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Abstract: RANdom SAmple Consensus (RANSAC) is a widely adopted method for LiDAR point
cloud segmentation because of its robustness to noise and outliers. However, RANSAC has a tendency
to generate false segments consisting of points from several nearly coplanar surfaces. To address this
problem, we formulate the weighted RANSAC approach for the purpose of point cloud segmentation.
In our proposed solution, the hard threshold voting function which considers both the point-plane
distance and the normal vector consistency is transformed into a soft threshold voting function
based on two weight functions. To improve weighted RANSAC’s ability to distinguish planes, we
designed the weight functions according to the difference in the error distribution between the
proper and improper plane hypotheses, based on which an outlier suppression ratio was also defined.
Using the ratio, a thorough comparison was conducted between these different weight functions
to determine the best performing function. The selected weight function was then compared to the
existing weighted RANSAC methods, the original RANSAC, and a representative region growing
(RG) method. Experiments with two airborne LiDAR datasets of varying densities show that the
various weighted methods can improve the segmentation quality differently, but the dedicated
designed weight functions can significantly improve the segmentation accuracy and the topology
correctness. Moreover, its robustness is much better when compared to the RG method.
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1. Introduction

Numerous studies have been conducted in 3D building reconstruction in the past two decades [1–3].
According to [4,5], reconstruction methods can be divided into two general categories: data-driven and
model-driven. For high density point cloud data or complex roof structures, the task often converges
on a data-driven process based on segmentation [2]. According to [6,7], there are three data-driven
segmentation techniques: edge-based or region growing (RG), feature clustering, and model fitting.

Segmentation methods based on edge or region information [8–12] are relatively simple and
efficient but are error-prone in the presence of outliers and incomplete boundaries. When the transitions
between two regions are smooth, finding a complete edge or determining a stop criterion for RG
becomes difficult [6]. Techniques using feature clustering for segmentation [6,13–18] experience
problems in deciding the number of segments; and poor segmentation (over-, under-, no segmentation,
or artifacts) can occur when small roof sub-structures exist or tree points close to the building roofs are
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not completely filtered beforehand. Compared with the above techniques, [7] suggested that model
fitting methods can be more efficient and robust in the presence of noise and outliers. RANdom SAmple
Consensus (RANSAC) [19] and Hough transform are two well-known algorithms for model fitting.
The concept and implementation of the RANSAC method are simple. It simply iterates two steps:
generating a hypothesis by random samples and verifying the hypothesis with the remaining data.
Given different hypothesis models, RANSAC can detect planes, spheres, cylinders, cones, and tori [20].
Numerous variants have been derived from RANSAC; and a comprehensive review is available in the
work of [21]. Those variants (i.e., [22–24]) provide the possibility of improving the methods in both
robustness and efficiency. Information like point surface normal [4,7] and connectivity [25] also can be
incorporated in RANSAC for better results. Moreover, although the RANSAC method is an iterative
process, reference [5] suggests that it is faster than the Hough transform.

LiDAR techniques generate ever increasingly high resolution data. This provides the possibility to
recognize subtle roof details and rather complex structures; but in the meantime, it brings challenges to
current RANSAC-based segmentation methods. A widely concerning problem is the spurious planes
that consist of points from different planes or roof surface [4,6,7,26,27]. A detected plane overlapping
multiple reference planes or a plane snatching parts of the points from its neighbor planes are frequent
occurrences. Their misidentification and incorrect reconstruction may have a crucial effect on the
understanding of the building structure (i.e., topology of the building) [28,29]. To address this issue,
many additional processes were designed and used in past studies, such as normal vector consistency
validation [4,7], connectivity [26], and standard deviation of the point-plane distances. Those processes
need careful fine tuning of their parameters in order to achieve the best performance (e.g., reference [30]
suggests that the threshold should be in agreement with the segment scale). This is a difficult task
and highly relies on prior knowledge of the data and scene as well as the experience of the operators.
Therefore, a more accurate fitting method is needed to suppress the spurious planes.

Although no applications were found in building roof segmentation, the M-estimate SAC (MSAC)
and the Maximum Likelihood SAC (MLESAC) in [31] provided a potential solution to the spurious
planes problem. In these two methods, the contribution of a point to the hypothesis plane is no longer
a constant 0 or 1, but rather a loss function (inversed to weight) according to the point-plane distance.
Basically, a large distance is assigned to a large loss, and false hypotheses are suppressed because of
the larger total loss. However, we argue that their loss functions were not sufficient to distinguish the
spurious plans from the correct hypothesis plane for complex roof segmentation problems. Inclusion
of other additional factors into the loss function, such as surface normal, would make the methods
more adaptive and robust.

This paper implements the idea of loss function into the popular RANSAC method and proposes
a weighted RANSAC framework for roof plane segmentation. In the framework of our new method,
the hard threshold voting function which considers both the point-plane distance and the normal
vector consistence is transformed into a soft threshold voting function based on two weight functions.
New weight functions are introduced based on the error distribution between the proper and improper
hypothesis planes. Different forms of weights were tested and compared, yielding a recommended
weight form.

The remainder of this paper is organized as follows. Section 2 discusses the related work and the
modification of the existing weighted RANSAC into the normalized forms. In Section 3, the design
of an ideal weight function is discussed, and several different weight functions are proposed and
evaluated. Experimental results are presented and analyzed in Section 4, followed by discussion and
concluding remarks in Section 5.
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2. Background

2.1. RANSAC-based Segmentation

Although the RANSAC-based segmentation methods have several variations, they consist of
three steps [4]: preprocessing, RANSAC, and post-processing. The preprocessing step yields the
surface normal for each LiDAR point. The roof points can be separated to a planar set and a nonplanar
set (if so, the nonplanar points are excluded from the second step and be retrieved in the final step).
The second step is a standard implementation of the RANSAC method [14]. It iteratively and randomly
samples points to estimate the hypothesis plane and then tests the plane against the remainder of the
dataset. A point is taken as an inlier if the point-plane distance and the angle between the point’s
normal vector and plane’s normal vector (in [6]) are smaller than the given thresholds. After a certain
number of iterations, the shape that possessed the largest percentage of inliers relative to the entire
data is extracted. The method detects only one plane at a time from the entire point set. Thus, the
process has to be implemented iteratively in a subtractive manner, which means that once a plane is
detected, the points belonging to the plane are removed and the algorithm continues on the remainder
of the dataset until no satisfactory planes are found. To be fast, the constraints of normal vectors [7,32]
and local sampling [4,32] are used to avoid the meaningless hypotheses. A fast and rough clustering
(or classification) process can be used to decompose the dataset [7,33]. To be robust, validations on
normal vector consistency [4,7], connectivity [26], and standard deviation of point-plane distances
are also adopted. The main task of post-processing is to refine the segmentation results, retrieve roof
points from unsegmented point sets, find missing planes, and remove false spurious planes [27,32].

For classical RANSAC methods, the plane with the maximum inliers is generated when
determining the most probable hypothesis plane M̂:

M̂ “ argmax
M
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(1)

where U is the set of remaining points, NU is the number of points in U, and T(Pi) is the inlier indicator:

T pPi, Mq “

#

1 di ă dt and θi ă θt

0 otherwise
(2)

where di is the point-plane distance, θi is the angle between point Pi’s normal and plane’s normal [7],
and dt and θt are the corresponding thresholds.

2.2. Spurious Planes

The problem of spurious planes is a widely discussed common problem that has yet to be resolved
in RANSAC-based segmentation. Generally, the planes detected by the RANSAC methods may belong
to different planes or roof surfaces. As shown in Figure 1a, suppose that the threshold dt can be well
estimated beforehand according to the precision of the point clouds, then a proper segmentation is
achieved if the hypothesis planes π1 and π2 receive the largest inlier ratio. However, poorly estimated
planes may be detected, such as plane π3 in Figure 1b, whose point count is much larger than that of
π1 or π2, thus leading to false segmentation. The RANSAC method extracts planes one after the other
from LiDAR points so these mistakes may occur at plane transitions. The situation in Figure 1b can
further intensify such competitions as the inaccurate hypothesis tends to generate more supports from
roof points.
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Figure 1. An example of spurious planes. (a) The well estimated hypothesis planes (π1 and π2); the 
two green parallel lines are the boundary of the point-to-plane distance threshold; (b) A spurious 
plane (π3) is generated under the same thresholds; (c) A detail view of (b), where n is the normal 
vector of the plane π3, and e1 and e2 are the point normal vectors. The d1, d2, θ1, θ2 are the 
corresponding observed values of point P1 and P2 in Equation (2). θ0 is the angle between π3 and the 
real roof surface (π0). 

2.3. Existing Weighted RANSAC Methods 

Instead of using fixed thresholds in the determination of inliers, MSAC and MLESAC [31] use a 
loss function to count the contribution, which is actually a contribution loss, of the inliers based on 
the point-to-plane distance. The most probable hypothesis M̂  is determined by minimizing the 
total loss of hypothesis M : 
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MLESAC utilizes the probability distribution of error by inliers and outliers, models inlier 
errors as Gaussian distribution and outlier errors as uniform distribution: 
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where γ is the prior probability of being an inlier, which is the inlier ratio in Equation (1), σ is the 
standard deviation of Gaussian noise (σd = dt/1.96), and ν is a constant which reflects the size of 
available error space. 

For the so-called weighted RANSAC, the loss function is transformed as the normalized 
weight functions for testing points, having values from 0 to 1, so that different weight functions can 
be easily compared and further applied to more than one factor (i.e., considering both distance and 
normal directions). As a result, the loss functions of MSAC and MLESAC are normalized as 
Equation (6). 

( ) ( ) ( )
( ) ( )0

loss loss d
weight d

loss loss
+∞ −

=
+∞ −

 (6) 

3. Weighted RANSAC for Point Cloud Segmentation 

For the weighted RANSAC methods, the weight value of an inlier reflects its consistency with 
the hypothesis plane. An ideal weight function is expected to suppress the spurious planes as far as 
possible without excessively penalizing the proper planes. In this work, the purpose is achieved by 
comparing the error distribution between the proper and improper hypotheses. In Section 3.1, we 

Figure 1. An example of spurious planes. (a) The well estimated hypothesis planes (π1 and π2); the
two green parallel lines are the boundary of the point-to-plane distance threshold; (b) A spurious plane
(π3) is generated under the same thresholds; (c) A detail view of (b), where n is the normal vector of the
plane π3, and e1 and e2 are the point normal vectors. The d1, d2, θ1, θ2 are the corresponding observed
values of point P1 and P2 in Equation (2). θ0 is the angle between π3 and the real roof surface (π0).

2.3. Existing Weighted RANSAC Methods

Instead of using fixed thresholds in the determination of inliers, MSAC and MLESAC [31] use
a loss function to count the contribution, which is actually a contribution loss, of the inliers based on
the point-to-plane distance. The most probable hypothesis M̂ is determined by minimizing the total
loss of hypothesis M:

M̂ “ argmin
M
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The MSAC adopts bounded loss as follows:

Loss pdq “

#

d2 |d| ă dt

d2
t otherwise

(4)

MLESAC utilizes the probability distribution of error by inliers and outliers, models inlier errors
as Gaussian distribution and outlier errors as uniform distribution:

Loss pdq “ ´log

˜

γ
1

?
2πσd

expp´
d2

2σ2
d
q ` p1´ γq

1
ν

¸

(5)

where γ is the prior probability of being an inlier, which is the inlier ratio in Equation (1), σ is the
standard deviation of Gaussian noise (σd = dt/1.96), and ν is a constant which reflects the size of
available error space.

For the so-called weighted RANSAC, the loss function is transformed as the normalized weight
functions for testing points, having values from 0 to 1, so that different weight functions can be easily
compared and further applied to more than one factor (i.e., considering both distance and normal
directions). As a result, the loss functions of MSAC and MLESAC are normalized as Equation (6).

weight pdq “
loss p`8q´ loss pdq
loss p`8q´ loss p0q

(6)

3. Weighted RANSAC for Point Cloud Segmentation

For the weighted RANSAC methods, the weight value of an inlier reflects its consistency with
the hypothesis plane. An ideal weight function is expected to suppress the spurious planes as far as
possible without excessively penalizing the proper planes. In this work, the purpose is achieved by
comparing the error distribution between the proper and improper hypotheses. In Section 3.1, we
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discuss the drawback of the existing weighted methods that form the design principle of the ideal
weight function. Then, several new weight functions are defined based on the design principle in
Section 3.2. In Section 3.3, adding the factor of normal vector errors into the weight functions is
considered, and a joint weight function is designed via the multiplication of the two factors (distance
and normal vector). Those new weight functions are compared and evaluated in Section 3.4, together
with the existing weighted methods.

3.1. Improvements Consideration of the Weighted Function

Figure 2 (Bottom) provides examples of the point-to-plane distance distribution for both the
proper hypothesis and the spurious plane. To clarify the discussion that follows, the distance range
is divided into three regions, namely A, B, and C. Generally, the inliers of a proper-plane tend to
focus on the region with a smaller distance, which follows the normal distribution in theory, while the
distribution of the distances to a spurious plane tend to be more dispersed. For traditional RANSAC,
the spurious planes are detected instead of the proper plane if there are too many points in region
C. An intuitive solution to alleviate the problem is simply using a smaller distance threshold, i.e.,
changing the threshold dt to d1t, which reduces the inliers count of the spurious plane (yellow region).
However, a too small threshold will decrease the number of inliers (red region) and eventually result
in over-segmentation.
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Figure 2. Comparison of point-to-plane distance distribution between proper and improper 
hypotheses. (Top) Plots of the weight functions (dt = 1.96σd, MLESAC: γ = 0.3, ν = 3σd); (Bottom) 
Examples of distance distribution for the proper hypothesis and the spurious plane. A, B, and C are a 
rough division of the distance range: A for regions where the proper planes are dominant in the 
point count, B for regions where the point counts are similar, and C for regions where spurious 
planes generate more inliers. The red region represents the lost roof points when using a stricter 
threshold and the yellow region indicates that more points are excluded from the spurious planes 
than the proper hypothesis. BDSAC is a newly designed weight curve. 

Without changing the dt threshold, MSAC and MLESAC suppress the spurious planes by 
assigning smaller weights to the inliers with larger distances so that the inliers in area C of Figure 2 
will contribute less to the evaluation of the hypothesis plane. The inadequacy of MSAC and 
MLESAC are mainly caused by its slow decrease of the weight curves. Generally, the weighted 
methods are expected to suppress the spurious plane as far as possible without excessively 
penalizing the proper planes. Under such consideration, we expect the curve of the weight function 

Figure 2. Comparison of point-to-plane distance distribution between proper and improper hypotheses.
(Top) Plots of the weight functions (dt = 1.96σd, MLESAC: γ = 0.3, ν = 3σd); (Bottom) Examples of
distance distribution for the proper hypothesis and the spurious plane. A, B, and C are a rough division
of the distance range: A for regions where the proper planes are dominant in the point count, B for
regions where the point counts are similar, and C for regions where spurious planes generate more
inliers. The red region represents the lost roof points when using a stricter threshold and the yellow
region indicates that more points are excluded from the spurious planes than the proper hypothesis.
BDSAC is a newly designed weight curve.

Without changing the dt threshold, MSAC and MLESAC suppress the spurious planes by
assigning smaller weights to the inliers with larger distances so that the inliers in area C of Figure 2
will contribute less to the evaluation of the hypothesis plane. The inadequacy of MSAC and MLESAC
are mainly caused by its slow decrease of the weight curves. Generally, the weighted methods are
expected to suppress the spurious plane as far as possible without excessively penalizing the proper
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planes. Under such consideration, we expect the curve of the weight function to decrease rapidly
in area B and gradually with small weight values in area C (i.e., the curve of BDSAC in Figure 2).
However, as shown in Figure 2, there are still a great deal of inliers that have large weight values and
gradients in area C for MSAC and MLESAC. MSAC has the largest absolute gradient at the threshold
boundary, and the MLESAC has a boundary weight value of over 0.2, which limit their suppressing
to spurious planes. To overcome the drawbacks of these two methods, we attempted to modify the
weight functions, and the improved versions of weight functions are shown in Section 3.2.

3.2. Modified Weight Functions and New Weight Functions

First, the weight functions of RANSAC, MSAC, and MLESAC were modified. Generally, after
a hypothesis plane is accepted, it is expected that all the inliers should be excluded to avoid affecting
the detection of other planes; while in the plane detection step, it is wished that as fewer outliers
included as possible to decrease the possibility of false plane detection and the absence of minor inliers
is acceptable. This reminds us to reduce the thresholds used in the weight functions and to keep the
threshold unchanged for inlier exclusion. For such an objective, a reduction ratio µ was applied to
the distance threshold dt in the weight function. For example, the MSAC with a reduction ratio µ is
expressed by (denoted by MSACµ):

weightµ pdq “

$

’

&

’

%

1´
ˆ

d
µ ¨ dt

˙2
|d| ă pµ ¨ dtq

0 otherwise
(7)

Similarly, the reduction ratio µ also was adopted in classical RANSAC and MLESAC to generate
the two modified versions, named RANSACu and MLESACu. RANSACu uses smaller threshold µ ¨ dt

for inlier determination; and the σd in Equation (5) of MLESACu is reduced to µ ¨ dt{1.96.
As discussed in Section 3.1, two new weight functions stricter in theory can be designed, whose

value is close to 1 in region A, close to 0 in region C, and rapidly decreasing in region B. One weight
function is a piecewise-linear function, which linearly decreases in Region B (denote by LDSAC).

weight pdq “

$

’

’

’

&

’

’

’

%

1 |d| ď d1
d2 ´ |d|
d2 ´ d1

d1 ă |d| ă d2

0 others

(8)

where d1 and d2 are the selected thresholds between 0 and dt ( i.e., 0.2dt and 0.7dt in our test).
Another weight function is a smooth curve decreasing along the “bell” curve (denote by BDSAC):

weightpdq “ expp´
d2

σd
2 q (9)

The curves of the weight functions and the absolute value of their gradients are illustrated in
Figure 3. All the weight functions are inversely proportional to the point-to-plane distance d with a
range of from 0 to 1, thus the most probable hypothesis plane M̂ is decided similarly with classical
RANSAC in Equation (1):

M̂ “ argmax
M

$

&

%

ÿ

PiPU

weight pdiq

,

.

-

(10)

As the value of the weights is generated by simply mapping the value of d/σd into pre-calculated
tables, the efficiency of all the methods are similar.
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3.3. Joint Weight Function Regarding Angular Difference

The normal vectors of the inliers are generated by neighborhood analysis [6,10] and often have
fine consistency for 2.5D roof surfaces. For poor hypotheses, a systematic deviation of the normal
vectors (i.e., θ0 in Figure 1c) can exist between the hypotheses plane and the real roof surface. As the
normal of the points turns out to be in accord with the real roof surface, this deviation will reflect in
most roof points. As a result, the angular difference between the points and the hypothesis plane (θ in
Equation (2)) has long been used to evaluate the quality of inliers, either as constant thresholds in [7]
or as a normal vector consistency validation in [4]. It is very natural for us to consider adding the
angular difference into the weight definition.

Suppose the distribution of angular difference θ is independent with the distance and also obeys
the normal distribution with a standard deviation of σθ. Then, the weight of the angular difference
can be defined by using the same form as the distance (simply replace d by θ). For instance, the weight
functions of BDSAC for angular difference θ can be defined as:

w pθq “ expp´
θ2

σ2
θ

q (11)

Then, the final weight weight pdi, θiq, considering both the point-to-plane distances and the angular
differences, can be defined as the product of the two weights:

weight pdi, θiq “ wpdiqwpθiq (12)

Similar to Equation (9), the most probable hypothesis plane M̂ is determined by maximizing the
total weight of all the hypothesis of M

M̂ “ argmax
M

$

&

%

ÿ

PiPU

weight pdi, θiq

,

.

-

(13)

To distinguish from methods considering point-to-plane distance only, a subscript of “nv” is added
to the methods that take the angular difference into account (e.g., BDSACnv for the improved method
of BDSAC).

3.4. Weight Function Evaluation

A proper weight function is expected to suppress the improper hypotheses as much as possible,
without excessively penalizing the proper ones. Since the decreasing rates of the total weights for the
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hypothesis plane under different weight functions are different, an outlier suppression ratio is defined
as the evaluation metric here:

ratioos “
Wtest

Wre f
(14)

where Wref stands for the total weight of the reference plane (the plane fitted by all the inliers), and
Wtest is the total weight of the test hypothesis plane.

The test hypothesis planes are randomly generated and manually marked as positive or negative,
based on whether a correct segmentation can be generated. For a positive hypothesis, we expect that
the ratio of a good weight function is stable, which should be close to 1. For negatives hypotheses, we
need the ratio to be as small as possible, and a ratio over 1 indicates that a false hypothesis gains larger
weights than the proper ones, leading to false segmentation.

To evaluate the weight functions defined in Sections 3.2 and 3.3 10 hypotheses planes are generated
from the point cloud of the building in Figure 4, among which three hypotheses are positive and seven
hypotheses are negative.
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Figure 4. Buildings with both positive and negative hypotheses. The deep blue triangle is a negative
hypothesis as it is athwart the two roof planes, and the cyan triangle is a positive hypothesis which can
produce a correct segmentation.

The outlier suppression ratios of the 10 hypotheses are shown in Figure 5. As shown in Figure 5a,
the ratios of eight methods considering only distances error are compared, and the mean ratio of the
10 hypotheses under different thresholds are illustrated in Figure 5c. As shown in Figure 5b,d, we
compare the improvements of the methods after considering both the distance and angular difference
in the weight function, corresponding to Figure 5a,c. Several conclusions can be made at this point:

(1) For all the weighted methods, the evaluation of the positive hypotheses (planes 1, 2, and 3) are
stable as the ratios in Figure 5a are close to 1.0 and the ratio reductions in Figure 5b are close
to 0. Meanwhile, all the weighted methods can significantly decrease the ratios of the negative
hypotheses when compared to RANSAC, but their suppressing ability are different.

(2) By comparing the results between the modified weight functions and the original functions (i.e.,
MSAC0.7 and MSAC), it can be concluded that reduction of the inlier threshold can suppress
the outliers effectively. The newly designed LDSAC and BDSAC functions have the best
performances, which verifies our considerations in Section 3.1.

(3) From Figure 5c, it can be seen that all the methods can be affected by the threshold in some
degree, but the newly designed weighted methods are least influenced.
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(4) Figure 5b,d illustrate the improvements after taking the angular differences into the weight
functions. All the weighted methods gain positive effects and the effects are not sensitive to
the thresholds.
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Figure 5. Suppressing ability and threshold sensitivity test. (a) Suppressing ratios for planes under
different weight forms; (b) Ratio reductions after considering the angular difference (i.e., the ratio
reduction of BDSACnv is the ratio of BDSAC minus the ratio of BDSACnv); (c) Mean ratio of the ten
planes under different dt thresholds; (d) Mean ratios reduction after considering the angular difference
(the reduction approach is similar to (b)).

As the performances of the segmentation methods are greatly influenced by the complexity of the
input data and the threshold parameters, we simulate the data in Figure 6 to test the robustness of the
algorithm on a variety of conditions. The data consists of two adjacent horizontal planes, both 10 m ˆ 5 m
with an average point distance is 0.5 m. The height difference between the planes (∆d) and the
added Gaussian noise (with a standard deviation of σ) are both changeable. The thresholds dt for the
methods are tested from 0.02 m to 0.2 m, every 0.01 m a trail.

The difficulty of segmentation will obviously increase when ∆d decreased or σ increased, which
will influence the selection of the dt thresholds. For data with a larger σ, the dt needs to be larger
in order to include all the plane inliers; otherwise, over-segmentation may occur. As a result, nearly
all the methods fail when dt is smaller than 2σ in Figure 6c (the value need to be even larger in
real applications). The value of ∆d reflects the separability of the two planes and stricter thresholds
are needed for a successful separation. The setting of thresholds needs to consider both factors and
find a proper value between the two limitations, finally forming the acceptable areas for different
weighted methods in Figure 6. For classical RANSAC, the results are rather disappointing and a proper
threshold is difficult to generate. However, for the weighted methods, as the spurious planes are
suppressed, much looser thresholds are allowed which result in larger areas in Figure 6. It also can
be seen that both adding new weight forms and considering the angular difference in the weights
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produce positive effects on the acceptable areas. This decreases the difficulty of threshold selection
and allows the possibility of processing more complex data. For instance, when ∆d equals 0.15 m and
0.2 m in Figure 6b or when σ equals 0.03 m and 0.04 m in Figure 6c, the classical RANSAC methods
will always fail while our new weighted methods can produce a correct segmentation. Intuitively, a
spurious plane that passes through the middle of the two planes will include all the points if dt is
larger than ∆d/2 for classical RANSAC and cannot distinguish the two planes well when dt is larger
than ∆d/3 in our experiments. In comparison, proper results are produced by BDSACnv even when dt

is larger than 2∆d/3.
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4. Experiments and Evaluation

After comparing the effects of different weight functions in suppressing spurious planes and their
sensitivity to thresholds and input data, this section presents the stability and robustness segmentation
results and the optimal weight recommendations. The various assessment metrics are introduced, and
the experiments on various datasets to test the overall performance of the methods are presented.

4.1. Datasets and Fundamental Algorithm

The experiments utilized two datasets. The first dataset was collected in the city of Vaihingen,
ISPRS dataset [34] and the other set, which has a higher point density, was collected on the Wuhan
University campus, China. In the quantitative tests, the reference data were created manually based
on the initial segmentation results and aerial images. Since our segmentation algorithms initiates
from the classified building roof points, the points on the ground, walls, and vegetation were filtered
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beforehand and excluded from the quantitative tests. The results of a RG-based method [11] are also
used for comparison purposes.

To evaluate the effects of the weighted methods, a fundamental RANSAC-based segmentation
algorithm is needed. Since this paper focuses on the effects of the different weight functions,
only a brief introduction to the algorithm implementation is provided here. The main framework
of the algorithm follows the work of [4], but we also refer to the work of [7,25] (described in
Section 2.1). In the pre-processing stage, the points normal are estimated through the tensor voting
algorithm [10], which also divides the points into planar and nonplanar sets. In the second step
(standard RANSAC stage), the density-based connectivity clustering is implemented [22] to ensure the
spatial connectivity of the detected planes. Some speed-up techniques also are also utilized: a fast and
rough connectivity clustering to decompose the integral data [35] (connectivity of the octree cells) and
the ND-RANSAC [32] and Local RANSAC [4] to avoid meaningless hypotheses. The post-processing
mainly included the following aspects: (1) completion of the roof plane by searching the points from
the unsegmented points; (2) clustering of the remaining points set and an extra searching process
to detect the lost segments; and (3) to avoid over-segmentation or detecting a plane twice, a region
merging process [32] was adopted among the neighbor planes, which required the total weights of the
merged plane to be larger than that of either single plane. Some basic specifications for the datasets are
provided in Table 1, and the main parameters are shown in Table 2.

Table 1. Properties of the two datasets.

Site Vaihingen Wuhan

Acquisition Date 22 August 2008 22 July 2014
Acquisition System Leica ALS 50 Trimble Harrier 68i

Fly Height 500 m 1000 m (cross flight)
Point Density ~4/m2 >15/m2

Table 2. Parameters used in the experiments.

MinPt MinLen Angle dt θt Ncc Dcc P0 NbPt1 NbPt2

Vaihingen 5 1 m 15˝ 0.15 m 10˝ 5 1.5 m 0.99 5 20
Wuhan 20 1 m 15˝ 0.20 m 10˝ 5 0.75 m 0.99 10 30

MinPt: the minimum number of points for a plane; MinLen: the minimum length of the detected edge. Angle: the
angle threshold between the three sample points’ normal and the plane’s normal used in hypothesis generation
(ND-RANSAC, see [31]). Ncc (least number of points) and Dcc (searching distance) are the parameters used in
the density-based connectivity clustering [24]. P0 is the confidence probability to select the positive hypotheses
at least once. NbPt1 and NbPt1 are the two parameters (nearest n points) used in the tensor voting-based
method [10] (two rounds of voting).

4.2. Evaluation Metrics

The evaluation metrics consisted of two parts: the object-level evaluation metrics provided in [36]
and the quality of the roof ridges detected after segmentation. Completeness (Comp), Correctness (Corr)
and Quality in [36] are used to assess the segmentation results:

comp “
||TP||

||TP||` ||FN||
corr “

||TP||
||TP||` ||FP||

Quality “
||TP||

||TP||` ||FN||` ||FP||

(15)

where TP (True Positive) is the number of objects found both in the reference and segmentation,
FN (False Negative) is the number of reference objects not found in segmentation, and FP (False
Positive) is the number of detected objects not found in the reference. Different from the metrics
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defined in [37], which are widely adopted for the ISPRS benchmark dataset, the metrics in [36]
found the correspondences between the reference and the segmented data by using the “maximum
overlap” instead of the “overall coverage”. As they only establish one-to-one correspondences, the
TP values in the reference and segmented data are always the same. This can be more convenient
for distinguishing the segmentation errors when the relationships of one-to-many, many-to-one, or
many-to-many occurred. For example, if one segmented plane corresponds to two reference planes
(one-to-many), the two reference planes will all be taken as TPs for the metrics in [37] (fail to detect
under-segmentation), while the smaller reference plane will be detected as FN in [36] instead.

Even a small number of incorrectly segmented points sometimes can have a very large influence
on the identification of building structures (i.e., false division of roof boundary points can affect the
roof topology). Such errors may not be easily detected by the segmentation-based metrics as they only
offer a quick assessment at plane level, (i.e., a minimum overlap of 50% with the reference is required
to be a TP). Consequently, a result-driven metrics is designed based on whether the segmentation
results influences the extraction of roof ridges. The intersection line is calculated using the method and
parameters provided in [28]. Considering that the intersections of roofs ridges in corners (i.e., using
the close-circle analysis in [38]) may cover up some mistakes in segmentation, only the original ridges
are compared in the experiments.

Two ridge-based metrics are utilized in our experiments. One metric is based on the roof topology
graph (RTG) which mainly considers the existing ridges between planes. In the above metrics,
the one-to-one correspondences among the reference planes and roof planes have been established.
A detected ridge is related to two extracted planes and is taken as a TP only when two correspondences
between planes can be found and a reference ridge exists between the two planes. The second metric
is much stricter and accepts a TP only when the corresponding ridges are similar enough. To achieve
such a goal, the similarity between the reference ridges and the test ridges are defined (Figure 7),
which consists of three aspects: distance consistence (dc), orientation consistence (oc), and projection
consistence (pc):

dc “ exp

#

´

ˆ

|CC1| ` |DD1|

2 ¨ dis0

˙2
+

oc “ exp
"

´p
α

α0
q

2
*

pc “
|AB| X |C1D1|

|AB| Y |C1D1|
“
|C1B|
|AD1|

(16)

where α0 and dis0 are two previously established values (i.e., 5˝ and 0.2 m). As the oc, pc and dc
are values between 0 and 1, the large the better, the integral consistence is set as the product of the
three values:

ic “ oc ¨ dc ¨ pc (17)
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Figure 7. Definition of ridge similarity. Line AB: the reference ridge (Ref); line CD: the detected ridge
(Test), where C1 and D1 are the corresponding projection points of C and D; and α is the intersect angle.

4.3. Experiments

In this section, the improvements from using the weighted approach experimentally are verified.
First, the methods for typical scenes that are error-prone for classical RANSAC are presented. Then,
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the results for the Vaihingen and Wuhan University datasets are evaluated by the metrics given in
Section 4.2.

4.3.1. Local Data

For the RANSAC-based methods, spurious planes that consist of points from several roof surfaces
are easily generated when adjacent planes have very similar heights or normal orientations. As shown
in Figure 8, we select eight typical buildings (a)–(h) to examine the new weighted methods, with the
error-prone regions numbered from 1 to 12. In regions 1–2, 5, and 11, a detected plane is possibly
be overlapping multiple reference planes; for regions 3–4 and 9–10, poor segmentation may occur
when inaccurate hypothesis planes snatch points from neighbor planes; for regions 6–8, two planes are
shown as merged into one; and the roof in region 12 is not complanate, thus the segmented results are
likely fragmentized. Due to the limited space, we present only the segmentation results for RANSAC,
BDSAC, and RG. The MSAC and MLESAC results are very similar to the conventional RANSAC
results and can hardlyable to distinguish the poorly estimated planes. Further discussion will be
provided in Figure 9.
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As shown in Figure 8, our new weighted method significantly improved the segmentation and
ridge detection results. In regions 1–9, most of the segmentation errors for the RANSAC method,
which are also common for the RG method (regions 5–9), are properly solved. In regions 10–12, all the
methods fail to create ideal results. The errors in region 10 are mainly caused by sparse data; and in
region 11, the normal difference between planes A and B is about 3˝and the height difference between
B and C is only about 0.15 m, which are too small to distinguish under the current thresholds. The RG
method successfully distinguished roofs A and B while it fail to separate B and C. For region 12, all the
methods fail because the origin data is not complanate. As a result, our method, compared to the RG
method, is slightly better in region 10 but worse in region 11. The quantitative results in Table 3 support
our conclusion. Comparing the results of our method to classical RANSAC, the overall segmentation
quality increases from 61.3% to 77.2%, and the two ridge-based metrics also increase from 51.8% to
81.7% and 41.6% to 69.3%. Meanwhile, our results are also better than the RG method by the metrics.
It can be seen that for regions like 1–4 and 9–0, the incorrectly classified points may not be significant
in point count but had strong influences on the identification of roof topology. Such errors are not
distinguished by the segmentation-based metrics (i.e., the three planes in region 9 are considered as
TPs). Our ridge based metrics show more reasonable evaluation under such situations as the errors
will damage the distinguishing of roof ridges. The metrics based on ridge similarity are stricter than
those based simply on RTG and exclude some ambiguous or incomplete ridges, such as the ridges in
building (b) in Table 3, and thus are more reasonable in some situations.

Table 3. Quality of segmentation results for data in Figure 8.

ID nPls nRidges Method
Segmentation Ridges (RTG) Ridges (ic > 0.3)

%Cm %Cr %Qua %Cm %Cr %Qua %Cm %Cr %Qua

a 10 7
RANSAC 80 100 80 71.4 55.5 45.5 57.1 44.4 33.3

RG 100 100 100 71.4 100 71.4 71.4 100 71.4
BDSACnv 100 100 100 100 100 100 71.4 100 71.4

b 5 3
RANSAC 80 57.1 50 66.7 50.0 40.0 0 0 0

RG 100 100 100 100 100 100 100 100 100
BDSACnv 100 100 100 100 100 100 100 100 100

c 7 5
RANSAC 85.7 60 51.5 60.0 37.5 30.0 40.0 25.0 18.2

RG 85.7 75 66.7 100 71.4 71.4 100 71.4 71.4
BDSACnv 100 100 100 100 83.3 83.3 100 83.3 83.3

d 10 11
RANSAC 80.0 100 80.0 90.9 100 90.9 90.9 100 90.9

RG 80.0 100 80.0 90.9 100 90.9 90.9 100 90.9
BDSACnv 100 100 100 100 100 100 100 100 100

e 9 7
RANSAC 88.9 100 88.9 71.4 100 71.4 57.1 80 50

RG 60 100 60 71.4 100 71.4 57.1 80 50
BDSACnv 100 100 100 100 100 100 100 100 100

f 12 12
RANSAC 66.7 66.7 50 33.3 50.0 25.0 33.3 50 25.0

RG 83.3 90.9 76.9 41.7 55.5 31.2 41.7 55.5 31.2
BDSACnv 91.7 91.7 84.6 91.7 91.7 84.6 66.7 66.7 50.0

g 23 5
RANSAC 69.6 64.0 50.0 100 62.5 62.5 100 62.5 62.5

RG 78.3 72.0 60.0 100 71.4 71.4 100 71.4 71.4
BDSACnv 69.6 66.7 51.6 100 50.0 50.0 100 50.0 50.0

h 11 10
RANSAC 90.9 71.4 66.7 90.0 64.3 60.0 80.0 57.1 50.0

RG 81.8 69.2 60.0 70.0 46.7 38.9 60.0 40.0 31.6
BDSACnv 90.9 66.7 62.5 90.0 69.2 64.3 80.0 61.5 53.3

sum 87 60
RANSAC 78.2 73.9 61.3 71.7 65.2 51.8 61.7 56.1 41.6

RG 82.8 83.7 71.3 75.0 73.8 59.2 71.7 70.5 55.1
BDSACnv 89.7 84.8 77.2 96.7 84.1 81.7 86.7 77.6 69.3

Figure 9 depicts the performance results of the different weighted methods based on the data in
Figure 8, via the outlier suppression ratio (Equation (14)). In each error-prone region, we utilize the
largest spurious plane by RANSAC as the test hypothesis plane, whose total weight is Wtest, and the
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total weight of the largest reference plane in the corresponding region is Wref. Regions 1–11 in Figure 8
are evaluated. Region 12 is omitted because the roof surface is nonplanar.

Although the ratios are smaller for MSAC and MLESAC than for classical RANSAC, all of them are
over 1; thus, the two methods will still accept all the spurious planes that result in false segmentation.
As a result, simply using MSAC and MLESAC cannot improve the segmentation results. For our
new method, both the new weight forms and the weights regarding angular difference have distinct
positive effects on the final results. Considering only one factor may fail in some situations, such as
regions 4 and 7 for BDSAC and MSACnv. Meanwhile, the extent of the improvements by angular
difference in the weights may be different for the planes. For planes with distinct biases in both the
distance and normal vectors, such as regions 2 and 8, the suppressing of the total weights can be larger
than in other regions. Again, BDSACnv provides the best results. In addition, although our methods
fail in region 11, the ratio of the BDSACnv is still smaller than the other weighted methods.

4.3.2. Vaihingen (Germany)

Figure 10 illustrates the segmentation results for the Vaihingen data; specifically, Figure 10a–c are
the benchmark data of the “ISPRS Test Project on Urban Classification and 3D Building Reconstruction”,
in which A and B have been tested in Figure 8e,f, respectively. Other error-prone regions for the classical
methods also are indicated in the Figures. For region E, the situation is similar to Figure 8b,f, where
spurious planes overlapping multiple roof planes can be produced. In region G, several planes
intersect at the same roof corner, which requires more accurate segmentation methods and neighbor
competition in the post-processing to better divide the roof boundary points. Our weighted methods
show advantages in those regions as well, as the planes with smaller distance errors are more likely
to be accepted. Such differences can be detected by the ridge-based metrics. When the transitions
between the neighbor regions are smooth, as shown in E, the RG-based methods may fail. Some of the
errors are caused by the processing before roof segmentation; for example, the points in region C are
classified as vegetation and parts of the points in region D are lost in the original data. All the methods
fail in those regions and the related roof ridges are also lost. For E, F, and G, the segmentation results
of the different methods are illustrated in Appendix I for comparison.

The quantitative results of the Vaihingen data are shown in Figure 11. It can be seen that our
BDSACnv method generates significant improvements compared to the traditional methods RANSAC
and MSAC. Higher scores are achieved by our methods when using either the segmentation-based
metrics or the two ridge-based metrics. The improvements of MSAC and MLESAC to RANSAC are
not evident in the test data, and many spurious planes are still detected. It should be noted that
some error-prone regions are also difficult for the RG method because regions with small angular or
height differences often have very smooth transitions (e.g., B and E). Besides, the RG methods seem
to be unstable in a few regions, such as the over-segmentation that unexpectedly occurs in F (see
Appendix I).
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4.3.3. Wuhan University (China)

The segmentation results of the Wuhan University data are illustrated in Figure 12. Some error-prone
regions are designated. For L and M, spurious planes that overlap multiple roof planes can be
produced. For J and O, the small roof planes or short roof ridges may be lost because of small point
counts and the competition of roof points from large neighbor planes. In areas (g)–(l), there are many
roof details (e.g., Figure 10e), including small windows, eaves, and even guard bars made of glazed
tiles, which greatly increase the segmentation difficulties and ultimately results in small plane pieces
and short false ridges. In K, a horizontal plane is produced passing through the four planes because
the normal errors are not considered in the weight functions. The weighted methods demonstrate
great robustness under those situations and therefore significantly improve the segmentation results.
Our methods also encounter problems which are unable to resolve. For example, since our weighted
methods are not yet adaptable to a curved surface, they divide H and N into several broken pieces.
In addition, the RG-based methods fail in I because the points from the upper structure divide the
bottom plane into many pieces. The segmentation results for I, K, L and M using different methods are
also shown in Appendix I.
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The RANSAC-based method can be more robust in those situations. Since the RG method considers 
the roof slope, it can distinguish very small angular differences, which makes it better than the 
original RANSAC method results in L and M; and over-segmentation also occurred using RG in L 
and M. A detailed comparison is available in Appendix I. 
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and MLESAC are slightly better than that of RANSAC. Our BDSACnv generate significant 
improvements compared to both classical RANSAC and the existing weighted methods. Compared 
to RANSAC, BDSACnv improves the overall segmentation quality from 85.7% to 90.1%, as well as 
the two ridge-based metrics from 75.9% to 83.6% and 68.9% to 80.2%. The quality of the RG method 
is lower than the RANSAC-based methods, mainly due to their instability in areas (c), (g) and (h). 
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The quantitative results of the Wuhan University data are illustrated in Figure 13. Similar to
Figure 11, our method makes significant improvements compared to the other weighted methods.
For areas (g) and (h), the RG method’s performance is unsatisfactory because many broken
fragments exist. For I in area (h) especially, the bottom planes become numerous broken fragments.
The RANSAC-based method can be more robust in those situations. Since the RG method considers
the roof slope, it can distinguish very small angular differences, which makes it better than the original
RANSAC method results in L and M; and over-segmentation also occurred using RG in L and M.
A detailed comparison is available in Appendix I.
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Figure 13. Quantitative results of the Wuhan University data. (g–l) are the six areas selected in
Figure 12. Three metrics are used, from left to right: quality of segmentation and quality of two ridge
based metrics.

The overall quantitative results are shown in Figure 14, which includes the results of Figures 8,
10 and 12. It can be seen that, while the improvements were not very obvious, the results of
MSAC and MLESAC are slightly better than that of RANSAC. Our BDSACnv generate significant
improvements compared to both classical RANSAC and the existing weighted methods. Compared to
RANSAC, BDSACnv improves the overall segmentation quality from 85.7% to 90.1%, as well as the
two ridge-based metrics from 75.9% to 83.6% and 68.9% to 80.2%. The quality of the RG method is
lower than the RANSAC-based methods, mainly due to their instability in areas (c), (g) and (h).
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or artifacts (see Section 4.1). Second, the weight definition of our method requires a robust estimate 
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5. Conclusions

A new weighted RANSAC algorithm for roof point cloud segmentation is introduced in this
paper, in which the hard threshold voting function considering both the point-plane distance and
the normal vector consistence is transformed into a soft threshold voting function based on two
weight functions. Our method utilizes a new strategy to design the ideal weight functions based
on the error distribution between the proper and improper hypotheses. Several different weight
functions are defined using this strategy, and an outlier suppression ratio is put forward to compare the
performance of different weight functions. Preliminary experiments comparing the suppression ratios
of different weight functions demonstrated that the BDSACnv method is able to effectively suppress
the outliers from spurious planes. As a result, we chose BDSACnv for the further experiments and
compare its performance with other existing segmentation methods, including original RANSAC,
MSAC, MLESAC, and a representative RG method. A set of local data with error-prone regions and
two large area datasets of varying densities are used to evaluate the performance of the different
methods. The quantitative results of both the segmentation-based metrics and the ridge-based metrics
indicated that the different weighted methods improve the segmentation quality differently, but
BDSACnv significantly improve the segmentation accuracy and topology correctness. When compared
with RANSAC, BDSACnv improved the overall segmentation quality from 85.7% to 90.1%; and the
two ridge-based metrics also improved from 75.9% to 83.6% and 68.9% to 80.2%. Moreover, the
robustness of BDSACnv is better compared to the RG method. As a result, we believe there is potential
for the wide adoption of BDSACnv as an upgrade to or replacement of classical RANSAC in roof
plane segmentation.

However, our method has several limitations. First, although the weighted RANSAC approach is
robust to parameters, a small amount of post-processing is still needed to avoid false segmentation or
artifacts (see Section 4.1). Second, the weight definition of our method requires a robust estimate of
point surface normal, which can be problematic for small buildings or when the point density is low
with regard to the roof dimensions. Third, the issue of spurious planes is efficiently suppressed by our
method but not completely solved; therefore, spurious planes still may occur in extreme conditions
(i.e., Figure 8g).

There are also some possible improvement directions for future work. The number of iterations
for RANSAC increases rapidly when the inlier ratio decreases, thus a combination of cluster and
fitting to decompose the input data step by step could greatly improve the algorithm’s efficiency and
robustness. Meanwhile, RANSAC is a one-at-a-time process so adopting the competition approach
among neighbor planes could improve the accuracy of segmentation. Finally, only the segmentation of
roof planes was considered in this paper, but applying the weighted methods to other roof shapes is
possible as the methods mainly are concerned with the procedure of hypothesis verification and do
not change the generation of the hypothesis.
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