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Abstract: Considering the important roles of carbonate rock fraction in karst rocky desertification
areas and their potential for indicating damage to vegetation, improved knowledge is desired to assess
the application of spectroscopy and remote sensing to characterizing and quantifying the biophysical
constituents of karst landscapes. In this study, we examined the spectra of major surface constituents
in karst areas for direct evidence of absorption features attributable to carbonate rock fraction.
Using spectral feature analysis with continuum removal, we observed that there are overlapping
spectral absorption in 2.149-2.398 um by soils and non-photosynthetic vegetation. These overlapping
features complicated the carbonate absorption feature near 2.340 um in synthetic mixed spectra.
To remove the overprint signal, two hyperspectral carbonate rock indices (HCRIs) were developed.
Compared to the absorption features including depths, areas, and KRDSIs (karst rocky desertification
synthesis indices), linear regression of HCRIs with carbonate rock fraction in linear synthetic mixtures
resulted in higher correlations and lower errors. This study demonstrates that spectral variation of
the surface constituents spectra in 2.270-2.398 pm region can indicate carbonate rock fraction and
be used to quantify them. Still, additional research is needed to advance our understanding of the
spectral influences from carbonate petrography relative to carbonate mineralogy, components and
physical state of rock surface.

Keywords: karst rocky desertification; carbonate rock; land cover fraction estimation; spectroscopy;
continuum removal; spectral feature analysis; spectral index

1. Introduction

There are tremendous varieties of carbonate rocks existing in a broad range of climatic situations,
whose weathering forms diverse types of karst landscapes. Twenty-five percent of the world’s
population gets its water from karst aquifers. While there may be some debate about the accuracy
of these numbers, there is little disagreement on the overall importance of karst environments [1].
The problems in karst management and the sustainability of karst environment are receiving growing
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interest due to the importance of proper exploitation and protection of natural resources [2]. Meanwhile,
karst rocky desertification, as one of the most serious problems in land degradation, occurs and
develops quickly under the impact of anthropogenic activities. Karst rocky desertification has been
characterized as the processes of transformation of vegetation and soil covered karst landscape into
exposed basement rock [3-5]. In the desertification areas, the exposure of carbonate rocks is one of the
main land surface symptoms [4]. Therefore, the estimation of exposed carbonate rocks is essential for
karst ecological conservation and environmental management.

Even though remote sensing provides an important way for understanding karst environments,
the mapping of exposed carbonate rocks is still a challenging task because of the highly heterogeneous
landscapes in the desertification areas and the limitation in the spatial and spectral resolution
of remote sensing images. Many methods have been developed to estimate and map carbonate
rocks. For example, exposed carbonate bedrocks can be obtained directly from satellite imagery
by visual interpretation [6-8], but it is very time-consuming, labor-intensive and susceptible to
interpreter’s bias. Recently, an increasing number of digital methods have been developed, such
as per-pixel classification [8,9] and subpixel quantitative estimation. As mixed pixels exist abundantly,
medium-resolution images, subpixel approaches are widely applied [10,11]; these include spectral
mixture analysis (SMA) and spectral index analysis. Linear spectral mixture analysis (LSMA) method
has been recently employed to estimate the sub-pixel cover fractions of karst land-surface types [10,11].
For instance, Zhang et al. employed a linear spectral unmixing method to retrieve the abundances of
vegetation and exposed rock from Hyperion image [11].

Although SMA is a physical based approach and is able to acquire sub-pixel endmember fractions
effectively [12,13], it is extremely difficult to be applied in a large geographic area due to the difficulties
in endmember selection. Compared with the SMA method, spectral indices have the advantage of
easy implementation and convenience in practical applications without endmember selection. On the
one hand, because of the nearly inverse correlation between carbonate rocks and green vegetation
or bare soil cover in karst areas, one potential approach is the utilization of spectral indices on
vegetation and bare soils. Therefore, exposed carbonate rock fraction is usually estimated based on:
(1) complement of vegetation and bare soil fraction; or (2) regression models with vegetation and bare
soil indices [14,15]. The other common strategy is to develop directly spectral indices for exposed
carbonate rocks. For instance, Xia et al. defined a geometrical rock desertification index (GRI) with
IKONOS image [16]. Tong used the ratio of band 5 and band 4 to enhance exposed carbonate rocks
in TM imagery [17]. Xie et al. derived two carbonate rock indices from the Blue and NIR bands of
Landsat-8 OLI imagery [18].

These multispectral index approaches reveal the potential for estimation of land degradation
in karst areas using satellite images. Since spectrometry provides near-contiguous and narrowband
spectral analysis of the land surface, which has been proven useful for studying a wide variety of
biophysical and geological processes [19], and which has been applied to derive spectral indices for
estimating and mapping karst rocky desertification. For example, Yue et al. proposed karst rocky
desertification synthesis indices (KRDSIs) based on field spectral reflectance of non-photosynthetic
vegetation (NPV), soils and exposed rocks, KRDSIs were then applied in Hyperion imagery to estimate
the fractional cover of exposed rocks [20,21]. Although many scholars have had in-depth discussions
of visible and near-infrared spectra of carbonate mineral and rock [22-27], improved knowledge is
desired to assess the application of spectroscopy to characterizing and quantifying exposed carbonate
rocks. The unaddressed problems include: what are the absorption features in the reflectance spectra
of major surface constituents in karst areas? and what about mixed spectra of the constituents?
Additional fundamental information about the impact of different biophysical constituents on mixed
spectra is needed to assess the contribution of exposed carbonate rocks; Which spectral bands or
features are more sensitive to carbonate rock fraction in mixed scenes, and how can they be introduced
into the estimation model?
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Our objectives in this paper are: (1) to add to the understanding of the reflectance spectra of
major surface constituents in karst areas; (2) to examine the mixed spectra of the constituents in the
2.0-2.5 um region for direct evidence of absorption features attributable to exposed carbonate rock
fractions; and (3) to explore more robust absorption features for fractional estimation. To accomplish
these objectives, firstly, we present field spectra of surface constituents in karst areas, including exposed
carbonate rocks, green vegetation, NPV and soils in Southwestern China. Then, several synthetic
mixed spectra data sets are generated based on a linear spectral mixture assumption. Utilizing linear
continuum removal, we apply spectral feature analysis (SFA [28]) to examine absorption features
in the synthetic mixed spectra and contrast them with the ones in spectra of the pure constituents.
We subsequently modify the parameters in KRDSIs and develop two hyperspectral carbonate rock
indices (HCRIs) for characterizing exposed carbonate rocks. Finally, the relationships between HCRIs
and exposed carbonate rock fractions are tested by comparing with KRDSIs and SFA absorption feature
parameters (e.g., center, depth, and area).

2. Materials and Methods

2.1. Surface Constituents in Karst Rocky Desertification Areas

In many karst areas, there are extensive areas of bare carbonate rocks where intervening fissures
and underlying caves frequently [29]. For example, the bare appearance of many karst landscapes
in sourthwestern China has been regarded as a result of the human-induced deforestation, early
agriculture and subsequent soil erosion [4]. In these karst rocky desertification areas, exposed
carbonate bedrock is one of the major surface constituents, along with soil and green vegetation.
Furthermore, there is also large crop residue cover on the farmland in the harvest seasons.

2.2. Spectral Measurements of the Surface Constituents

These typical surface constituents (including exposed carbonate bedrocks, soils, green vegetation
and NPV) were collected and measured in a karst peak-cluster depression region in northeastern
Jianshui County, Yunnan Province, China, which is located on 23°31'33.49"-23°48'39.12"N and
102°40'24.87"~103°7'54.70" E. The measurements of carbonate rocks, plant leaves or canopies, grasses,
corn stalks and soils were acquired using a portable spectrometer (Analytical Spectral Devices (ASD)
Inc., FieldSpec 4, Boulder, CO, USA), fitted with a 25 degree field-of-view bare fiber-optic. The ASD
field spectroradiometer works with a bandwidth of 1.4 nm in the spectral range 0.35-1.0 um, and a
bandwidth of 2 nm in the range 1.0-2.5 pm. The magnitude of measured spectral radiance depends
on the amount of incoming solar radiation (spectral irradiance) reaching the target, and this can vary
significantly according to date and time of day, atmospheric conditions, local orientation of the surface,
and intervening features which may further alter or attenuate incoming radiation (e.g., shadowing).
Therefore, radiance measurements were converted to target reflectance using a calibrated white
spectralon panel. The objective of this procedure is to minimize errors due to variations in atmospheric
conditions and sun inclination.

During field reflectance spectra measurement, the bidirectional effects of the target reflectance
were accounted for by carrying out measurements over very short time intervals and in a vertical
position. Because the amounts of samples varied, the fiber optic head was adjusted to ensure that
the field of view included only the sample material being measured. In addition, the instrument
was programmed to record per second averages of reflectance (thus, each recorded spectrum was
an average of 10 individual measurements). Measurements were taken between 20 March and
22 March 2015, with typical “dry-season” conditions (i.e., less cloud). Figure 1 show examples of field
reflectance spectra measured from different surface constituents in the karst desertification area in
northeastern Jianshui County. A total of 72 reflectance spectra from carbonate bedrocks, 53 from green
vegetation, 10 from NPV and 30 from soils were collected. All the spectrum samples were used in our
spectroscopy experiment.
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Figure 1. The pictures depict examples of field reflectance spectra measured from different surface

constituents in Eastern Yunnan, China.

2.3. Spectral Processing

All spectra were processed and analyzed using several spectral processing routines. The routines
achieve some basic spectral preprocessing functions, including correcting detector offsets, averaging
and absolute reflectance conversion [30]. To analyze spectral features, we also added the functions of
continuum removal and spectral feature analysis as described in [28,30], in addition to calculation of
KRDSIs [20] and the proposed index in this study.

There are three detectors covering the wavelength ranges 0.350-1.000, 1.001-1.800, and
1.801-2.500 pm. For the offsets between detectors arising from the spectrometer design, we applied
simple multiplicative factors to correct them [30]. In addition, the absolute reflectance (R) as a
function of wavelength (A) was obtained by multiplying the reflectance measurement made relative to
Spectralon (R, ) by the reflectance of Spectralon:

R(/\) = Rref X RSpectrulan (A) (1)

Figure 2 illustrates the preprocessing for field measurements of exposed carbonate rock, including
the averaged, absolute reflectance spectrum with offsets corrected, along with one of the measured
spectra for comparison. Because the second detector has been considered to be more stable at the end
points of its wavelength coverage than the other detectors, the first and third detectors are adjusted to
be consistent with the second one [30]. Furthermore, the wavelengths removed correspond to strong
atmospheric water vapor absorption bands between 1.356 and 1.417 pum, 1.820 and 1.932 pm, and
above 2.45 pm.
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Figure 2. Comparison of relative reflectance with uncorrected offsets and averaged, absolute reflectance
spectrum with offsets corrected.

2.4. Synthetic Mixed Spectra

Compared to classification, a more suitable way of extracting information from mixed scenes
is to try to estimate how each pixel’s area is divided up among different surface constituents. This
approach has been termed mixture modelling. Among a number of estimators, the linear mixture
model is perhaps the most preferable estimator, which has been most commonly used or implicitly
assumed in previous studies of mixing in remote sensing [31]. Therefore, three synthetic mixed spectra
data sets were created based on the basic physical assumptions underlying the linear mixture model:
there is no significant amount of multiple scattering between different karst surface constituents; each
photon that reaches the sensor interacts with only one constituent [31]; and the mixture of surface
constituents is areal. Our task is to characterize the absorption features of major surface constituents
in mixed spectra in the short-wave infrared (SWIR) region, and determine which spectral bands or
features derived from mixed spectra can be applied to estimate the carbonate rock fraction.

Four surface cover fractions were created (x1, x2, X3, X4). In order to ensure a high probability of a
pure sample for any of the four surface cover constituents, while evenly distributing the chance for
any one cover constituent to be either high or low in any given sample, they were calculated by firstly
generating four random variables, which were between 0 and 1. All of the four variables were divided
by the sum of them, it was determined by the condition that the fraction values should sum to one.
One to four of the values of each variable were then assigned to the fractions of exposed carbonate
rock, green vegetation, soil and NPV. Once the surface cover fractions were determined, synthetic
reflectance spectrum was calculated by simple linear mixture. Three synthetic data sets were generated
to analyze different features of surface cover mixed spectra along with varied carbonate rock fractions
(see Table 1). At first, we chose the four representative surface cover reflectance spectra as endmembers
(one for each constituent) to generate one data set of synthetic mixed spectra (data set;). Then, the
second data set was generated from mixtures of a representative reflectance spectrum of carbonate
rock and the other three randomly selected reflectance spectra of each surface cover (data sety). At last,
those selected randomly from the reflectance spectra of each surface cover were chosen as endmembers
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to create the third data set of verification samples (data set3). Since any single sample is dominated by
one type of carbonate rocks, green vegetation, soil or NPV, these mixtures can reflect the circumstances
found in a number of karst rocky desertification areas.

Table 1. Description of synthetic spectra with linear mixture model.

Synthetic Spectra Endmembers Mixture Model
Rock Soil Vegetation NPV
Data set; Fixed! Fixed Fixed Fixed Linear
Data sety Fixed Random Random  Random Linear
Data sets Random? Random Random  Random Linear

1A representative reflectance spectrum was chosen as a fixed endmember of the mixture;
2 The reflectance spectrum selected randomly from sample spectra was chosen as an endmember
of the mixture.

2.5. Spectral Analysis

2.5.1. Spectral Feature Analysis

There are various techniques of processing reflectance spectra to obtain constitutional information
of mixtures. For example, continuum removal is used to enhance absorption features in reflectance
spectra [32-37], which has been applied to map the distribution of minerals and vegetation or estimate
geochemistry and foliar biochemical content or concentrations [30,38—41]. The continuum removal (as
displayed in Figure 3) can be performed as follows [32]:

Rc(A) = R(A)/RL(A), )

where R¢ is the continuum removed spectrum, R is the original observed spectrum, and R; is the
corresponding values of the continuum line for all the channels in the wavelength region between the
endpoints of the absorption feature.

The continuum-removed feature was further analyzed to compute parameters that describe the
absorption feature, such as the central wavelength position, feature depth, area of the absorption
and absorption asymmetry [23,42]. Figure 3 illustrates the spectra after continuum removal where
the absorption feature is enhanced. The absorption-band position, A, is defined as the wavelength
with the minimum spectral response within the wavelength range of the absorption feature under
consideration. The relative depth, D, of the absorption feature is defined as the difference between the
continuum line and the minimum value in the continuum-removed spectra:

D = 1.0 —min(R¢) (3)

The area of the absorption is defined as the sum of individual areas between the continuum line
and channels in the continuum-removed feature, which is mathematically described as
n
A=) (1-Re(i)), )
i=1
where 7 is the number of bands from the starting point to the end point. Given that calculation of areas

leads to erroneous estimates in coarse sampled spectral data sets, the asymmetry factor perhaps is a
good approximation [40]. The asymmetry factor, S, of the absorption feature is defined as

S = Aleft/ Avights (&)

where Aj,f; is the area of the absorption from the starting point to the maximum absorption point
and the Az is the area of the absorption from maximum absorption point to the end point of
the absorption.
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Figure 3. Definition of the continuum and continuum removal of absorption features [32-37].
The carbonate rock spectrum is the average of measured spectra.

2.5.2. Spectral Indices

In addition to spectral feature analysis, spectral indices have been applied to analyse surface cover
fractions or estimate geochemistry and foliar biochemical content [20,43-46]. Because the wavelength
positions of spectral absorption center and shoulders are the three most important parameters of
spectral absorption features, Yue et al. developed four indices named KRDSIs based on them for the
estimation of surface constituents [20], which were defined as

KRDSI; = (R(Aq) + R(Ap))/2R(Ae); 6)
KRDSL = (R(Ag) + R(A)) — 2R(Ao); @)
KRDSI = Ry (Ac) — R(Ac); ®)
KRDSI, =1, — 1, )

where A, and A, are the wavelengths of two shoulders in spectra of non-vegetation, I is the integral
of interpolated reflectance values between A, and Ay, and I is the integral of observed spectral curve
between wavelengths A, and A;. In terms of the estimation of exposed bedrock fractions, Yue et al.
defined that A, =2.200 um, Ay = 2.380 um and A, = 2.350 um in [20].

After the analysis of reflectance spectra of major surface constituents in the desertification areas
and artificial mixed spectra, we found that, to a great extent, the absorption features in 2.149-2.398 um
of mixed spectra depended not only on carbonate rocks but also on the other surface constituents
(including green vegetation, soils and NPV) in the surface mixtures. In particular, there is a overlapping
absorption near 2.208 pm caused by soils (see Table 2 and Figure 4), while the other three constituents
have similar sightly absorption in the reflectance spectra in the 2.270-2.398 pm region, with the
exception of carbonate rocks. The reflectance spectra of the other surface constituents are of different
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shapes in the 2.149-2.398 um region, in contrast, the spectra of them have slowly changing and similar
shapes in the 2.340-2.398 um region (see Figure 4). Therefore, we adjusted the parameters A;, A, and
A¢ in KRDSIs and derived two hyperspectral carbonate rock indices (HCRIs) from them, with the
purpose of removing overprint of soil and vegetation signal in the 2.149-2.398 pm and retaining the
spectral absorption feature of carbonate rocks at 2.30-2.35 um. The proposed indices are defined as

HCRI} = R(A2) — R(Ao), (10)

and
HCRI; = Rp(Ag) — R(Ag), (11)

where A, is defined as right endpoint in absorption reflectance spectra of carbonate rocks near 2.340 pm,
according to feature parameters for absorption of carbonate rocks showed in Table 3, Ay = 2.398 pum;
the carbonate absorption-band position, Ay, is defined as the band having the minimum reflectance
value over the wavelength range of 2.3-2.35 um [23]. It is designed to remove the influence of varying
absorption center wavelength from 2.30 um to 2.35 pm of limestone and dolomite. Ry (Ag) is the
corresponding value of the continuum line in the wavelength region between A; = 2.270 um and
Ay =2.398 um.

0.6 TTTTTTTTTTTTTITTTITTT IIIIIIIII|IIIIIIIII|

—— Rock
—— NPV

0.5

0.4

0.3

Absolute reflectance
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|
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Figure 4. Reflectance spectra of surface constituents in karst rocky desertification areas and the
parameters of HCRIs: Ag, A1 and A;.

Table 2. Feature parameters for absorption of the four surface constituents in 2.0-2.5 um.

Left Endpoint (um)  Right Endpoint (zzm) Center (ym) Depth Area (nm)
Avg. std. dewv. Avg. std. dev. Avg.  std.dev. Avg.  std. dew. Avg. std. dev.

Carbonate rock 2.1494 0.0359 2.3976 0.0012 2.3397 0.0008 0.3057 0.0718 26.6160 6.9708
Soil 2.1333 0.0034 2.3043 0.0376 2.2030 0.0015 0.1586 0.0771 9.9981 5.2913

Green vegetation 22382 0.0097 2.4431 0.0033 2.3523 0.0406 0.0851 0.0292 9.0048 4.1032
NPV 2.1478 0.1098 2.3350 0.1046 2.2196 0.1229 0.0837 0.0157 6.1711 1.4092

Surface Constituent
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Table 3. Feature parameters for absorption of carbonate rocks near 2.340 um.

Sample Left Endpoint Right Endpoint Center (um) Depth Area (nm) Asymmetry

Identifiers (ym) (pm)
#1 2.132 2.398 2.339 0.2316 20.1509 3.2252
#2 2.128 2.394 2.338 0.3173 26.8978 2.7564
#3 2.128 2.398 2.340 0.3924 35.3544 29720
#4 2.216 2.398 2.339 0.3246 27.4590 2.6701
#5 2.128 2.398 2.340 0.4316 38.6760 2.9305
#6 2.133 2.398 2.341 0.2398 20.1119 3.2333
#7 2.219 2.398 2.340 0.2512 20.3219 2.9047
#8 2.128 2.398 2.340 0.4055 36.4791 2.9427
#9 2131 2.398 2.340 0.2816 24.5707 3.0008
#10 2.131 2.398 2.339 0.2331 21.0690 3.1257
#11 2.188 2.397 2.340 0.2411 19.4705 3.0124
#12 2131 2.398 2.340 0.3186 28.8311 3.1955

2.6. Linear Regression with Carbonate Rock Fraction

Linear regression was used to test if the above mentioned absorption features were linearly related
to carbonate rock fraction in karst surface mixtures. Firstly, the automated spectral feature analysis and
related indices were applied to the synthetic mixed spectra. Then, we related SFA parameters, KRDSIs
and HCRIs, separately, with the exposed carbonate rock fraction. Regressions were calculated using
SFA parameters, HCRIs and KRDSIs derived from the fixed parameters in reference to [20]. At last,
three parameters, including the Pearson product-moment correlation coefficient (r), the root-mean
square error (RMSE) and the Chi-Square (x?) between actual and predicted values, were used to
evaluate the regression results.

3. Experimental Results

3.1. Spectra of Surface Constituents in Karst Rocky Desertification Areas in SWIR 2.0-2.5 um

Preprocessed reflectance spectra of the surface constituents are depicted in Figure 5, Figure 5a
shows the reflectance of exposed carbonate rocks in SWIR 2.0-2.5 um, From 2.131 to 2.389 um,
the carbonate bedrocks exhibit a stronger absorption feature centered near 2.340 um, arising from
vibrational processes of the carbonate ions (CO%‘) [25]. This feature shifts slightly in the wavelength
position, and the absorption has asymmetrical shape with various absorption area and depth (Table 3).

Reflectance spectra of soils are shown in Figure 5b. All spectra of soils exhibit similar absorption
about a central wavelength near 2.203 um, which is caused by hydroxyl (-OH) stretch vibration in the
soils [47,48]. Because soil in carbonated areas is typically rich in clay, which is formed in dissolution
of CaCOj3 by rain water. They have no absorption feature in 2.340 um. Figure 5c depicts example
reflectance spectra for green vegetation. There is no obvious absorption in SWIR 2.0-2.5 pm, while
it has a weak peak in reflectance spectra near 2.220 um. As illustrated in Figure 5d, the reflectance
spectra of non-photosynthetic vegetation have different shapes. In 2.0-2.5 um region, NPV exhibits
two small but broad absorption features centered near 2.086 pm and 2.3 pm, and shows a peak in
reflectance near 2.225 pum.
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Figure 5. Reflectance spectra of the surface constituents in 2.0-2.5 um: (a) exposed carbonate rocks;
(b) soils; (c) green vegetation; and (d) NPV. The mean reflectance spectra are colored red.

3.2. Continuum-Removed Spectra

Continuum-removed spectra of the 2.340 pm feature in selected carbonate rock, soil, green
vegetation and NPV samples are depicted in Figure 6a. The spectra have been plotted in one figure so
the differences in feature center and spectral shape can be more clearly seen. Among the four surface
constituents, carbonate rock has the strongest absorption features near 2.340 um, with 0.4055 of depth
and 36.4791 nm of absorption area (Table 3), and these features in green vegetation and NPV are weak.
Soil has a feature at shorter wavelength position near 2.203 um. Table 2 shows feature parameters for
absorption of the surface constituents near 2.340 um, where carbonate rocks have the largest average
value 0.3057 of Depth and 26.6160 nm of absorption area, and the large standard deviation value 0.0718
and 6.9708.
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Figure 6. Continuum-removed spectra for absorption features in the spectra of: (a) selected surface
constituents; (b) mixtures of the soil and carbonate rock; (c) mixtures of the green vegetation and
carbonate rock; (d) mixtures of the NPV and carbonate rock.

3.3. Synthetic Mixed Spectra

Figure 6b—d depicts continuum-removed spectra of synthetic mixtures with different carbonate
rock fractions. Pair-wise mixtures of carbonate rocks and the other three constituents are displayed
respectively, so that different contributions to mixed spectra absorption in 2.0-2.5 um region from the
other three constituents’ fractions can be clearly seen. Figure 6b describes two significant absorption in
mixed spectra of carbonate rock and soil, and the position of strongest absorption jumps from 2.203 um
to 2.340 um when the fraction of carbonate rock increases to a threshold (about 25%) Comparatively,
the absorption center shifts slightly near 2.340 um in mixed spectra of green vegetation and carbonate
rocks, and the absorption width is becoming broader obviously as carbonate rock fraction decline
from 10% (see Figure 6¢). As illustrated in Figure 6d, there is a double floating absorption in mixed
spectra of carbonate rock and NPV, the position of the strongest absorption generally shifts from a
longer wavelength for larger carbonate rock fractions to shorter wavelength in the larger NPV fractions.
Therefore, the relationship of the occurrence and spectral parameters of absorption features typical of
certain cover is not linear to the different contents of the mixture [49].

3.4. Relativity between the Surface CarbonateRock Fractions and 2.340 wm Absorption Features

Linear regression results for the carbonate rock fractions related to the 2.340 pm absorption
features, including centers, depths, areas, asymmetry, KRDSIs and HCRIs, are described in Table 4.
The table shows expected results. Synthetic spectra with representative spectra perform better than
synthetic spectra from randomly chosen spectra in a sample. For the data set,, with fixed parameters
Ag =22 pm, Ay =2.35 pm and A, = 2.38 um, KRDSI; has higher r (0.9853) and lower RMSE (0.0492)
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and Chi-Square (4.5504) value than other KRDSIs. Comparatively, the HCRIs with adjusted parameters
A1 =2.270 pm, Ay =2.398 um and the adaptive A have higher r and lower RMSE and Chi-Square value
than the KRDSIs, the highest Pearson correlation coefficient and lowest RMSE and Chi-Square values
are obtained for the feature HCRI, (r = 0.9988, RMSE = 0.0144 and x? = 0.4126). In the experiment
for data set3, KRDSI has the higher r and lower RMSE than other KRDSIs with fixed absorption
parameters. In contrast, the feature HCRIs with adjusted parameters have better performance than
KRDSIs and SFA features. The highest r and lowest RMSE and Chi-Square values are obtained for
the feature HCRI, (r = 0.7976, RMSE = 0.1740 and x? = 54.4868). Meanwhile, SFA feature centers
and asymmetry have the highest RMSE and Chi-Square and lowest r both for data set, and data sets.
The scatter plots of the better regression results in the experiment of data set; are illustrated in Figure 7.
Relative to the carbonate rock fractions, the feature HCRIs have very good fitting results for different
carbonate rock fractions, r of 0.9943 and 0.9988, respectively. With A; = 2.2 um, A, = 2.35 pm and
A¢ = 2.38 pm, KRDSI,, KRDSI3 and feature area have lower r and more discrete distribution of points,
especially at the low carbonate rock fractions level.

Table 4. Linear regression results for 2.340 um absorption features and carbonate rock fraction in
two synthetic surface mixtures.

Feature Data set; Data sets
r RMSE X2 r RMSE X2

KRDSI4 0.9695 0.0706 9.6562 0.4830 0.2524  286.5752
KRDSI, 0.9839 0.0515 4.9257 0.5924 0.2322  242.6249
KRDSI3 0.9853 0.0492 4.5504 0.6379 0.2219  221.6684
KRDSI, 0.9750 0.0640 8.1982 0.7136 0.2019 183.4232
HCRI; 0.9943 0.0306 1.8762 0.7976 0.1740 54.4868
HCRI, 0.9988 0.0140 0.4126 0.7582 0.1881 63.6719
Center 0.3891 0.2658  317.5832  0.2799 0.2772  345.4699
Depth 0.9659 0.0746 11.1394 0.6883 0.2092 78.7987
Area 0.9716 0.0682 7.5767 0.6413 0.2213 88.1608

Asymmetry  —0.0027 02984 373.9998 -0.0043 0.2888  374.8217

4. Discussion

4.1. The Absorption Feature in the Four Major Surface Constituents Spectra

The spectra of exposed bedrocks in karst areas have an obvious absorption feature near 2.340 ym
(see Figure 6a), but the absorption features parameters including absorption endpoints, center
wavelength position, depth, area and asymmetry vary with the different bedrock samples (see Table 3).
Occurrence of prominent absorption feature in the SWIR spectra around 2.3-2.35 um due to the
vibrational processes of carbonate ions (C Og_) can be used to distinguish carbonate mineral mixtures
in the rock samples [25,39,50]. According to these previous studies, the slight shifts exhibiting in the
wavelength position might indicate that the slight change of ratio of calcite and dolomite in the samples,
and the observed rock is likely a limestone suffering local dolomitization processes by replacement
of Ca by Mg in carbonate (from CaCO3 to CaMg(CO3);). Meanwhile, the absorption depth and area
depend on the carbonate mineral concentrations, even though the absorption features of the SWIR
carbonate spectra may be affected subtly by varying grain sizes [25,51], weathering, and mixing with
organic matters forming a coating on carbonate particles [22,23,26] in the rock samples.

The spectra of soils in karst areas exhibit common absorption about a central wavelength near
2.203 pm (see Figure 6b and Table 2), which indicates that the soils contain clay minerals, and the
clay content may determine the absorption depth and area according to [32,48]. As displayed in
Figure 6¢, the green vegetation has no significant spectral absorption in 2.149-2.398 um. In contrast,
NPV reflectance represents strong absorption signals of lingnin and cellulose near 2.100 um and
2.300 um [52,53]. Thus, in SWIR 2.0-2.5 pum, there are obvious differences in the reflectance spectra
not only between carbonate rocks and the other three constituents, but also among the other three
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constituents. The contribution to spectral absorption in 2.149-2.398 yum is not only from carbonate
rocks but also may come from soils. Nevertheless, it may have several problems in the identification
of carbonate rock spectra. This may be due to the limitations of spectral resolution as compared to
the field spectra. The position of absorption band of these surface constituents may be at significantly
different wavelengths, and these spectral absorption may be weakly detected and characterized by the
lower spectral resolution spectroscopy instruments.

4.2. Estimating Carbonate Rock Fraction Using Synthetic Reflectance Spectra

The distinct positions of the absorption feature in mixed spectra in 2.300-2.350 um, comparing
to the absorptions of carbonate rocks, green vegetation, soils, and NPV, suggests that the detection
and fraction quantification of carbonate rocks by reflectance spectra could be practicable. The unique
absorption feature has been described to be a strong underpinning for spectral-index model that
utilizes spectra to quantify karst surface land cover fractions. Yue et al. represented carbonate rocks
absorption features in 2.200-2.380 um compared with the soils and NPV absorption features, they
defined KRDSIs with the fixed parameters: A; = 2.200 pm, A, = 2.380 um and A, = 2.350 pm in [20],
in order to predict carbonate rock fractions of surface constituents mixtures. These focus on specific
wavelengths where the biochemical and geochemistry of interest has its greatest effect. However, in
the spectra of mixtures near 2.340 um, the spectral absorption is not only affected by carbonate rocks,
but by the other surface constituents. The overlapping absorptions make it more complicated to
estimate carbonate rocks uniquely.

The spectra of carbonate rocks have a stronger absorption feature from 2.149 to 2.398 um (see
Figure 6a and Table 2), Meanwhile, another absorption feature have been observed in the spectra of
soils in 2.133-2.304 caused by clay, which induced the jump of position of absorption from 2.340 to
2.203 um with the decrease of carbonate rock fraction in mixed spectra. For these reasons, we focused
on the 2.340 um feature, developed two indices with the adjusted KRDSIs parameters and directly
related them to carbonate rock fractions using synthetic mixture samples linear regression (see Table 4
and Figure 7).

In the experiment of data set,, strong relationships were found with feature depth and area,
KRDSIs and HCRIs using the adjusted absorption parameters (r > 0.95 and RMSE < 0.08).
Comparatively, the HCRIs had better performance than the KRDSIs, especial for the mixtures with
low carbonate rock fractions (see Figure 7). Possible reasons for the lower r and higher RMSE should
be that the impact of clay in soils and the induced variant absorption of synthetic mixed spectra in
2.149-2.398 um region. Similar results were found in the experiment of data set;, which make clear
that the proposed absorption features in 2.270-2.398 um region could do better than the features in
2.200-2.38 pm region in estimating carbonate rock fraction. Comparing with the experiment results
of data sety, data set3 had obvious lower r and higher RMSE value, the likely cause of which is the
different carbonate mineral concentrations in the rocks samples. Moreover, better performance of
HCRI, than HCRI; was found in the experiment of data set,, and a contrary result was found in the
experiment of data set3, which might indicate that the HCRI, do better than HCRI; in characterizing
the spectral absorption near 2.340 pm. However, the absorption not only depends on carbonate rock
fraction but also on carbonate mineral concentrations in rocks, and HCRI; may be a good compromise
in dealing with more subtle spectral influences due to carbonate mineralogy, the components and
physical state of rock surface [22,25,26]. (see Table 4, r = 0.7976, RMSE = 0.1740 and X% = 54.4868).
Future studies should focus on this issue.
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Figure 7. Linear regression results for 2.340 um absorption features of the second synthetic karst
surface mixtures and carbonate rock fraction: (a) feature KRDSI3; (b) feature absorption area; (c) feature
HCRIy; (d) and feature HCRI,.

4.3. Potential of Estimating Carbonate Rock Fraction Using Remote Sensing Imagery

Field spectroscopy provides an understanding of the interrelationships between the spectral
characteristics of objects and their biophysical attributes in the field environment, and a tool for the
development, refinement and testing of models relating biophysical attributes to remotely-sensed
data [54]. Therefore, it has been used for the development of quantitative models for estimation
of carbonate rock fraction in karst mixed surface scenes. On the one hand, the proposed HCRIs
provide a potential method for fractional cover mapping of carbonate rocks using aerial or satellite
imagery with the sensitive bands in 2.0-2.5 pm. On the other hand, several factors, including the
spectral interval of the SWIR band and the degree of isotropy of the surface being sensed, complicate
the estimation of surface fractional cover from remotely sensed imagery [55-57]. Firstly, the three
absorption parameters Ay, A» and Ap in HCRIs should be adjusted according to the spectral resolution
of different related sensors from the ASD spectrometer. Secondly, because of the linear mixture
assumption, a three-dimensional structure, such as that induced by vegetation vertical heterogeneity, is
unconsidered. However, in three-dimensional mixed scenes, the prevalence of multiple scattering can
make the mixture of constituents become more complex and non-linear [57]. In rugged karst terrain,
the geometry between the sun, the surface orientation, and the satellite sensor, which can vary from
one pixel to another, is an additional factor which makes the estimation of surface fractional cover from
remotely sensed data difficult [56]. Therefore, these factors should be considered in the application of
aerial or satellite remote sensing to estimation of carbonate rock fraction in karst terrain.
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5. Conclusions

Different absorption features in 2.0-2.5 pm were detected in the spectra of exposed bedrocks,
soils, green vegetation and non-photosynthetic vegetation (NPV) in karst rocky desertification areas.
The exposed bedrocks had an obvious absorption feature near 2.340 um, but soils consisting of clay
minerals had an absorption centered at 2.203 pm. Absorption signals near 2.100 pm and 2.300 pm were
shown in NPV reflectance and a weak absorption in 2.220-2.400 pm. These overlapping absorptions
by the other surface constituents were observed to cause complicating of the absorption feature near
2.340 pm in synthetic mixed spectra. The complexity was evidenced by varying absorption feature
endpoints, centers, depths and areas computed using continuum removal and spectral feature analysis
methods. After the spectral feature analysis, we found that the contribution to spectral absorption in
2.149-2.398 pm was not only from carbonate rocks but also from soils. The reflectance spectra of karst
surface constituents were of different shapes in the 2.149-2.340 pm region; in contrast, the spectra of
other surface constituents had slowly changing and similar shapes in the 2.340-2.398 pm region.

Based on the founding of the impact of clay in soils on the absorption features of exposed carbonate
bedrocks, the parameters A,, A; and A, in karst rocky desertification synthesis indices (KRDSIs) were
redefined and two indices (named HCRIs) were developed with them to distinguish the spectral
impacts of carbonate rocks on the 2.340 um absorption feature. Compared to the absorption features
including depths, areas, and KRDSIs, linear regression of HCRIs with carbonate rock fraction in linear
synthetic mixtures resulted in higher correlations and lower errors. In addition, a simple difference
index (HCRI,) derived directly from the two parameters A, and A had better performance in bedrock
fraction estimating with different carbonate rock samples. Still, new detailed studies are required
to advance our knowledge of the spectral influences of carbonate rocks of various types relative to
carbonate mineralogy, the components and physical state of rock surface. Several factors, including the
spectral resolution of sensors, vegetation vertical heterogeneity and topography, should be considered
in terrestrial remote sensing applications in estimation of carbonate rock fraction in karst terrain.
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