio-temporal resolution data.
This type of imagery opens two perspectives in the field of DOC monitoring.

First, high spatial resolution (HSR) allowed us to observe the spatial variability of DOC in the
river channel at each date. The derived DOC maps showed a low spatial variability in the river channel,
with a higher heterogeneity in the meander located in the south of the ST5 footprint. To verify, pixel
values were extracted in the area common to all maps (and located in the meander). The standard
deviations ranged from ±0.90 mg/L on 9 September 2015 to ±2.40 mg/L on 8 August 2015 and were
higher than the predicted error from the developed model on five maps (i.e., >1.4 mg/L). On average,
the variability of DOC concentrations after the freshet period was equal to ±1.83 mg/L (e.g., from
13 July 2015) and was higher than those measured during the freshet period (±1.57 mg/L). Its evolution
across the open-water season was not correlated to the DOC concentrations or stream flows, indicating
that external environmental factors may influence this variability. This heterogeneity could not be
observed with a coarser spatial resolution sensor, e.g., MODIS. When the DOC concentrations are
high, the observed variability remains relatively low, whereas it could be more problematic when the
DOC concentrations are lower (after the freshet period). Moreover, it would be interesting to adapt the
sampling protocol by increasing the number of field samples. For example, east-west transects could
be reproduced to more accurately quantify the DOC concentration variations into the stream during
this period. Concerning sharp variations near the cloud mask boundaries, they were likely caused by
cloud adjacency effects occurring at the pixels near the clouds. These effects could be eliminated by a
dilatation of the cloud masks. From a methodological perspective, the HSR allowed the optimization of
pixel selection to calibrate the statistical models. By drawing a more extensive zone around the sample
location, it became possible to retrieve several pixels between clouds. HSR also offered the opportunity
to select pixels between remaining ice-breaks. Therefore, we could use a Landsat 8 scene acquired on
22 May, i.e., only a few days after the start of the ice break-period, which is crucial because the DOC
concentrations were likely to be very important in this period. Finally, the limitations of HSR imagery
could also be listed. Footprints are often limited (60 km × 60 km for ST5 and 190 km × 190 km for
LT8) and are not suited to reproducing applications at the largest scale (typically at the watershed
scale). The HSR data also had a low temporal frequency over the past decade, which has limited
studies on the DOC evolutions over a long time period. Therefore, low-resolution data, such as MODIS,
are essential to reconstruct the DOC fluxes over multiple years and thus to link climate variability at a
large scale.
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Second, high temporal resolution (HTR) enables production of a DOC concentration map time
series during a whole open-water season, with six maps during the freshet period. This gives the
opportunity to assess the DOC variations during this key period. Next, the HRT increases the
probability of acquiring exploitable scenes during this short period. The cloud cover or hazing effects
often introduce noise in satellite images acquired in the Arctic regions, masking the region of interest
or introducing bias to the surface reflectance values. In this study, we jointly used the ST5 and L8O
scenes. This practice is similar to future practices based on Sentinel/Landsat 8 synergies that will
allow increased possibilities of obtaining scenes at the same location (all 3–5 days). Hence, our results
indicate that this synergy is promising to retrieve CDOM values in Arctic rivers. Nonetheless, the
HRT data must be accompanied by high frequency in situ measurements to reduce the time gaps and
make the high temporal resolution effective. Finally, atmospheric corrections are assumed to be more
accurate regarding the HTR data; such corrections are thought to clearly improve the reliability of the
extracted surface water reflectance values. However, this aspect has not been verified, and further
comparative studies based on low temporal resolution data should be undertaken to evaluate it in a
more quantitative manner.

5. Conclusions

This study demonstrated the capacity of the CDOM algorithm retrieval to monitor DOC fluxes
in the Yenisei River during a whole open-water season from high spatio-temporal optical remote
sensing data. Therefore, special attention could be given to the freshet period, where six maps of the
DOC concentrations were produced. Our findings revealed the interesting use of a shorter/longer
wavelength combination to retrieve the CDOM in Arctic rivers. However, perturbations of CDOM
signals in the visible spectrum must be taken into account when the TSS concentrations are high.

Using high spatio-temporal optical remote sensing to develop CDOM-based remote sensing
algorithms in Arctic rivers can be a very promising method to advance our understanding of Earth’s
carbon cycle. However, this method would require an extensive sampling protocol to limit the time
gaps between the in situ and spatial measurements, with a high sampling frequency and covering
a large period. Future Sentinel 2–3/Landsat 8 synergies should allow for reproducibility of such
applications in other hydrological systems. This will open the opportunity to monitor temporal
fluctuations of DOC concentrations during the freshet period, as well as the use of the blue band,
which could improve CDOM algorithm calibrations. Thus, although low spatial resolution is more
problematic from a methodological point of view, coarse remote sensing data, such as MODIS, should
be tested in this scope. Low and high spatial resolution imagery could be complementary to improve
our understanding of the DOC fluxes from a local to a global spatial scale as well as from a seasonal to
decadal scale. Finally, note that the present study site (Igarka, 67◦28′19′ ′N, 86◦33′31′ ′E) was selected
for the Sentinel 2 mission. Hence, the surface reflectance products will be delivered for at least two
years, and further research on DOC monitoring from space will be conducted.
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