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1. Procrustes analysis 

Procrustes analysis is a popular method of statistical shape analysis used to provide least 
squares matching of two or more sets of landmark data (point matrices represented in given shapes) 
[1–4]. Ordinary Procrustes analysis matches two sets of landmark data to find out the optimal 
shape-preserving Euclidian transformations through rotation, translation and uniformly scaling. 
This transformation minimizes the differences in location between the comparison shape and the 
target shape [5]. 

If X is the target shape matrix of dimension n × p, Y is a compared shape matrix of dimension n × 
q (q ≥ p), the transformed matrix Z is calculated as follows: 

b= +Z YT a  (1)

where, b is a scaling factor for adjusting the size of the matrix, T is an orthogonal rotation matrix 
and a is a constant matrix, used to translate the points. The parameters b, T, and a are determined by 
the least squares criterion: 
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Generalized Procrustes analysis applies Ordinary Procrustes analysis to optimally superimpose 
m (≥ 3) sets of shapes instead of only two shapes (aligning them to one target shape). With GPA the 
m sets can be aligned to each other under least-squares correspondence [6,7]. 

The consensus shape matrix C can be initially defined as geometrical centroid of the transformed 
matrices given by: 
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The final consensus shape matrix can be obtained using the following minimum condition (least 
squares objective function) in an iterative computation scheme as follows: 
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Further details and statement of the algorithm can be referred to the work of Crosilla and Beinat 
[8] and Beinat and Crosilla [9]. 

2. TVDI 
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Figure S1. Conceptual diagram of LST-NDVI scatterplot for defining Temperature 
Vegetation Dryness Index (TVDI). Adapted from Sandholt et al. (2002). 

On the basis of combining remotely sensed land surface temperature (LST) and normalized 
difference vegetation index (NDVI) data, the Temperature Vegetation Dryness Index (TVDI) was 
developed to capture information of surface soil moisture and can be applicable over partially 
vegetated area [10]. Figure S1 shows a conceptual representation for the TVDI. The scatterplot in 
LST-NDVI space normally forms a triangular shape [10–12], if a wide range of fractional vegetation 
cover and soil moisture conditions is covered in the data. In the triangle space, the location of a data 
point is mainly dominated by soil wetness condition. The wet edge formed by the minimum 
temperature (LSTmin) indicates the maximum soil moisture status and evapotranspiration, while the 
dry edge formed by the maximum temperature (LSTmax) represents the limiting soil moisture 
availability and evapotranspiration. LSTmax is defined (originally suggested) as empirical functions 
of the NDVI. Based on this triangle, the TVDI is originally defined by the following equation: 
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−=
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 (5)

where LST is the observed surface temperature at a given pixel, LSTmax (= a + bVI) is the maximum 
temperature at a given NDVI interval, a and b are the regression parameters of the linear regression 
fit between NDVI and LSTmax, LSTmin is the minimum temperature in the triangle. The method used 
for retrieving LST is presented in the Section 3. However, actually, previous studies have revealed 
that the minimum surface temperature at the wet edge does not remain constant with variations in 
NDVI values under non-water stress conditions and this will give rise to a overestimation of TVDI 
at low fractional vegetation cover [13,14]. Consequently, it is unconvincing to use a fixed wet edge 
to calculate TVDI for all land cover types. Considering the above findings, both wet and dry edges 
in the NDVI–LST space are linearly regressed in this study and the regressed equations can be 
given by: 

min 1 1LST a b NDVI= + ×  (6)
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max 2 2LST a b NDVI= + ×  (7)

where LSTmin is the minimum surface temperature, defining the wet edge, LSTmax is the maximum 
surface temperature, defining the dry edge, a1 and a2 are the intercepts for the wet and dry edges, 
respectively, and b1 and b2 are the slopes for the wet and dry edges, respectively. Accordingly, the 
TVDI can be calculated according to: 
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The values of TVDI range from 0 (maximum evapotranspiration) to 1.0 (limited water 
availability) based on its position in the feature space.  

Numerous experiments showed a strong liner relationship between NDVI and plant biomass. 
Besides, when the fractional vegetation cover is less than 15%, the NDVI is difficult to indicate the 
regional plant biomass due to the low-vegetation cover. As fractional vegetation cover increased 
from 15% to 80%, the NDVI values rises rapidly. When the vegetation coverage become greater than 
80%, there will be a slighter growth in NDVI with lower sensitivity to vegetation [15,16]. In view of 
the above, a range of NDVI between 0.15 and 0.75, in which an apparent linear fit of the NDVI–LST 
space appears (both LSTmax and LSTmin were well linearly regressed), were selected by visual 
interpretation to achieve the optimal corresponding equations for defining wet edge and dry edge. 
The pixels with NDVI value of < 0.1 were generally assumed to be water body, cloud or snow, and 
were thereby ruled out from the regression fitting process [17]. 

3. Land surface temperature retrieval algorithms 

In this section, methods for retrieving LST from the Landsat thermal channel of both ETM+ and 
OLI will be presented. 

The Qin et al.’s mono-window algorithm 

Qin et al. [18] developed a mono-window (MW) algorithm in order to estimate LST particularly 
for TM/ETM+: 

( ) ( )( )1 1 /s sensor aT a C D b C D C D T DT C = − − + − − + + −   (9)

with 

C ετ=  (10)

D (1 )[1 (1 ) ]τ ε τ= − + −  (11)

where a=–67.355351, b=0.458606, ε represents the land surface emissivity (LSE), τ represents the 
atmospheric transmissivity, Tsensor is the at-sensor brightness temperature and Ta is the mean 
atmospheric temperature (for mid-latitude summer) defined as: 

016.0110 0.92621aT T= +   (12)

To is the near-surface air temperature (at about 2 m height). The method used for retrieving LSE 
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is further presented in the Section 4. The atmospheric transmissivity τ can be calculated by the 
web-based atmospheric correction tool [19,20], in which the control parameters can usually be 
obtained from local meteorological data.  

The split-window algorithm 

The Split-window (SW) techniques basically use the differences in the atmospheric absorption of 
two thermal infrared (TIR) spectral bands to retrieve the land surface temperature [21]. With the 
addition of one thermal band compared to Landsat ETM+, the SW algorithm proposed by 
Jimenez-Munoz et al. [22] was applied in this study to obtained LST from Landsat 8 thermal 
infrared data, in which the LST is given by the following equation:. 
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where Ti and Tj represent the at-sensor brightness temperatures at the two TIR bands i and j, c0 to c6 
are constant coefficients determined from simulated data, ε' (= (εi +εj)/2) is the mean emissivity and 
Δε (=εi −εj) is the emissivity difference, w is the total atmospheric water vapor content that can be 
approximated according to [23]: 

10(1.0335 ) / 0.1134w τ= −  (14)

where τ10 represents the atmospheric transmissivity at TIRS Band 10. More details for Landsat 8 SW 
algorithm can be found in the work of Jimenez-Munoz et al. [22]. 

4. Land surface emissivity estimation 

The land surface emissivity (LSE) is an essential parameter to apply the methods mentioned 
above to a Landsat image, it is important to estimate its value for each pixel prior to performing the 
MW or SW algorithm. However, as being subjected to the heterogeneity of earth surface materials, 
the LSE varies remarkably over even short distances [24]. A number of studies have attempted to 
estimate the emissivity from infrared and visible data for thermal infrared sensors [25,26]. The 
NDVI Thresholds Method—NDVITHM, which is first introduced by Sobrino and Raissouni [25], 
shows a good working in using the NDVI to indirectly obtain the LSE of the thermal infrared bands 
in natural vegetation and agricultural areas. However, the NDVITHM can merely be applied over 
surfaces composed by bare soil and vegetation, it fails to work when over other land cover surfaces 
like water, snow, or manmade materials.  

Therefore, an extension of the approach to obtain LSE of these non-vegetation/soil classes of 
pixels is indispensible in our study area. An operative solution could be to assign an emissivity 
value for each non-vegetation/soil class according to a classification image as non-vegetation 
surfaces are normally considered to be homogeneous [27]. To begin this process, we built a decision 
tree from a given set of thresholds based on different remote sensing indices as indicated by prior 
studies [28–30] (Figure S2), since decision tree classifier has been proven to be a simple yet widely 
used classification technique [30]. The study area was then roughly classified into five land cover 
classes including water body, vegetation, mixture of soil and vegetation, bare soil, and manmade 
material. It should be noted that a post-classification recoding would be required prior to grouping 
the land cover types into corresponding emissivity classes. Our approach was to determine the 
surface emissivity by calculating the average emissivity value of each category of materials 
(collection of main sample spectra) presented in the MODIS UCSB Emissivity Library 
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(http://www.icess.ucsb.edu/modis/EMIS/html/em.html) and filtered in terms of ETM+/TIRS band 
filter function (Table S1). Finally, the improved procedure for retrieving LSE is summarized in Table 
S2, considering different Land cover types. 

 

Figure S2. Decision tree classification model. 

Table S1. Emissivities of different land cover types for Landsat 8 TIRS band 10 and 11. 

Classes Vegetation Bare soil Manmade material Water body 

Band 10 0.986 0.973 0.962 0.993 

Band 11 0.988 0.978 0.971 0.987 

Table S2. The retrival of LSE for different cases. 

Classes Expression for LSE 

Vegetation εv + C 

Bare soil εs 

Mixture of soil and vegetation εvPv + εs(1 − Pv) + C 

Manmade material εm 

Water body εw 

εv, εs, εm and εw are the vegetation emissivity, the soil emissivity, the manmade material emissivity 

and the water emissivity, respectively. C is the cavity term = (1 − εs) + εvF(1 − Pv), where F is a geometrical 

factor and a typical value of 0.55 is chosen; Pv is the vegetation proportion = 
2

min

max min

NDVI NDVI

NDVI NDVI
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, 

where NDVImax = 0.78 for fully cover vegetation, and NDVImin = 0.09 for bare soil [31]. 
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Vegetation 

Manmade material Bare soil 
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