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Abstract: We examine the utility of Structure from Motion (SfM) point cloud products to generate
a digital terrain model (DTM) and estimate canopy heights in a woodland ecosystem in the Texas
Hill Country, USA. Very high spatial resolution images were acquired with a Canon PowerShot
AB00 digital camera mounted on an unmanned aerial system. Image mosaicking and dense point
matching were accomplished using Agisoft PhotoScan. The resulting point cloud was classified
according to ground/non-ground classes and used to interpolate a high resolution DTM which was
both compared to a DTM from an existing lidar dataset and used to model vegetation height for
fifteen 20 x 20 m plots. Differences in the interpolated DTM surfaces demonstrate that the SfM
surface overestimates lidar-modeled ground height with a mean difference of 0.19 m and standard
deviation of 0.66 m. Height estimates obtained solely from SfM products were successful with R?
values of 0.91, 0.90, and 0.89 for mean, median, and maximum canopy height, respectively. Use of
the lidar DTM in the analyses resulted in R? values of 0.90, 0.89, and 0.89 for mean, median, and
maximum canopy height. Our results suggest that SfM-derived point cloud products function as
well as lidar data for estimating vegetation canopy height for our specific study area.
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1. Introduction

Over the past 15 years, our ability to characterize and quantify vegetation structure has been
greatly augmented by the use of three dimensional data obtained from light detection and ranging
(lidar) sensors. The use of lidar data has allowed for improved estimates and representations of
vegetation canopy height [1,2], canopy cover [3,4], leaf area index (LAI) [5-7], biomass [8-10] and
other biophysical variables. In short, lidar data have allowed for significant improvements in many
areas of topographic representations and vegetation structure modeling, especially when compared to
the sole application of passive multispectral sensors [6,11-13]. However, the cost of lidar data can be
prohibitive for many applications, especially when the study area is relatively small or requires repeat
acquisitions to monitor vegetation change.

Within the past several years, an increasing number of studies have been published that examine
the use of Structure from Motion (SfM) to generate products more traditionally associated with lidar
datasets. SfM is a computer vision technique that can generate high density three dimensional point
clouds from high resolution imagery acquired from multiple perspectives [14]. More frequently, these
images are acquired from relatively low-cost unmanned aerial system (UAS) platforms. SfM is similar
to traditional photogrammetry in that the technique uses overlapping images to construct dense
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three-dimensional point clouds of a surface, yet SIM differs from traditional photogrammetry due to
the ability of the image matching algorithms to recognize conjugate features in randomly acquired
images that exhibit significant variability in spatial resolution and perspectives [15]. For a full review
of the SfM technique, the reader is referred to [16,17].

The utility of SfM to generate image-based point clouds is gaining recognition as a low-cost
alternative for, or to augment, existing lidar datasets. UAS-acquired imagery and corresponding point
clouds are gaining recognition in the literature as their utility spans diverse applications including
digital preservation and representation of urban and cultural features [17-20], archaeology [21], and
digital terrain modeling (digital terrain model; DTM) [15,22]. However, to date, few studies have been
published in regard to vegetation modeling, an area of research and application that often requires
repeat data acquisitions to monitor trajectories of change.

A pioneer study by Dandois and Ellis [23] used image-based point clouds to generate tree canopy
height models for two 2.25 ha test sites, compared the models with in situ observations, and were
able to account for 64 percent of field measured variability. In their 2010 study, Dandois and Ellis [23]
used an existing lidar dataset to serve as the DTM from which to base vegetation heights. In a more
recent study, Dandois and Ellis [22] generated 3D forest mapping products that favorably compared
with lidar-derived estimates, and more importantly, were able to do so with SfM-based terrain models.
Additionally, Mathews and Jensen [24] implemented high density SfM point cloud products to generate
DTM and canopy density models to estimate vineyard canopy LAI with moderate success (R? = 0.57).
The generation of accurate DTMs under vegetation canopy is of particular interest since one of the cited
drawbacks of image-based point clouds is the reliance on existing lidar data to provide an accurate
terrain surface [25].

Although lidar data sets are increasingly available through governmental and non-profit agencies,
coverage is still lacking in many areas where fine-scale terrain products and vegetation modeling are
needed. Research that addresses the utility and effectiveness of low-cost imagery and associated point
clouds is necessary to demonstrate under what landscape conditions these methods are applicable.
The objectives of our study were to: (1) compare digital terrain products generated from a SfM-derived
point cloud and a previously acquired lidar dataset; and (2) evaluate the utility of StM-derived point
cloud products to estimate tree canopy height in an oak-juniper woodland ecosystem using both the
DTMs created from the SfM process and an existing lidar dataset.

2. Materials and Methods

2.1. Study Area

Our study was conducted over approximately 15 ha on a portion of Freeman Center, a
Texas State University managed resource on the Edwards Plateau in Central Texas (29°55'8.27”N,
97°58'44.52”W, Figure 1). Study area elevation varies between 204 and 287 m and consists of
level terrain to undulating hills. Vegetation composition is characterized by Plateau Live Oak
(Quercus virginiana var. fusiformis)-Ashe juniper (Juniperus ashei) savannah that transitions to closed
canopy woodlands at lower elevations. Understory vegetation consists of various cool- and
warm season grasses, forbs, and sedges in addition to woody shrubs such as Texas persimmon
(Diospyron texana), Agarita (Berberis trifoiolata), and Elbow bush (Foresteria pubescens).

2.2. Image Data Collection, Processing, and Point Cloud Generation

Images were collected during full-canopy, leaf-on conditions, and cloud-free sky on 14 August
2013 from approximately 12:15 pm to 12:45 pm to minimize the effect of shadowing. Two separate
flights (each about 12 min coinciding with battery life) resulted in a total of 1166 images of the study
site to ensure adequate coverage and overlap for the SfM-derived image mosaic and subsequent
dense-point matching. Individual images were captured using a manually remote controlled Hawkeye
II UAS (www.ElectricFlights.com, Kingsland, TX, USA). The Hawkeye is a kitewing plane with a
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sufficient payload to mount two nadir-facing digital cameras simultaneously (approximately 500 g
total). Flight paths were oriented north-to-south to fly directly into (south) and with (north) the wind.
This was necessary due to the UAS being susceptible to wind gusts. Winds were desirably low (around
15 kph) upon data capture. Flying height averaged approximately 100 m resulting in imagery with a
nominal spatial resolution of 5 cm.
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Figure 1. SfM-generated orthomosaic from UAV-acquired images for the 15 ha study area. Pink dots
represent the of the 20 x 20 m vegetation measurement plots.

Two off-the-shelf Canon PowerShot A800 digital cameras captured images every second
throughout the flights using a Canon Hackers Development Kit (CHDK; chdk.wikia.com)
intervalometer script preloaded onto the camera SD cards. Most images were captured at nadir, but
many were captured with oblique perspectives. The cameras captured oblique images when purposely
banked by the remote control operator or when inadvertently banked due to easterly or westerly
(side-to-side) wind gusts. These oblique images were not removed from data processing because,
in SfM-based product generation, increased number of angles/perspectives is encouraged [23].

To georeference the SfM mosaic to a projected coordinate system, eight ground control points
(GCPs) were placed in the field prior to image capture. All GCP targets were crafted out of inexpensive,
reusable sturdy foam board. Five of these targets were square, sized 0.6 m x 0.6 m, and painted
bright red with small concentric black and white circles at the center following [26]. The remaining
three targets were circular with diameters of 0.15 m and were painted only bright red. These bright
colors made for high contrast and easy identification of GCPs in resulting images. These distinct colors
and shapes, compared to the surrounding natural landscape, found within many images facilitated
SfM keypoint matching. The targets were placed throughout the study area to provide adequate
coverage and account for variability in terrain elevation. All of the GCP targets were GPS located
using a Trimble GeoXH with external Zephyr antenna. A total of 200 positions were collected and
averaged to geolocate each GCP (X,Y: NADS83, UTM Zone 14N; and Z: NADV88). All GPS data were
differentially corrected after collection using the Trimble GPS Analyst Extension in ArcGIS. Ground
target data exhibited a mean estimated error of <15 cm.

The SfM-derived point cloud was created automatically using Agisoft PhotoScan (Agisoft LLC,
St. Petersburg, Russia). Of the total 1166 UAS-collected images, 361 were input to first create the StM
image mosaic and then execute the dense point matching. This subset of images was selected based
primarily on image clarity, altitude, and area imaged. Since PhotoScan creates an arbitrarily-located
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point cloud (i.e., Cartesian coordinates), the point cloud needed to be manually georeferenced using the
known positions of the GCP targets. As such, each of the GCPs were identified within the PhotoScan
generated point cloud and the known UTM coordinates were input to replace the arbitrary ones. Upon
completion, PhotoScan transformed the entire point cloud to the known coordinates and optimized its
image alignment.

Prior to export, noise in the form of outlier points with extreme high and extreme low elevation
values were removed. Noise removal with SfM datasets is not uncommon [22,24]. Finally, to reduce
the total number of points and allow point cloud classification to remain a manageable task, the point
cloud was exported to LAS format using the dense-low quality setting in PhotoScan.

2.3. SfM Point Cloud Processing

The dense-low quality point cloud exported from PhotoScan contained 9,318,164 points, or about
198 points per square meter. Unlike lidar data, which have a return number and can be pre-filtered
to remove unlikely ground returns, the SfM-derived points only have X,Y,Z values. As such, the
ground point classification of the entire study site was prohibitive using the full dataset. To minimize
the number of candidate ground points, a 0.5 m grid was first created in ArcMap 10.2 and a block
minimum filter was applied to extract the point with the lowest elevation in each cell. The resulting
minimum points were used as candidate ground points for the initial ground classification. Ground
point classification was performed using an adaptive triangulated irregular network (TIN) filter,
available in the software program LP360 (QCoherent Software LLC, Madison, AL, USA). After a
suitable automated classification was performed, the SfM data were further processed by manually
editing and reclassifying erroneously labeled points. Manual reclassification involved detailed visual
examination of the classified point cloud and resulting TIN surface to identify points that were, through
qualitative assessment, obvious omission and commission errors. For example, instances of low-lying
vegetation such as small shrubs or cacti classified as ground points were evident. In these cases, those
features were manually reclassified as non-ground points. The final ground-classified points were
used as input to create a 1 m SfM-based DTM (DTMgg\1) based on natural neighbor interpolation.

2.4. Lidar Data Collection and Processing

Existing lidar data acquired in the spring and early summer of 2006 were available from the Texas
Capital Area Council of Governments (CAPCOG). The lidar data were acquired using an Optech 2050
airborne system operated by Sanborn to provide Federal Emergency Management Agency (FEMA)
compliant elevation data with a nominal point spacing of 1.4 m. The data were delivered in LAS
format with a State Plane 4023 (Survey Feet), NAD83 and NAVDS88 (US Feet) coordinate system. We
re-projected the lidar data using the LP360 extension for ArcGIS to match the UTM coordinate system
for our study. Additionally, the lidar data were already classified by the vendor into ground and
non-ground classes. For the purpose of this study, we extracted only ground returns to generate a 1 m
lidar-based DTM (DTM}j4,,) using natural neighbor interpolation for comparison with the DTMgpy.

2.5. Vegetation Data Collection

Field data were acquired throughout September 2013 and consisted of tree and shrub
measurements for sixteen 20 x 20 m plots (Figure 1). Plots were distributed throughout the study area
to maximize variability in both canopy cover and terrain elevation. We recorded plot center points
using the same GPS data collection methods described above for the image GCPs. Plot boundaries
were established using a tape measure extended from the plot center in each cardinal direction and the
heights to the uppermost portion of each dominant and co-dominant tree and shrub that fell within
the plot were measured using a TruPulse 360 laser rangefinder (Laser Technology Inc., Centennial, CO,
USA). Vegetation heights ranged from 0.50 to 12.47 m, with a mean and standard deviation of 5.04
and 2.71, respectively. For subsequent modeling, mean canopy height was calculated as the sum of all
tree heights per plot divided by the number of trees measured in the plot. Median canopy height was
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measured as the middle value of the sorted (minimum to maximum) height per measured tree in each
plot. Maximum height was determined by the tallest measured tree in each plot.

2.6. Data Analysis

To evaluate the accuracy of, and compare the DTMs generated from the SfM and lidar-derived
datasets, we calculated the differences between the 16 GPS-surveyed vegetation plot center points and
the corresponding DTM value. The vegetation plot center points exhibited a variety of canopy cover
characteristics ranging from completely open canopy to closed canopy and served as an ideal test to
determine the accuracy of the DTMs under various woodland canopy conditions. In addition to the
plot center point-DTM comparisons, the DTMy;q,, was subtracted from the DTMggy to determine the
spatial distribution of vertical errors throughout the study area.

To evaluate the utility of SfM-derived point cloud products to estimate tree canopy height,
we employed simple linear regression where the dependent variable was our field-measured mean,
median, and maximum canopy height for each plot and the independent variables were SfM-derived
height metrics. To obtain the S5fM height metrics, traditional methods used with discrete return
lidar data were applied. First, all non-ground SfM points were overlaid on the DTMgg and the
corresponding ground elevation values were extracted. Next, the DTM values were subtracted from the
non-ground SfM points to obtain a height for each point. The SfM-derived heights were summarized
for each of the field plots such that each of the 16 plots had metrics corresponding to the mean, median,
maximum, and 95th, 90th, 85th, and 80th percentile heights for all point features above 0.5 m. The 0.5 m
threshold was employed to mitigate skewing of the metrics due to contributions from understory
grasses and understory shrubs as we were focused on estimating over story vegetation structure.

Finally, the SfM-derived height metrics were analyzed using JMP statistical software (SAS Institute
Inc., Cary, NC, USA) to evaluate multivariate correlations and to identify suitable regression models.
Suitable regression models were identified when the coefficient of determination (R?) was maximized,
root mean square error (RMSE) minimized, and k-fold cross validation (k = 3) yielded an R? closest to
the full model (i.e., all data used to fit the model). For comparison, the same methods were employed
using the DTMj;4,, and SM non-ground points to calculate and extract vegetation height information
and generate lidar-SfM metrics for regression analysis.

3. Results

3.1. SfM and Lidar DTM Comparisons Data Analysis

Of the 9,318,164 SfM points exported from PhotoScan, 1.7 percent (161,145) were classified as
ground points. In comparison, the 2006 lidar dataset of the same study area had 251,221 points in
total, 19.9 percent (49,967) of which were classified as ground returns. Refer to Table 1 for a summary
of point cloud characteristics per dataset and Figure 2 for a comparison of the spatial distribution of
ground point densities for the SfM and lidar datasets. While the lidar data had fewer overall ground
returns, they were distributed throughout the study area more evenly. In contrast, classified ground
points from the SfM dataset were spatially clustered in higher densities and were absent from large
portions of the study area, particularly in areas of dense vegetation cover (Figure 1).

Table 1. Summary of point cloud characteristics for the SfM and lidar datasets.

Dataset Characteristics SftM Lidar
Total points 9,318,164 251,221
Ground-classified points 161,145 49 967
Percent ground 1.7 19.9
Nominal point density (points/sq. m) 2.58 0.72

Nominal point spacing (m) 0.58 1.17
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Figure 2. Point cloud densities per square meter for the ground classified SfM points (left) and ground
classified lidar returns (right).

Direct comparison between the GPS-surveyed vegetation plot center points and the two DTM
products resulted in a mean underestimate of —0.31 m for the DTMgg;, while the DTM}4,,, exhibited a
slight overestimate of 0.08 m. The mean difference between plot centers and the DTMgp, value was
—0.31 m (st. dev. = 0.73 m) and 0.08 m (st. dev. = 0.49 m) for the DTM};q,,. The DTMgg\t had nearly
twice the amount of error for elevation underestimation as the DTM}4,,. Refer to Table 2 and Figure 3
for summaries of the GPS-based comparisons for the DTM products.

Subtracting the DTMyjq,, from the DTMgg provided a spatial evaluation of the differences
between the two DTM products (Figure 4). Over the entire study area, the DTMgpy tends to be within
+0.5 m to £1.0 m of the DTMj;q,,. Large DTMgpy underestimates (displayed in green, Figure 4),
indicate the SfM surface elevation is below the lidar surface elevation. These underestimates tend
to occur in relatively open areas void of over story vegetation. DTMgp overestimates indicate the
SfM surface elevation is above the modeled lidar surface elevation. These areas, displayed in brown
tones, tend to occur in areas of dense canopy cover and where lack of ground points results in greater
interpolation distances. Very large DTMgg,; underestimates (e.g., <—2.0 m) occur in the southeastern
portion of the study area. Within this densely vegetated area, very few images were acquired, few 3D
points were generated, and none were classified as ground points. Overall, the lack of ground points
resulted in larger interpolation distances for this area. On average, the interpolated DTMggs surface is
0.19 m (st. dev. = 0.66 m) higher than the interpolated DTM};4,, surface.

Table 2. Summary of GPS-surveyed plot center point and DTM product comparisons.

Comparison Metrics (n = 17) GPS-DTMg GPS-DTMj;qar
Mean difference (m) —0.31 0.08
Standard deviation of difference (m) 0.73 0.49
Median difference (m) 0.10 0.08
Minimum difference (m) —1.59 —0.85

Maximum difference (m) 1.29 1.17
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Figure 3. Scatterplots showing correlation (Pearson’s r) between GPS-surveyed plot center points and
DTMgy (left) and DTMyq,, (right).
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Figure 4. Spatial distribution of elevation differences between the DTMgg; and DTM};4,,. Green tones
represent areas where the DTMgg,; was modeled below the DTM};4,,, and brown tones represent areas

above the lidar surface.

3.2. Evaluation of SfM Point Cloud Products to Estimate Tree Canopy Heights

We examined multivariate correlations between the field measured plot heights and the two sets
of metrics calculated for analysis. SfMgp\ refers to the use of the DTMgg,; and SfM non-ground points
to calculate height metrics, while SfMj;4,, refers to the use of DTMj4,, and SfM non-ground points.
In addition to multivariate correlations, we used both sets of metrics to identify simple linear regression
models for three simple height measurements obtained from the field data. Fifteen field plots were
included in the analysis since one of the original 16 plots had anomalously large calculated height
values. We thought that manually editing the anomalous values at this point in the analysis would
constitute bias, so the entire plot was excluded from the correlation and regression analyses. SfMggy
height metrics were all strongly correlated (Pearsons’s r > 0.86) with field-measured plot height
values with the exception of SfM maximum, which indicated a moderate correlation (Pearson’s
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r = 0.52-0.55) with field mean, median, and maximum plot height. Refer to Table 3 for a summary of
all multivariate correlations.

Table 3. Multivariate correlations between field-measured and SfMgg and SfMy;q,, plot metrics.
Values represent Pearson’s r. All correlations were significant at o = 0.001. “P” refers to percentile
(e.g., 95th percentile height).

Field Mean Field Med Field Max
StMgp Mean 0.95 0.94 0.93
StMgpv Med 0.95 0.95 0.91
StMgp Max 0.53 0.52 0.55
StMgp\ 95P 0.88 0.86 091
SfMggp 90P 0.92 0.91 0.93
SfMgpp 85P 0.94 0.92 0.94
SfMgpp 80P 0.94 0.93 0.94
StMj;gar Mean 0.94 0.92 0.95
StMjiqar Med 0.95 0.94 0.93
StMjiqar Max 0.47 0.47 0.51
StMj;qar 95P 0.83 0.82 0.89
StMj;qar 90P 0.88 0.89 0.91
SfMj;qar 85P 0.90 0.89 0.93
SfMj;qar 80P 0.90 0.89 0.93

Given the strong correlations between SfMggp, and SfMj4,, height metrics and the potential for
multicollinearity, we opted to perform simple linear regression to determine how well each set of
metrics could predict field measured values. Models were tested by fitting individual SfMgg\ or
SfMiqar covariates to field measured values. In general, both SfMgp, height metrics were able to
account for significant variability in field measured mean height (R? = 0.91; RMSE = 0.81 m), median
height (R? = 0.89; RMSE = 0.91 m), and maximum height (R? = 0.89; RMSE = 1.24 m) (Figure 5). SfMj;gar
height metrics performed similarly well with R? and RMSE values nearly identical to SfMgp-based
models. Refer to Table 4 for a summary of models, their performance, and cross validation results.
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Figure 5. Cont.
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Figure 5. 1:1 relationships between field-measured and model predicted mean (a) median (b) and
maximum canopy height (c) and selected SfMggy; plot metrics. R? values presented in figures represent
the regression coefficient of determination. All regressions significant at p < 0.001.

Table 4. Simple linear regression equations for SfMgg and SfMj;q,, plot metrics and field measured
plot heights. R? value represents the regression coefficient of determination. All simple regressions
were significant at p < 0.001. * symbol refers to multiplication of slope estimate and regression covariate.

StMsm R? (RMSE) K(flflf;fz StMjdar R? (RMSE) Iii’lf;;z
Mean Canopy Height 7 ; g;iﬁ;i] T 091081 0.88 y :Sg\'iiijﬁg? ©0.90 (0.84) 0.87
Median Canopy Height 2?522;&2&1 T 089(091) 0.83 y :Sg\'/([)f;;\zigs T 089(0.89) 0.87
Max. Canopy Height :S%\Z/sz Q0" 089.(124) oss 7 ;&?ﬁ:ﬁfﬂf T 089123 0.84

4. Discussions

4.1. Image Acquisition, Processing, and Point Cloud Generation

Due to the UAS being a plane, blur within images is likely to occur due to abrupt changes in
aircraft speed or attitude changes in flight. Since images with blur can negatively affect keypoint
matching, they were not included, nor were any images captured at or near UAS takeoff and landing
and outside of 75-125 m flying height. The reduction in images processed to generate the point cloud
(i.e., 1166 originally acquired and 361 used for image matching and point cloud generation) resulted in
a processing time of approximately 10 h. Moreover, although significant effort was invested to remove
images with noticeable blur from image acquisition or foliage movement due to wind, some blurring
in the output orthomosaic was present. It was in these areas of image blur that anomalous points
were located significantly below and above the terrain surface. Although many of these values were
removed prior to exporting the point cloud from PhotoScan, anomalous high (and low) Z coordinate
values such as those we observed in the outlier plot removed prior to regression modeling, remained
in the dataset. Such errors are typically the result of inconsistent feature matching as discussed in [22].

4.2. SfM Point Cloud Filtering and DTM Generation

A distinct advantage of lidar as a source of elevation data products is the ability to filter the dataset
based on return number or order (e.g., “3 of 3 returns” or “last and only returns”). This initial filtering
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of a lidar dataset minimizes the number of points considered as candidate points for assignment to
the ground class. SfM datasets do not possess these attributes, so quickly filtering candidate ground
points can be challenging. In our study, we chose to implement a simple block minimum filter of
0.5 m to extract candidate ground points for the adaptive TIN filter provided within LP360. As with
lidar datasets, a successful automatic filtering algorithm may yield a 90-95 percent accurate surface,
however, the remaining 5-10 percent must be manually edited [27]. For this study, significant manual
editing of ground versus non-ground points was performed due in part to the filtering algorithm
used as well as the abundance of understory vegetation including grasses, shrubs, and cacti, which
remained in the point cloud even after automatic filtering.

Our decision to apply a 0.5 m block filter was guided by the high point density of the dataset;
0.5 m was deemed sufficient to include points representing ground for the majority of the study area
except in areas of very dense upper- and under-story canopy closure (Figures 1 and 2). We emphasize
that the only points used in the ground classification were points extracted from the 0.5 m block
filter. In this regard, the minimum separation of ground points, and therefore interpolation distance
between ground points increases as candidate points are removed from the ground class as inadvertent
omission errors during the classification process. Thus, while the block minimum filter provides a
large initial reduction of points, the choice of filter size influences the density of candidate ground
points and ultimately the output DTM resolution. Alternate methods for initial ground point filtering
and classification are available as with any traditional lidar dataset. For example, Dandois and
Ellis [22] implemented a 1 m grid to extract and retain median elevation points within the point
cloud and performed ground classification using a morphological filtering algorithm available in
ALDPAT v1.0 [28] with good results. However, the purpose of the study was not focused on finding
the optimal classification algorithm for our datasets, but instead to compare lidar and SfM products to
obtain DTM surfaces and vegetation structure estimates.

The natural neighbor interpolation algorithm [29] was selected to interpolate point values to a
DTM. Natural neighbor is a local adaptive operator that uses a subset of sample points surrounding
a query point to interpolate heights guaranteed to be within the same range as the sample points.
In the case of our study, we considered natural neighbor to be a viable interpolation algorithm since it
performs well with regular and irregularly distributed data, and adapts to individual data structures
without requiring sample count, search radius, or shape parameterization [30]. Although the algorithm
may be considered too simplistic, prior research by Meng et al. [31] demonstrated that complex
interpolation methods do not necessarily generate better results. Regardless of the technique used to
identify and classify candidate ground points and the subsequent algorithm used to generate the DTM,
it is clear that there are large areas in both the SfM and lidar data sets where ground points are simply
not present. Our results for this specific study area demonstrate that SfM-derived point clouds can be
used to generate accurate DTMs over some vegetated surfaces, though not very well in closed canopy
plots or with the same semi-regular sampling distribution as the corresponding lidar dataset.

4.3. Canopy Height Estimates and Model Performance

Our results are consistent with previous studies that use image-based point clouds and derived
products to estimate plot-level canopy height. However, in this case, we modeled canopy heights using
DTMs generated from a classified SfM point cloud and a previously acquired lidar dataset. The simple
linear regression models used to estimate mean, median, and maximum canopy height exhibited
similar, and in some cases, improved coefficients of determination values and root mean square
errors as reported in the lidar-based literature for a variety of vegetation cover types. Prior studies
have published results demonstrating the ability of lidar-based datasets to account for approximately
70-93 percent of field measured variability with prediction errors (typically as underestimates) of
roughly 1-3 m (e.g., [32-36]). Comparison of regression model intercepts, where the source DTM
is the primary difference, indicates that when model covariates are zero, the SfMgg models will
overestimate vegetation height more so than the SfMj;4,, models. While these overestimates are
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relatively small (i.e., <1 m), accurately modeling low-lying vegetation using the StM-derived DTM
would be challenging.

Dandois and Ellis [23] used image-derived point clouds with a lidar-derived DTM to estimate
mean canopy heights with moderate success (R? = 0.64-0.74) for two study areas, though the RMSE
errors were relatively high (i.e., >3.0 m). In their more recent study using a StM-derived DTM under
leaf off conditions, Dandois and Ellis [22] were able to model canopy heights of the five tallest trees
per plot with improved results (R? = 0.82-0.83), though RMSE values ranged from approximately 4 to
9 m. They note however, that the model predictions and RMSE values were similar for models that
used a lidar-derived DTM. The full scope of which cover types and under what structural conditions
SfM-derived point clouds can be used as an alternative to lidar data continues to be an active area
of research.

The differences in model estimates and errors between metrics calculated from the DTMj;4,, versus
the DTMggy are minor and may be attributed to different classification algorithms, DTM resolution, efc.
However, as demonstrated in this study of a 15 ha woodland, both DTM surfaces and their associated
vegetation height models produced good results, though the SfM DTM did vary considerably from the
lidar DTM (e.g., +1.5 m). Exporting the low-density quality points from PhotoScan resulted in just
under 200 points per square meter. Such high point density certainly facilitates characterization of
some aspects of vegetation structure. However, in practice, the implementation of UAV systems to
acquire imagery used to ultimately generate three dimensional point clouds over vegetated landscapes
must be considered critically. Lidar is still superior in its ability to penetrate canopy gaps and record
returns from the ground surface, particularly under dense canopy cover and over large areal extents.

5. Conclusions

This study presents evidence of the utility of image-based point clouds products obtained from a
low-cost unmanned aerial vehicle system to provide a suitable representation of the bare earth surface
under vegetation canopy as well as robust estimates (i.e., R? > 0.89) of simple plot-level canopy heights.
This study is unique and significant in that our analysis provides a comparison of canopy height
regression estimates derived from height metrics calculated using both a lidar-derived digital terrain
model and a terrain model created from an image-based point cloud within a woodland ecosystem.
We found that regardless of terrain model source data, canopy height estimates explained a substantial
amount variability present in the field measured data (e.g., 89-90 percent). These results advance
our knowledge of the application of image-based point clouds for natural resource modeling and
monitoring by contributing information regarding the landscape conditions over which image-based
point clouds can be used to both characterize the terrain surface and vegetation structure. In this
regard, this study demonstrates that image-based point clouds show robust potential as a low-cost
alternative source of high density three dimensional data.

Acknowledgments: We extend thanks are extended to Ethan Roberts and Caleb Jensen for their assistance with
vegetation data collection and to John Klier for his assistance with image acquisition. Additionally, we also thank
the three anonymous reviewers for their valuable feedback to improve the manuscript.

Author Contributions: Jennifer Jensen conceived and designed the study, participated in field data collection,
analyzed the final point cloud products, performed statistical analysis and authored the paper. Adam Mathews
processed and georeferenced the UAV imagery, collected field data, and co-authored the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Means, J.E; Acker, S.A.; Fitt, B.J.; Renslow, M.; Emerson, L.; Hendrix, C.J. Predicting forest stand
characteristics with airborne scanning lidar. Photogramm. Eng. Remote Sens. 2000, 66, 1367-1371.

2. Popescuy, S.C.; Wynne, R.H.; Nelson, R.E. Estimating plot-level tree heights with lidar: Local filtering with a
canopy-height based variable window size. Comput. Electron. Agric. 2002, 37, 71-95. [CrossRef]


http://dx.doi.org/10.1016/S0168-1699(02)00121-7

Remote Sens. 2016, 8, 50 12 of 13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Smith, A.M.S.; Falkowski, M.].; Hudak, A.T,; Evans, ].S.; Robinson, A.P.; Steele, C.M. A cross-comparison of
field, spectral, and lidar estimates of forest canopy cover. Can. |. Remote Sens. 2009, 35, 447-459. [CrossRef]
Korhonen, L.; Korpela, I.; Heiskanen, J.; Maltamo, M. Airborne discrete-return lidar data in the estimation of
vertical canopy cover, angular canopy closure and leaf area index. Remote Sens. Environ. 2011, 115, 1065-1080.
[CrossRef]

Riano, D.; Valladares, F; Condes, S.; Chuvieco, E. Estimation of leaf area index and covered ground from
airborne laser scanner (lidar) in two contrasting forests. Agric. For. Meteorol. 2004, 124, 269-275. [CrossRef]
Jensen, ].L.R.; Humes, K.S.; Vierling, L.A.; Hudak, A.T. Discrete return lidar-based prediction of leaf area
index in two conifer forests. Remote Sens. Environ. 2008, 112, 3947-3957. [CrossRef]

Peduzzi, A.; Wynne, R.H.; Fox, T.R.; Nelson, R.E,; Thomas, V.A. Estimating leaf area index in intensively
managed pine plantations using airborne laser scanner data. For. Ecol. Manag. 2012, 270, 54-65. [CrossRef]
Lefsky, M.A.; Cohen, W.B.; Harding, D.]J.; Parker, G.G.; Acker, S.A.; Gower, S.T. Lidar remote sensing of
above-ground biomass in three biomes. Glob. Ecol. Biogeogr. 2002, 11, 393-399. [CrossRef]

Hauglin, M.; Gobakken, T.; Astrup, R.; Ene, L.; Neesset, E. Estimating single-tree crown biomass of Norway
spruce by airborne laser scanning: A comparison of methods with and without the use of terrestrial laser
scanning to obtain the ground reference data. Forests 2014, 5, 384-403. [CrossRef]

Li, W;; Niu, Z.; Huang, N.; Wang, C.; Gao, S.; Wu, C. Airborne lidar technique for estimating biomass
components of maize: A case study in Zhangye City, Northwest China. Ecol. Indic. 2015, 57, 486—496.
[CrossRef]

Coops, N.C.; Wulder, M.A,; Culvenor, D.S; st-Onge, B. Comparison of forest attributes extracted from fine
spatial resolution multispectral and lidar data. Can. J. Remote Sens. 2004, 30, 855-866. [CrossRef]
Holmgren, J. Prediction of tree height, basal area and stem volume in forest stands using airborne laser
scanning. Scand. J. For. Res. 2004, 19, 543-553. [CrossRef]

Ahmed, O.S.; Franklin, S.E.; Wulder, M.A. Integration of lidar and landsat data to estimate forest canopy
cover in coastal British Columbia. Photogramm. Eng. Remote Sens. 2014, 80, 953-961. [CrossRef]

Leberl, F,; Irschara, A.; Pock, T.; Meixner, P.; Gruber, M.; Scholz, S.; Wiechert, A. Point clouds: Lidar versus
3D vision. Photogramm. Eng. Remote Sens. 2010, 76, 1123-1134. [CrossRef]

Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, ]J.L.; Carbonneau, P.E. Topographic structure from
motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 2013, 38, 421-430.
[CrossRef]

Snavely, N. Scene Reconstruction and Visualization from Internet Photo Collections. Ph.D. Thesis, University
of Washington, Seattle, WA, USA, 2008.

Snavely, N.; Seitz, S.M.; Szeliski, R. Modeling the world from internet photo collections. Int. ]. Comput. Vis.
2008, 80, 189-210. [CrossRef]

Kaminsky, R.S.; Snavely, N.; Seitz, S.T.; Szeliski, R. Alignment of 3D point clouds to overhead images.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops (CVPR Workshops 2009), Miami, FL, USA, 20-25 June 2009; pp. 63-70.

Mathews, A J.; Jensen, ].L.R. Three-dimensional building modeling using structure from motion: Improving
model results with telescopic pole aerial photography. In Proceedings of the 35th Applied Geography
Conference, Minneapolis, MN, USA, 10-12 October 2012; Volume 35, pp. 98-107.

Pollefeys, M.; Gool, L.V.; Vergauwen, M.; Verbiest, F; Cornelis, K.; Tops, J. Visual modeling with a hand-held
camera. Int. |. Comput. Vis. 2004, 59, 207-232. [CrossRef]

Verhoeven, G. Taking computer vision aloft-archaeological three-dimensional reconstructions from aerial
photographs with photoscan. Archaeol. Prospect. 2011, 18, 67-73. [CrossRef]

Dandois, J.P; Ellis, E.C. High spatial resolution three-dimensional mapping of vegetation spectral dynamics
using computer vision. Remote Sens. Environ. 2013, 136, 259-276. [CrossRef]

Dandois, ].P; Ellis, E.C. Remote sensing of vegetation structure using computer vision. Remote Sens. 2010, 2,
1157-1176. [CrossRef]

Mathews, A.; Jensen, J. Visualizing and quantifying vineyard canopy LAI using an Unmanned Aerial Vehicle
(UAV) collected high density structure from motion point cloud. Remote Sens. 2013, 5, 2164-2183. [CrossRef]
White, J.; Wulder, M.; Vastaranta, M.; Coops, N.; Pitt, D.; Woods, M. The utility of image-based point clouds
for forest inventory: A comparison with airborne laser scanning. Forests 2013, 4, 518-536. [CrossRef]


http://dx.doi.org/10.5589/m09-038
http://dx.doi.org/10.1016/j.rse.2010.12.011
http://dx.doi.org/10.1016/j.agrformet.2004.02.005
http://dx.doi.org/10.1016/j.rse.2008.07.001
http://dx.doi.org/10.1016/j.foreco.2011.12.048
http://dx.doi.org/10.1046/j.1466-822x.2002.00303.x
http://dx.doi.org/10.3390/f5030384
http://dx.doi.org/10.1016/j.ecolind.2015.04.016
http://dx.doi.org/10.5589/m04-045
http://dx.doi.org/10.1080/02827580410019472
http://dx.doi.org/10.14358/PERS.80.10.953
http://dx.doi.org/10.14358/PERS.76.10.1123
http://dx.doi.org/10.1002/esp.3366
http://dx.doi.org/10.1007/s11263-007-0107-3
http://dx.doi.org/10.1023/B:VISI.0000025798.50602.3a
http://dx.doi.org/10.1002/arp.399
http://dx.doi.org/10.1016/j.rse.2013.04.005
http://dx.doi.org/10.3390/rs2041157
http://dx.doi.org/10.3390/rs5052164
http://dx.doi.org/10.3390/f4030518

Remote Sens. 2016, 8, 50 13 of 13

26. Aber, J.S.; Marzoff, 1; Ries, J.B. Small-Format Aerial Photography: Principles, Techniques and Geosciences
Applications; Elsevier: Oxford, UK, 2010.

27. Romano, M.E. Lidar processing and software. In Digital Elevation Model Technologies and Applications: The
DEM Users Manual, 2nd ed.; Maune, D.F,, Ed.; American Society for Photogrammetry and Remote Sensing:
Bethesda, MD, USA, 2007; pp. 479-498.

28. Zhang, K; Cui, Z. ALDPAT 1.0. Airborne Lidar Data Processing and Analysis Tools; National Center for Airborne
Laser Mapping, Florida International University: Miami, FL, USA, 2007.

29. Sibson, R. A brief description of natural neighbor interpolation. In Interpolating Multivariate Data;
Barnett, V., Ed.; John Wiley & Sons: New York, NY, USA, 1981; Volume 21, pp. 21-36.

30. Watson, D. Contouring: A Guide to the Analysis and Display of Spatial Data; Pergamon Press: London, UK, 1992.

31. Meng, X,; Currit, N.; Zhao, K. Ground filtering algorithms for airborne lidar data: A review of critical issues.
Remote Sens. 2010, 2, 833-860. [CrossRef]

32. Naesset, E.; Bollandsas, O.M.; Gobakken, T. Comparing regression methods in estimation of biophysical
properties of forest stands from two different inventories using laser scanner data. Remote Sens. Environ.
2005, 94, 541-553. [CrossRef]

33. Andersen, H.-E.; McGaughey, R.J.; Reutebuch, S.E. Estimating forest canopy fuel parameters using lidar
data. Remote Sens. Environ. 2005, 94, 441-449. [CrossRef]

34. Jensen, ].L.R.; Humes, K.L.; Conner, T.; Williams, C.J.; DeGroot, J. Estimation of biophysical characteristics
for highly variable mixed-conifer stands using small-footprint lidar. Can. J. For. Res. 2006, 36, 1129-1138.
[CrossRef]

35. Erdody, T.L., Moskal, LM. Fusion of lidar and imagery for estimating forest canopy fuels.
Remote Sens. Environ. 2010, 114, 725-737. [CrossRef]

36. Saremi, H.; Kumar, L.; Turner, R.; Stone, C. Airborne lidar derived canopy height model reveals a significant
difference in radiata pine (Pinus radiata D. Don) heights based on slope and aspect of sites. Trees 2014, 28,
733-744. [CrossRef]

@ © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons by Attribution

(CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.3390/rs2030833
http://dx.doi.org/10.1016/j.rse.2004.11.010
http://dx.doi.org/10.1016/j.rse.2004.10.013
http://dx.doi.org/10.1139/x06-007
http://dx.doi.org/10.1016/j.rse.2009.11.002
http://dx.doi.org/10.1007/s00468-014-0985-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Materials and Methods 
	Study Area 
	Image Data Collection, Processing, and Point Cloud Generation 
	SfM Point Cloud Processing 
	Lidar Data Collection and Processing 
	Vegetation Data Collection 
	Data Analysis 

	Results 
	SfM and Lidar DTM Comparisons Data Analysis 
	Evaluation of SfM Point Cloud Products to Estimate Tree Canopy Heights 

	Discussions 
	Image Acquisition, Processing, and Point Cloud Generation 
	SfM Point Cloud Filtering and DTM Generation 
	Canopy Height Estimates and Model Performance 

	Conclusions 

