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Abstract: It is highly desirable to accurately detect the clouds in satellite images before any kind of
applications. However, clouds and snow discrimination in remote sensing images is a challenging
task because of their similar spectral signature. The shortwave infrared (SWIR, e.g., Landsat TM
1.55–1.75 µm band) band is widely used for the separation of cloud and snow. However, for
some sensors such as the CBERS-2 (China-Brazil Earth Resources Satellite), CBERS-4 and HJ-1A/B
(HuanJing (HJ), which means environment in Chinese) that are designed without SWIR band, such
methods are no longer practical. In this paper, a new practical method was proposed to discriminate
clouds from snow through combining the spectral reflectance with the spatio-temporal contextual
information. Taking the Mt. Gongga region, where there is frequent clouds and snow cover, in China
as a case area, the detailed methodology was introduced on how to use the 181 scenes of HJ-1A/B
CCD images in the year 2011 to discriminate clouds and snow in these images. Visual inspection
revealed that clouds and snow pixels can be accurately separated by the proposed method. The
pixel-level quantitative accuracy validation was conducted by comparing the detection results with
the reference cloud masks generated by a random-tile validation scheme. The pixel-level validation
results showed that the coefficient of determination (R2) between the reference cloud masks and
the detection results was 0.95, and the average overall accuracy, precision and recall for clouds
were 91.32%, 85.33% and 81.82%, respectively. The experimental results confirmed that the proposed
method was effective at providing reasonable cloud mask for the SWIR-lacking HJ-1A/B CCD images.
Since HJ-1A/B have been in orbit for over seven years and these satellites still run well, the proposed
method is helpful for the cloud mask generation of the historical archive HJ-1A/B images and even
similar sensors.

Keywords: cloud; snow; HJ-1A/B; regional covariance matrix; spectral; spatio-temporal;
texture; context

1. Introduction

Accurate detection of clouds in satellite images is critically important for a wide range of
applications [1]. It is the fundamental pre-processing step for the land cover classification [2], change
detection [3], image compositing [4,5], or biophysical variables inversion [6,7]. Generally, undetected
clouds in satellite images can introduce serious positive bias in aerosol concentration, increase land
surface albedo and result in identification of land cover change where none occurred [8,9].
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Precise detection of clouds in the images is a quite challenging work not only because of
the complexity of clouds themselves but also the difficulty in clouds and snow discrimination [1].
Regarding the complexity of clouds, many types of clouds exist and different types of clouds have
various spectral signature. The differences are mainly depended on cloud properties such as optical
thickness, height, particle effective radius and thermodynamic phase [10,11]. In particular, thin
cirrus clouds are notoriously difficult to be detected due to their mixture spectral signature with land
surface [12,13]. Regarding the clouds and snow discrimination, the spectral signature of snow and
clouds are both visually bright in the visible wavelengths. This spectral similarity makes them very
difficult to be distinguished in visible bands. Moreover, the spectral reflectance of snow can also vary
greatly with its properties like grain size, amount of impurities, and thickness of snowpack. Sometimes
snow can have very similar spectral signature to certain clouds [9].

Over the years, a number of automated cloud detection methods have been developed based on
the spectral signature (hereafter called spectral-based methods) [5,9,10,12,14–17]. Among different
spectral bands, the shortwave infrared (SWIR, e.g., Landsat TM 1.55–1.75 µm band) band is most
widely used for the clouds and snow discrimination. The primary reason is that the reflectance of
snow is usually lower than clouds and therefore snow is generally darker than clouds in the SWIR
wavelengths [18]. The Normalized Difference Snow Index (NDSI) [19,20], a combination of visible
and SWIR, is very effective for snow and clouds separation [1,10,16]. For instance, it was used for the
generation of the internal cloud and snow masking algorithm in the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) [21,22]. However, for some newly launched sensors without
SWIR band, such as CBERS (China-Brazil Earth Resources Satellite), HJ-1A/B (HuanJing (HJ), which
means environment in Chinese), the aforementioned spectral-based methods are no longer practical
and the difficulty in discriminating cloud and snow for these sensors is even more serious.

Combining spectral signature with spatio-temporal context provides more complementary
information for the clouds or snow detection process [1,8,23,24]. For temporal context, it has been
used in the new algorithms development for a number of satellite sensors, including MODIS [8],
Landsat [9], SPOT [25], and Sentinel-2 [23]. A direct and simple strategy using temporal context is
to compare the spectral difference of cloudy images with a referenced clear image [23]. This kind
of strategy based on the basic hypothesis that the presence of clouds will introduce high-frequency
random changes, and by comparing with a clear-sky reference image, the cloud and snow can be easily
separated (hereafter called temporal-based methods). However, there are also some limitations in the
temporal-based methods. The main limitation comes from the revisit cycles of satellites, especially for
the fine spatial resolution but long revisit cycle sensors like Landsat. Due to the long revisiting cycles
for these satellites, the phenological variations of some land cover types in the revisit cycle, such as the
deciduous forest, grassland, farmland, and the glacier may vary so greatly that the basic assumption
that the change of reflectance was induced by cloud presentence might be invalid. Another limitation
comes from the geometric location relationships between clouds and snow. If the clouds cover the
same region of snow, the spectral differencing will weaken clouds spectral signature and consequently
may cause omission errors. Moreover, SWIR band is usually still needed in most temporal-based
algorithms [8,9,23], which limits their application for the sensors without SWIR bands.

For spatial contextual information, it can be defined as how the probability of presence of one
object (or objects) is affected by its (or their) neighbors [26]. It is the relationship between the target
object and synthesis information generated from the spatial environment [27,28]. Texture is the
widely used spatial contextual information, and it refers to repeated local patterns and their regular
arrangement of kinds of objects in the images [29]. The texture of clouds and snow are one of
their important properties. Even though the texture element of clouds and snow is variable and
unpredictable, they are still obviously different from the ground object texture features. On the basis
of texture feature analysis, many scientists have done considerable works to improve the accuracy of
cloud or snow detection [30–33]. However, most of the present texture-based algorithms assume that
there is no snow in the cloudy images or no clouds in the snow covered images [33]. Besides, there are
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many types of texture features, and using more features does not naturally result in higher accuracy
because of the Hughes effect [29]. Moreover, using more feature also result in a large computation
cost [32].

The HJ-1A/B is a kind of new generation polar orbit constellation launched in September 2008 by
China. It provides fine-resolution (30-m) images like Landsat, and dense observations (every two days
revisiting), which is appropriate for capturing anthropogenic impacts and retrieving biophysical
parameters over heterogeneous land surface [34]. However, for the lack of SWIR bands, the cloud
detection method for HJ-1A/B CCD images is still under the exploration stage. It is noted that taking
fully advantage of the spectral signature and spatio-temporal context information of HJ-1A/B might be
a practical way to provide an accurate cloud mask. Taking HJ-1A/B CCD images as an example, this
paper focused on the cloud and snow discrimination problem as follows: (1) paying special attention
to the cloud and snow discrimination for HJ-1A/B CCD and HJ-1A/B CCD like SWIR band-lacking
images; and (2) developing the practical cloud and snow discrimination method that can combine the
spectral signature with spatio-temporal contextual information. The rest of this paper is organized as
follows: Section 2 describes the study area, HJ-1A/B satellites, images pre-processing methods, and
the data time series stack used in this paper. Section 3 presents the clouds and snow discrimination
methodology. Section 4 shows the results and accuracy analysis. Section 5 discusses the advantages
and limitations of the proposed methods. Section 6 presents the conclusions.

2. Study Area and Data

2.1. Study Area

In this study, Mt. Gongga region was chosen as the study area to evaluate the performance of the
proposed method (Figure 1). This area was selected for the following reasons: (1) Mt. Gongga region is
usually influenced by clouds and snow. This area is the highest peak in the eastern part of the Tibetan
Plateau, and is one of the easternmost glacial areas in China [35]. It has persistent snow cover on the
high mountains, especially in the upper snowline region where the altitude is about 4800 m. Besides,
the annual precipitation of this region (3000 m, a.s.l) is about 1960 mm and most of the precipitation
falls as rain from June to September, owing to the influence of Asian summer monsoons [36]. Because of
the relatively concentrated precipitation during this period, the weather here is cloudy and the satellite
images are usually contaminated by clouds. The frequent appearance of clouds and persistent snow
make the area suitable for testing the algorithm’s discrimination ability; (2) The land cover of the study
area is complex and the seasonal variations are obvious. The topography over this area is an alpine
terrain with huge vertical relief (altitude ranging from 890 m to 7556 m). The influence of terrain on
the formation of vertical vegetation zonation is evident, which further makes the phenological changes
of vegetation vary greatly in a very short distance. This kind of phenological changes might introduce
uncertainty into the temporal contextual analysis. An area about 22,500 km2 (150 km ˆ 150 km) in the
Mt. Gongga region was selected as the case region in this study.

2.2. HJ-1A/B Overview

The HJ-1A/B CCD images were chosen to develop and test the proposed method in this paper.
Currently, the HJ-1 constellation consists of a pair of optical satellites (1A/B, launched in September
2008) and one microwave satellite (1C, launched in September 2013) [37]. The primary goal of the
HJ-1A/B is to revisit any position in the world within two days for environmental monitoring and
disaster mitigation. To achieve such a rapid global coverage, the two optical satellites, each of which has
the four days revisit capability, are distributed in the same altitude and orbit plane, with a 180 degrees
phase delay [38]. The HJ-1A/B are orbiting in a sun-synchronous circular orbit at 649.093 km altitude
with a 10:30 a.m. ˘ 30 min descending node [39]. This satellite passing time is selected for the
consideration of cloud cover and suitable sun illumination. It is also close to the Landsat local overpass
time and matches Terra MODIS.
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The payload of both HJ-1A/B includes two identical multi-spectral CCD image cameras that
provide 30 meters spatial resolution and four bands observations from visible to near infrared: blue
(Band 1, 0.43–0.52 µm), green (Band 2, 0.52–0.60 µm), red (Band 3, 0.63–0.69 µm) and near infrared
(Band 4, 0.76–0.90 µm). The two CCD cameras are placed symmetrically with each other to the
satellite nadir point. The placement makes the two CCD cameras equally divide the field of view and
observe the earth side by side. The swath width of a single HJ1A/B CCD image is 360 km, while the
combination of two CCD cameras obtains a swath width of 700 km. The CCD images can be freely
obtained from the China Centre for Resource Satellite Data and Application (CRESDA). The relevant
information is available at [40] with the interface in English.
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Figure 1. The geolocation and the digital elevation model of the study area. The right image is the
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2.3. Image Pre-Processing

2.3.1. Geometric Correction

The HJ-1A/B images are distributed by the China Centre for Resource Satellite Data and
Application (CRESDA), which are Level 2 products (after systematic geometric calibration). Precise
registration of HJ CCD images was fulfilled by an automatic registration and topographic correction
algorithm developed in [41]. The algorithm used the area-based image to image matching method
to automatically select tie points between the geometrically corrected base images and HJ-1A/B
CCD images. In this paper, the Global Land Survey (GLS) Landsat images from the year 2005 with
geolocation error less than 30 m were used as base images [42]. The elevation data from the Shuttle
Radar Topography Mission (SRTM) were used to correct the parallax errors caused by the local
topographic relief [43].

2.3.2. Radiometric Calibration

The radiometric calibration is a fundamental process to eliminate the influence of the attenuation
of the sensor photoelectric system [5]. It is especially important for images acquired from the
constellation because of the significantly different attenuation of sensors in the different satellites [44].
The original digital number (DN) value recorded in HJ-1A/B multi-spectral CCD images were
converted into Top Of Atmosphere (TOA) reflectance according to [45].
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2.3.3. HJ-1A/B CCD Time Series Stack

In this paper, the HJ-1A/B CCD time series stack (HJTSS) refers to a sequence of HJ-1A/B CCD
images acquired at a nominal temporal interval for the particular geographical region. Same with
the temporal resolution of HJ-1A/B CCD images, the temporal interval of HJTSS is approximately
two days. To get the same geographical region of different HJ-1A/B CCD images, tiles with fixed
dimension (number of rows and columns) instead of original path/row were used to organize the
HJTSS. The orbit configuration of HJ-1A/B constellation was the main factor considered when using
the fixed tiles [46]. Data volume of a single file was considered to determine the tile dimension.
The tile was finally determined as 5000 ˆ 5000 pixels to ensure manageable file sizes. In this paper,
in total, 181 scenes of images from the year 2011 with the paths 14–19 and row 80 were selected as the
test images.

3. Methodology

To overcome the shortcomings caused by the limited HJ-1A/B spectral bands, the new clouds
and snow discrimination method that combines spectral information with spatio-temporal context is
described in this section. The proposed method consists of three major stages, as shown in the flowchart
(Figure 2): the initial spectral test, the temporal context test, and the spatial context test. In the first
stage, clouds and snow pixels are extracted together based on the whiteness and the Haze Optimized
Transformation (HOT) spectral tests. Then, in the second stage, the spectral differences between HJTSS
image and the cloud-free reference image are calculated to discriminate most cloud from snow pixels.
To get the cloud-free reference images, the HJTSS in each month are firstly composed based on a simple
modified maximum NDVI value method in this stage. Considering there might be residual clouds
in the composites, the median value cloud screening method is used to detect the residual clouds
pixels, and then the Saviziky–Golay (S-G) filter-based reconstruction method is used to reconstruct
the signatures of these clouds pixels. The above two stages are conducted on the spectral signatures
and temporal domain. In the third stage, the synthetic spatial texture information calculated from the
distance of Regional Covariance Matrix (RCM) is performed to correct the commission and omission
errors in the first two stages. In the result, the clouds and snow pixels are finally discriminated.
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3.1. Initial Spectral Test for Cloud and Snow

Because of the similar spectral response of snow and cloud in the visible (VIS) and near-infrared
(NIR) bands, two spectral tests were firstly used to extract both snow and cloud pixels for all of the
HJTSS. The whiteness test (WT), originally proposed by Gomez-Chova et al. [47], was used as the
fundamental test in this study. Since both thick cloud and snow are usually visually bright in the
VIS and NIR band, the WT test is very effective for thick cloud and snow detection. It is based on
following equations:

MeanVIS “ pband1` band2` band3 q/ 3 (1)

WT “
3

ÿ

i“1

|p band i´meanVIS q/ MeanVIS|ă 0.3 (2)

where bands 1–3 are the blue (0.43–0.52 µm), green (0.52–0.60 µm) and red (0.63–0.69 µm) band of
HJ-1A/B CCD images, respectively.

The WT test enhanced the brightness difference between the visible bands and the overall
brightness. It works well in the ENVIronmental SATellite (ENVISAT) and Medium Resolution Imaging
Spectrometer (MERIS) [1]. However, it has some drawbacks on thin clouds detection because the
brightness of thin clouds is directly related to the land cover and is variable. If the underlying surfaces
of the thin cloud have a high reflectance, the cloudy pixels are bright. Otherwise, the brightness of the
thin cloudy pixels may be close to that of the bright and cloudiness pixels [13]. To fix this problem,
the HOT test developed by Zhang et al. [48] was used here to detect haze or thin clouds. The basic
assumption of HOT is that the spectral response to diverse surface cover classes under clear-sky
conditions is highly correlated in visible bands, but the spectral response to haze and thin clouds is
highly sensitive to both blue and red wavelengths. Therefore, this correlation change can be used to
detect haze and thin clouds [1,21]. It can be expressed as:

HOTtest “ band1´ 0.5ˆ band3´ 0.08 ą 0 (3)

where band 1 and 3 are the blue (0.43–0.52 µm) and red (0.63–0.69 µm) band of HJ-1A/B CCD images,
respectively. It should be noted that due to the large reflectance of some bright pixels like barren rocks,
turbid water or snow surface in the visible bands, the HOT might also include these pixels [1].

3.2. Separate Clouds from Snow Using the Temporal Context

As discussed earlier, because of the lack of SWIR band, separate clouds from snow using only
visual to NIR spectral information is very difficult. However, from temporal aspect view, it is obvious
that clouds cannot stay at the same place persistently due to its mobility characteristics. Therefore,
it might be caused by the presence of clouds if surface reflectance has a big variation in time series
observation [23]. The temporal context is the effective information and could be used to separate
clouds from snow.

3.2.1. Compositing for the Monthly Cloud-Free Reference Images

A cloud-free reference image was firstly needed to detect the spectral variation of clouds in the
HJTSS. Considering the cloud-free images are usually difficult to be acquired, reference images in
this paper were composited from the partly cloudy images in each month. Many image compositing
methods have been reported in the literature, which usually applied the minimum or maximum
criteria [49–53]. Among these methods, the maximum NDVI value method is widely used because
it can obtain the optimum vegetation observation and eliminate the cloud shadow to some extent.
However, recent studies also noted that the compositing results from the maximum NDVI value
method (Figure 3a) fails on the water surface because of the higher NDVI for cloud than water
(As shown in area A) [53]. On the other hand, the composites produced from minimum blue band
(Figure 3b) can chose the “clearest” pixel in a certain time window [52]. It performed better than
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the maximum NDVI over open water area, but it was still apparently affected by the contamination
of cloud shadows (area B) because of the lower reflectance of cloud shadow than that of clear land.
To take advantage of the maximum NDVI method on selecting vegetation pixels and the minimum
blue method on choosing clear pixels, a simple combined criterion (Equation (4)) was used here for
compositing of the references images.

#

maxpNDVItq WaterTest “ 0
minpρblue

t q WaterTest “ 1
(4)

where

Water Test “ pNDVI ă 0.01 and Band 4 ă 0.11q or pNDVI ă 0.1 and Band 4 ă 0.05q (5)

This combined criterion kept the open water information when clouds presented over the same
geographic region with open water. It also preserved the optimal vegetation pixels in the compositing
procedure. The water pixels were identified in the combined criterion firstly based on its physical
characteristics: the lower signal observed in NIR wavelengths than visible wavelengths. The threshold
of NDVI and Band 4 was inherited from the LEDAPS internal cloud masking algorithm where the
number 0 represents none water pixel and 1 represents water pixel [21]. Figure 3c illustrated the image
generated from the combined compositing criterion. Obviously, the composited results performed
better than the above two methods and the quality of the composites was substantially improved.

Remote Sens. 2016, 8, 31  7 of 23 

 

advantage of the maximum NDVI method on selecting vegetation pixels and the minimum blue 
method on choosing clear pixels, a simple combined criterion (Equation (4)) was used here for 
compositing of the references images. 

blue

max( )      WaterTest = 0
min(ρ )          WaterTest = 1




t

t

NDVI
 (4) 

where 

( ) ( )Water Test 0.01 and Band 4 0.11  or 0.1 and Band 4 0.05= < < < <NDVI NDVI  (5) 

This combined criterion kept the open water information when clouds presented over the same 
geographic region with open water. It also preserved the optimal vegetation pixels in the compositing 
procedure. The water pixels were identified in the combined criterion firstly based on its physical 
characteristics: the lower signal observed in NIR wavelengths than visible wavelengths. The 
threshold of NDVI and Band 4 was inherited from the LEDAPS internal cloud masking algorithm 
where the number 0 represents none water pixel and 1 represents water pixel [21]. Figure 3c 
illustrated the image generated from the combined compositing criterion. Obviously, the composited 
results performed better than the above two methods and the quality of the composites was 
substantially improved. 

 

Figure 3. Cloud-free images generated by different composting methods: (a) Maximum NDVI; (b) 
Minimum blue; and (c) Combined compositing criterion. 

3.2.2. Post-Processing for the Composites 

Since some residual clouds may still exist in the above composites, the composites need to be 
further processed to get the cloud-free reference images. A median value cloud screening method 
was applied firstly to detect those residual clouds. This method is based on the assumption that the 
position of clouds will changed rapidly and clouds cannot stay at the same place persistently, and 
therefore the reflectance of clouds pixels will always be higher than the median values of the entire 
time series at the same location [9,54]. Because the short wavelengths are more sensitive to clouds, 
the blue band TOA reflectance was used in the median value cloud screening method. If the blue 
band TOA reflectance of a pixel in the composites is equal to or higher than the median value plus a 
constant, it is identified as a residual cloud pixel (Equation (6)). 

{ } 11,2,3, 12ρ(band 1, ) median(ρ(band 1, ))
…

≥ +jx x T  (6) 

where, ρ(band 1, )jx  is the observed blue band TOA reflectance at month x for the jth pixel. T1 is a 
constant to ensure that if the entire time series of a pixel is cloud free, pixels with blue band TOA 

Figure 3. Cloud-free images generated by different composting methods: (a) Maximum NDVI;
(b) Minimum blue; and (c) Combined compositing criterion.

3.2.2. Post-Processing for the Composites

Since some residual clouds may still exist in the above composites, the composites need to be
further processed to get the cloud-free reference images. A median value cloud screening method
was applied firstly to detect those residual clouds. This method is based on the assumption that the
position of clouds will changed rapidly and clouds cannot stay at the same place persistently, and
therefore the reflectance of clouds pixels will always be higher than the median values of the entire
time series at the same location [9,54]. Because the short wavelengths are more sensitive to clouds,
the blue band TOA reflectance was used in the median value cloud screening method. If the blue
band TOA reflectance of a pixel in the composites is equal to or higher than the median value plus a
constant, it is identified as a residual cloud pixel (Equation (6)).

ρpband 1, xjq ě medianpρpband 1, xt1,2,3,...12uqq ` T1 (6)
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where, ρpband1, xjq is the observed blue band TOA reflectance at month x for the jth pixel. T1 is a
constant to ensure that if the entire time series of a pixel is cloud free, pixels with blue band TOA
reflectance higher than the median value will not be misidentified as clouds. Based on a test of all
181 images, the constant T1 was determined as 0.04.

After successfully identified by the median value cloud screening method, the residual clouds
pixels were then reconstructed by the S-G filter-based reconstruction method [55]. In the reconstruction
method, the linear interpolation was firstly used to roughly predict the TOA reflectance of cloud
pixels using the none-cloud TOA values from adjacent dates. Then, the S-G filter-based reconstruction
method was used to estimate the TOA reflectance of those cloud pixels. The S-G filter is a simplified
least-squares-fit convolution for smoothing and computing derivate of a set of consecutive values [56].
It uses a high-order polynomial instead of a constant to achieve the least-squares fitting within the
sliding window to approximate the base function. Taking a fixed number of points in the vicinity point
to fit a polynomial, it gives the smooth value of the vicinity point according to the polynomial during
the fitting progress [57].

ρ̂pb, xjq “

i“m
ÿ

i“´m

Ciρj`i

N
(7)

where ρ̂pb, xjq is the predicted TOA reflectance of the bth band at month j for the x cloud pixel, Ci is the
coefficient given by the Savizky–Golay filter and N is the number of pixels in the smoothing window,
which is equal to the smoothing window size (2m + 1).

To illustrate the reconstruction effects for those residual clouds, Figure 4 shows the comparison
before and after reconstruction of three typical areas. Obviously, the median method successfully
captured the residual clouds in the composites, and after reconstruction, those cloudy areas transited
smoothly with those clear grounds.
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Figure 4. Comparison of residual clouds in the monthly composited images and their Savizky–Golay
filter reconstruction results of May, June and November: (a) the residual clouds in the monthly
composites; and (b) the residual clouds mask generated by the median value method, where the yellow
color is clouds and green color is background. The identified clouds are a little larger in extent because
of three pixel dilation of clouds to exclude some thin edges of clouds; (c) The reconstruction results by
the Savizky–Golay filter.
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3.2.3. Cloud and Snow Discrimination by the Reference Images

Based on Hagolle et al. [23], a pixel can be flagged as a cloud pixel if its blue band TOA reflectance
satisfies the following multi-temporal criterion:

rρblue pDq ´ ρblue pDr qs ą T2 ˆ p1` pD´Dr q/ DT,nq (8)

where ρblue pDq is the blue band TOA reflectance of a given pixel at date D, and ρblue pDrq is the
corresponding blue band TOA reflectance of cloud-free reference images, which is the monthly
composited reference images in this paper. D´Dr is the number of days from the test date to reference
date and expressed in days. It was calculated from the acquired date of a given image and the Day Of
Year (DOY) data layer stored in the composited images. The blue band difference was used instead
of other bands because of the relatively high reflectance for clouds and snow and low reflectance for
most of the earth surface in this band [9].

When dates between the reference and cloud images are very close, the threshold T2 for
Equation (8) was set as 0.03 according to the reflectance difference analysis in [23], and the DT,n
was set as a constant which was 30 days. However, due to the different set of spectral width, the
optimal threshold for HJ CCD images needs to be adjusted. To find the optimal threshold for HJ
CCD images, we analyzed the change of TOA reflectance for snow, cloud and clear land pixels at the
two-day interval for all the HJ CCD images in 2011. In Figure 5, it is noted that a threshold of 0.05 can
be better used to separate cloud from clear land. The DT,n was set according to the length of days in
each month.
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Figure 5. Histogram for Top Of Atmosphere (TOA) reflectance difference for the snow, clouds and
clear ground pixels at two-day intervals.

Although the multi-temporal criterion is efficient to separate most of cloud from snow pixels,
it still has some drawbacks. For example, some thin clouds might be regarded as clear ground since
the spectral variation in multi-temporal images is quite slow. Besides, snow pixels with brighter
reflectance than reference images may be mis-detected as clouds according to Equation (8). Therefore,
the following spatial context criterion was used to further process the incorrectly detected and
undetected clouds.

3.3. Separate Clouds from Snow Using the Synthesize Spatial Context

3.3.1. Theoretical Basis

To cope with the above problems, the spatial context of clouds and snow were further used in
the third stage of the proposed method. The RCM that is widely used in the target detection and
tracking [58,59] field was conducted to synthesize the multiple texture features in this stage. RCM
is a fast region descriptor for object detection and classification [60]. Different from only using one
texture feature, the RCM can synthesize several image statistics, including the spectral reflectance,
gradient or filter responses as image features and then use the covariance of these features as the region
descriptor. It is shown that large rotations and illumination changes can be absorbed by the RCM, and
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the noise corrupting individual samples can also be filtered out [61]. The similarity measurement of
two RCM is the distance metric, which is defined on the positive definite symmetric matrices because
the covariance matrices are not elements of the Euclidean space.

For the computing of the RCM, let I be the remote sensing images, and F be the W ˆ H ˆ d
dimensional features extracted from I:

Fpx, yq “ φpI, x, yq (9)

where the function φ can be any mapping such as the gray values, color, gradients and filter response.
x and y are the row and column in the image coordinate system. For a given rectangular R Ă F,
let tzkuk“1,...,n be the d-dimensional feature points inside R. The regional R can be represented with the
d ˆ d covariance matrix of the feature points:

CR “
1

n´ 1

n
ÿ

k“1

pzk ´ µqpzk ´ µqT (10)

where µ is the mean of the points, n is the number of pixels.
Since the distance between RCM does not lie in Euclidean space, the similarity of two covariance

matrices can be measured by Förstner et al. [62]:

dpC0, CTq “

g

f

f

e

n
ÿ

i“1

ln2
pλipC0, CTqq (11)

where dpC0, CTq is the distance for RCM between reference C0 and the detecting images CT .
tλipC0, CTqui“1... n is the generalized eigenvalues of C0 and CT .

3.3.2. RCM Implement for Cloud and Snow Discrimination

For cloud and snow discrimination, given a test and reference image, the aim of using RCM is
to enhance the information of the cloudy area and weaken that of cloudless area. Since the presence
of clouds makes both spectral signature and texture characters of cloud region change dramatically
compared with reference images, the distance of RCM is sensitive to the cloudy area and insensitive
to those clear grounds. When RCM of HJTSS and reference images shows a larger distance than the
threshold, it may be caused by the clouds contamination.

Four bands TOA reflectance and the calculated NDVI were used for the development of RCM for
both HJTSS and monthly reference composites. The responses from the Sobel operator and Laplace of
Gaussian (LoG) operator, representing the first and second order derivatives, were also conducted as
texture features and were included in RCM. Sobel operator is a non-linear edge enhancement detector
filter that uses an approximation of the Sobel function to get the first order derivatives of a given image.
It has a simple form and is widely used in the edge detection field. The LoG operator firstly uses the
Gaussian convolution filter to reduce the image noise, and then adopts the Laplace operator to seek
the zero crossing point of the second derivative of the image for edge detection, which improves the
robustness to the noise and discrete points. The homogeneity feature, which is extracted from Gray
Level Co-occurrence Matrix (GLCM) and measures the closeness of the distribution of elements in
the GLCM to the GLCM diagonal [63], was also introduced into RCM. The eight-dimensional feature
vector can be written in Equation (12) as defined in Equation (9):

Fpx, yq “ rb1´4px, yq, NDVIpx, yq, Sobelpx, yq, LoGpx, yq, Homo_GLCMsT (12)

where, b1´4(x, y) are the four bands TOA reflectance of HJ-1A/B images; NDVI(x, y) is calculated from
band 4 and 3; Sobel(x, y) is the blue band response from Sobel operator; LoG(x, y) is the blue band
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response from Laplace of Gaussian operator; and Homo_GLCM is the homogeneity feature extracted
from GLCM, (x, y) are the pixel locations.

The implementation steps were as follows. Firstly, a small region with 3 ˆ 3 pixel matrix was
placed inside the image, as showed in Figure 6. The RCMs of the small region were first calculated
for the test (C1) and reference image (C2) through Equation (10). Then the distance between C1 and
C2 was calculated according to Equation (11). A threshold of 6.50 was chosen for the optimal cloud
and snow discrimination (Figure 6). This threshold was derived based on a test of all the 181 images.
For most of clear and snow pixels, the distance between references and the HJTSS were always less
than 6.50. While if there were clouds, even some thin clouds presented, the distance between RCMs
increased dramatically and was usually larger than 6.50. Therefore, this threshold of 6.50 was helpful
to discriminate the un-detected thin cloud and mis-detected snow pixels in the first two steps. After
the RCM analysis, all cloudy pixels were dilated by three pixels in all eight connected directions to
remove the surrounding pixels that may be partially influenced by clouds.
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3.4. Accuracy Assessment

The following three different accuracies measures, which were the overall accuracy, precision
and recall, were used to assess the accuracy of the algorithm results. Take the cloud as an example.
Define the True Positives (TP) as the number of clouds correctly labeled as belonging to clouds in
the algorithm, False Positives (FP) as the number of none-clouds incorrectly labeled as belonging to
clouds, False Negatives (FN) as number of clouds incorrectly labeled as belonging to none-clouds,
and True Negatives (TN) as number of none clouds which also labeled as belonging to none clouds.
The accuracy, precision and recall are then defined as [64]:

Overall Accuracy “ pTP + TNq{pTP + TN + FP + FNq (13)

Precision = TP{pTP + FPq (14)

Recall = TP{pTP + FNq (15)

In the clouds case, precision denotes the proportion of truly cloud pixels in the cloud detection
results, while recall is of all pixels that are actually clouds in the image, what fraction of them
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were detected as clouds. For precision and recall, they are better reflects the errors of omission and
commission for the snow and cloud classes than overall accuracy. These three accuracies for cloud and
snow were calculated separately.

4. Results and Analysis

4.1. Mask Results

Figure 7 depicts the cloud and snow detection results for HJ-1A/B images from four different
dates. By visually comparing the results with the false color composites (RGB = 4, 3, 2), it is clear that
the algorithm developed in this study can accurately separate the cloud and snow pixels. Figure 7a
was a winter image acquired at 14 January 2011 with obvious clouds and snow over the whole image.
The mask results showed its strong ability in excluding the snow pixels from cloud pixels. On the
other hand, Figure 7b was a spring image acquired at 14 April 2011 with large variability in surface
reflectance. The red quadrangles in the Figure 7b were covered by bare rocks (see red arrows) and
snow (see yellow arrows), which were the bright earth surfaces in the current color scheme. The mask
results worked well in terms of identifying clouds in areas with very bright land surface. Figure 7c
was an image acquired at 12 June 2011, with many thick and thin cirrus clouds (see the yellow arrows).
It is noted that the thin clouds were also accurately identified through the proposed method. Figure 7d
was acquired at 1 September 2011 with bare rocks (see yellow arrow) and thick aerosols in the image
(see the red arrow). In the mask result, the aerosols and bare bright rocks were successfully excluded
and the cloudy pixels were also accurately identified.
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Figure 7. Cloud and snow separation results for four different dates. (a) Result of HJ1A-CCD1-20110114
scene; (b) Result of HJ1A-CCD1-20110414 scene; (c) Result of 12 June HJ1A-CCD2-20110612 scene;
and (d) Result of HJ1B-CCD1-20110901 scene. For each date, (Upper left) and (Upper right) show
false color composited HJ images and the corresponding cloud mask; and (Lower left) and (Low right)
images are enlargements of (Upper left) and (Upper right) images, respectively with a size of
1000 pixels ˆ 1000 pixels.



Remote Sens. 2016, 8, 31 13 of 23

Figure 8 provides an illustration of the algorithm performance for the four middle month of every
season of the year. The standard seasonal definition for the Northern Hemisphere adopted by the
climate modeling community is used where spring is defined by the months March to May. Each
column contained 14 images. Time intervals for most of these images were two days because of the
two days revisiting period for the HJ-1A/B constellation. The mobility of clouds and the temporal
contextual information provided by different periods over the same geographical regions, clearly
visible in these images, was critical to the success of the developed algorithm. Generally, the algorithm
developed in this paper worked well for most of the images for every season. The performance of the
algorithm was robust regardless of the snow brightness. In general, it achieved the best performance
when the surface condition was stable, for example in July and October with durable snow cover.
However, the algorithm tended to overestimate cloudiness during sudden snow fall or snowmelt
period when surface changes were rapid and the composites reference had less snow than these days.
For instance, the first column, which represented the winter season, showed overestimating of some
clouds. The qualitative evaluation was an important aspect of the development of the algorithm.
To more rigorously assess its accuracy, reference data were used.
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pixels can only be extracted together in this stage due to their spectral similarity. On the other hand, 
after the temporal contextual test, many snow pixels were dramatically eliminated from clouds. 
According to statistics for the four case areas in Figure 9, approximately 79.98% misclassified clouds 
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Figure 8. Examples of performance of the proposed algorithm for 150 km ˆ 150 km Mt. Gongga area
for the middle month of each season of the year 2011. The standard seasonal definition for the Northern
Hemisphere adopted by the climate modeling community is used, where spring is defined by the
months March to May. False color composited images with bands 4, 3, and 2 in red, green and blue,
respectively, are shown on the left, and cloud masks are shown on the right with yellow color.

4.2. Performance of Each Stage for the Cloud and Snow Discrimination

To illustrate the effectiveness of each stage for cloud and snow discrimination in the proposed
method, Figure 9 shows the HJ-1A/B images acquired in four different dates, the corresponding
monthly reference composites, initial mask results from spectral test, mask results after temporal
contextual test, final mask results after spatial contextual test, and the distance of RCM between
references images and HJ-1A/B images, respectively.

In general, the improvement for the cloud and snow discrimination for each stage can be evidently
elucidated from Figure 9. For the initial spectral test (Figure 9, row iii), it is apparent that the snow
and clouds were accurately separated from clear grounds. However, snow and clouds pixels can
only be extracted together in this stage due to their spectral similarity. On the other hand, after the
temporal contextual test, many snow pixels were dramatically eliminated from clouds. According to
statistics for the four case areas in Figure 9, approximately 79.98% misclassified clouds pixels from
initial spectral test were successfully separated by temporal contextual test. However, it is also noted
that some snow pixels still existed in the temporal test results (see red arrow). Particularly, after using
of RCM the snow pixels are efficiently excluded from clouds (in the red ellipse). The RCM test further
eliminated 20.02% of the misclassified cloud pixels from the temporal contextual test.
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Figure 9. The comparison before and after using the regional covariance matrix (RCM). Column (a–d)
are the HJ images acquired in 6 January, 30 April, 29 June and 10 October and its corresponding
cloud and snow discriminating results in each stage, respectively. The first and second row are the
corresponding monthly composited images and the original images shown in false color with bands 4,
3, and 2 in red, green and blue, respectively. The third, fourth and fifth rows are the cloud masks for
spectral test, temporal test, and texture test, respectively. The sixth row is the distance of RCM with its
color bar under the bottom of this figure.
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4.3. Pixel Accuracy Assessment

Based on the visual assessment, clouds and snow pixels in HJTSS from different dates can be
effectively discriminated. To further quantitatively assess the accuracy of the results, a reference cloud
mask for each image was derived and the pixel-level accuracy was evaluated. The reference cloud
masks were derived by a supervised classification method and manual editing method as follows.
First, the object-based classification algorithm was used to segment the images into objects. Then,
sample objects of both clouds and snow were chosen as the training datasets to construct a decision
tree to classify the segmented objects into clouds, snow and clear grounds. Last, the classification
results were edited manually to eliminate misclassification errors, leading to the production of the
final reference masks.

To reduce the manual editing effort, a pseudo-random number function was used to randomly
select a tile with 500 pixels ˆ 500 pixels dimension within each image as the reference cloud mask.
The HJTSS were firstly divided into 10 ˆ 10 tiles, which were numbered consecutively from 1 to 100
from left to right and top to bottom (Figure 10a). Then, a random positive number, representing the
selected tile, was selected from 1 to 100 using the psedo-random number function. The final selected
reference tiles for all the HJTSS are shown in Figure 10b. Each number in the grid represents how
many times this tile was chose.
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Figure 11 displays the scatter plots of cloud cover percentage between all the reference cloud
masks and the algorithm cloud masks. Overall, estimates of percent cloud cover from our proposed
method were very accurate (Figure 11), with an R2 of more than 0.9. The slope of the regression line
was 0.94, with a very small interception (3.29%), and relatively small Root Mean Square Error (RMSE)
(8.89%). However, from the above comparison of all the reference masks, it is also noted that the
agreement for some of the days were relatively lower than other days. These disagreements were
mainly caused by the sudden snowfall event after examination, which will be further discussed in
Section 5.3.

Figure 12 illustrates the histograms of the overall accuracy, precision and recall for clouds and
snow, respectively. At the pixel scale, for clouds, the average overall accuracy was 91.32% with a small
standard deviation of 6.5% (Figure 12a). The average precision was 85.33% (Figure 12b) with a standard
deviation of 14.17%. Moreover, the average recall was 81.82% (Figure 12c) with a standard deviation
of 12.31%. For snow, the average overall accuracy was 92.80% with a small standard deviation of
5.3% (Figure 12d). The average precision was 82.18% (Figure 12e) with a standard deviation of 15.28%.
Moreover, the average recall was 82.81% (Figure 12f) with a standard deviation of 14.78%. It is noted
that the overall accuracy and precision of clouds were slightly lower than that of snow. The reasons
were mainly attributed to the three pixels dilated (in all eight connected directions) for all cloud pixels.
The lower precision of clouds was reasonable because un-detected clouds will more greatly influence
future image applications than a little lost data by buffered cloud edges. Because the spectral variation
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of clouds was larger than snow pixels, especially for those thin clouds, clouds will be more easily
detected as clear ground. Therefore, the recall of clouds was slightly lower than that of snow.
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5. Discussions

5.1. The Effectiveness of the Temporal Contextual Information for Cloud and Snow Discrimination

Temporal characteristics of satellite images offer important textural information for the
discrimination of clouds and snow. With the added temporal information, only three optical and one
NIR band were used in the proposed approach, making up for the SWIR band-lacking shortcomings
for HJ-1A/B CCD images. The temporal information can be used in the following two ways for the
separation of cloud and snow: (1) using the multi-temporal images to compose a cloud-free reference
image and then make the spectral difference analysis [23,65]; and (2) making the time series analysis
for all the multi-temporal images and then detect the sudden changes caused by clouds [8,9,24]. In this
paper, the above two methods were applied to generate the monthly time series of cloud-free reference
images. Those reference images were successfully used for clouds and snow discrimination.

For the compositing of the cloud-free reference images, the setting of time interval is an important
factor that will influence final detection accuracy [13]. If the time interval is too short, the available
images in the time window will be very limited, and the composites might still have many residual
clouds. Two kinds of cloud underestimation condition will be caused when the reference images still
have clouds. One is that snow in the HJTSS appears at the same location of clouds. At this condition,
the difference between HJTSS and reference images would be the difference between snow and clouds
(close to 0) and therefore omission errors will be introduced. The other underestimation condition is
that clouds in the HJTSS appear in the same clouds region. This condition will also cause omission
errors because the composites still have residual clouds. On the contrary, if the time interval is too long
such as the seasonal compositing, although increased observation frequency could further eliminate
the clouds influence for composites, the regular phenological changes of geographical features might
be another important uncertainty source. The following two aspects were taken into consideration
when the time interval was set as monthly composites in this paper. Firstly, for the revisiting period of
HJ-1A/B is two days, there will be enough images to composite a nearly clear-sky reference image
in one month [46]. According to the spectral changes analysis and the temporal filter, the totally
cloud-free references images can be acquired for every month. Secondly, considering the spectral
variation for most of vegetation and land surface are slightly in a month, monthly composites is
representative and suitable for the cloud detection. Despite this, a clear-sky sub-monthly composite
reference image such as the semi-month would be better than the monthly composites due to the
shorter temporal difference between the test and reference images.

5.2. The Usefulness of Spatial Contextual Information for Cloud and Snow Discrimination

Texture refers to the repeated local patterns and their regular arrangement of the ground objects in
the images. The texture features can better reflect the macroscopic properties and the detail structures
of the ground objects than a single pixel. Correctly understanding the texture difference of clouds and
snow can provide the important basis for their discrimination. To our knowledge, the texture of clouds
is a type of random texture. Even though the texture element of clouds is variable and unpredictable,
it is greatly different from the texture feature of ground object and snow area. For instance, the edge of
the cloud contains gray level jump characteristics, and the part of the cloud is similarity to the whole.
The cloud cluster has a certain fractals similarity [30]. On the other hand, the texture of snow in remote
sensing images usually is bumpy because the influence from terrain relief, vegetation or man-made
features. The gray gradient of snow usually is larger than that of clouds.

The frequently-used texture features of cloud are the average gradient, fractal dimension and
GLCM [63]. In this paper, texture features derives from gray gradient (the first and second order
derivatives) and the spatial correlation properties of gray (that is the GLCM) were used for clouds
and snow discrimination. These texture features has been demonstrated effectively for cloud or
snow detection. However, some other texture features such as GLCM [63], pixel shape index [66],
morphological profiles [67], and wavelet-based texture [68] can also evidently improve the accuracy
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of snow or cloud cover extraction. However, increasing the number of texture features does not
consequently lead to higher accuracy but will result in a large computing cost [29,32]. Therefore, more
efforts in the future can be put into find the representative and less computing-consuming features to
improve the efficiency and accuracy.

The RCM was used to synthesize all the spectral and texture features into a distance index between
HJTSS and reference images to express their similarity at the regional scales. The RCM enhanced the
cloud and snow region difference at the regional scale, which is helpful for the discriminating snow
from clouds for the following two cases. The first case is that snow areas in HJTSS are larger than that
in reference images. In this condition, since the reference images were composited from the HJTSS
in each month, the smaller snow areas in reference image than HJTSS will cause the overestimate of
clouds and consequently underestimate snow pixels. Another case is that the snow spectral signature
in HJTSS varied higher than the cloud spectral threshold (T1 in Equation (6)). In this condition, due to
the melt effects of snow or differences in observation conditions, the reflectance difference between
snow in HJTSS and reference image might also introduce overestimate of clouds. Fortunately, since the
RCM was calculated from a series of regional texture information, it has a strong capability of filtering
out the noise corrupting individual samples. Therefore, both of the above cases can be eliminated at
the regional scales by RCM.

5.3. Error Sources of the Proposed Method

Overall, the cloud and snow detection results indicated that the proposed method can achieve a
good performance for the discrimination of cloud and snow in HJ-1A/B images with only four bands
within a whole year. However, several error sources which might influence the algorithm accuracy
should also be pointed out. The first error source came from the way which the cloud boundary
was treated. In order to remove the cloud surrounding pixels that may be partially contaminated,
the proposed method dilated all cloud pixels by three pixels in all eight connected directions, which
might overestimate clouds areas. Therefore, the overall accuracy and precision of clouds were slightly
lower than that of snow (As shown in Figure 12). Another error source might be the undetected
cirrus clouds. To our knowledge, the detection of cirrus clouds is very challenging since regions
covered by cirrus clouds not only contain signature and texture information from clouds but also
from the ground features [13,69]. For example, Kovalskyy and Roy [12] recently found that about 7%
cirrus contaminated pixels in historical conterminous United States Landsat archive were undetected.
These thin and cirrus clouds might also be omitted because of the lack of cirrus cloud sensitive bands
(e.g., Landsat-8 cirrus band). Finally, while sudden snowfall happens (As shown in Figure 11), some
snow pixels might be incorrectly labeled as clouds. An auxiliary cloud and snow mask with the
same temporal resolution such as from MODIS may be helpful for the discrimination of clouds and
sudden snowfalls.

5.4. Applicability of the Developed Methods in the Future

The proposed method is highly automatic and efficient when processing a tremendously large
volume of imagery in near-real time. It can be easily implemented on a parallel processor. Since
the HJ-1A/B has been in orbit for over seven years and these satellites still run well, the proposed
methods can be used for cloud and snow discrimination for all the historical archive images, and
increasing more areas in the foreseeable future. Besides, it should be also noted that although the
proposed method was designed for use with HJ-1A/B images, it can be adapted for images acquired
by the similar satellite instruments such as Sentinel-2A/B [70], which have similar spectral bands and
temporal resolutions. The method in this paper is general and efforts in the future will be put into the
test for other regions with different environments.
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6. Conclusions

Accurate detection of clouds for satellite images is the fundamental pre-processing step for a
variety of remote sensing applications. This paper presented a new practical method for cloud and
snow discrimination by combining ideas from many past approaches and integrating the spectral
signatures with spatio-temporal contextual information. The methodology included three closely
related major stages, initial spectral test, temporal context test, and spectral context test.

Visual assessment revealed that the method developed in this paper can accurately separate
the cloud and snow pixels. The pixel-level accuracy assessment was performed by comparing the
detection results with the reference cloud masks generated by a random-tile validation scheme. Good
agreements were found between detection results and reference cloud masks, with the average overall
accuracy, precision and recall for clouds being 91.32%, 85.33% and 81.82%, respectively. The temporal
contextual test can exclude approximately 79.98% misclassified clouds pixels from initial spectral
test, while the spatial contextual test can further exclude the 20.02% residual misclassified clouds
pixels. Generally, the proposed method exhibited high accuracy for clouds and snow discrimination
of SWIR-lacking HJ-1A/B CCD images and was an improvement over the traditional spectral-based
algorithms. It can provide an accurate cloud mask for the on-going HJ-1A/B images and the similar
satellites with the same temporal and spectral settings. The calculating efficiency and accuracy of the
result can be improved by comparing the effectiveness of different texture features in the future.
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