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Abstract: Accurate land cover classification information is a critical variable for many applications.
This study presents a method to classify land cover using the fusion data of airborne discrete
return LiDAR (Light Detection and Ranging) and CASI (Compact Airborne Spectrographic Imager)
hyperspectral data. Four LIDAR-derived images (DTM, DSM, nDSM, and intensity) and CASI data
(48 bands) with 1 m spatial resolution were spatially resampled to 2, 4, 8, 10, 20 and 30 m resolutions
using the nearest neighbor resampling method. These data were thereafter fused using the layer
stacking and principal components analysis (PCA) methods. Land cover was classified by commonly
used supervised classifications in remote sensing images, i.e., the support vector machine (SVM)
and maximum likelihood (MLC) classifiers. Each classifier was applied to four types of datasets (at
seven different spatial resolutions): (1) the layer stacking fusion data; (2) the PCA fusion data; (3) the
LiDAR data alone; and (4) the CASI data alone. In this study, the land cover category was classified
into seven classes, i.e., buildings, road, water bodies, forests, grassland, cropland and barren land.
A total of 56 classification results were produced, and the classification accuracies were assessed
and compared. The results show that the classification accuracies produced from two fused datasets
were higher than that of the single LIDAR and CASI data at all seven spatial resolutions. Moreover,
we find that the layer stacking method produced higher overall classification accuracies than the
PCA fusion method using both the SVM and MLC classifiers. The highest classification accuracy
obtained (OA = 97.8%, kappa = 0.964) using the SVM classifier on the layer stacking fusion data at
1 m spatial resolution. Compared with the best classification results of the CASI and LiDAR data
alone, the overall classification accuracies improved by 9.1% and 19.6%, respectively. Our findings
also demonstrated that the SVM classifier generally performed better than the MLC when classifying
multisource data; however, none of the classifiers consistently produced higher accuracies at all
spatial resolutions.

Keywords: LiDAR; hyperspectral image; land cover classification; data fusion; support vector
machine; maximum likelihood classification

1. Introduction

Land cover information is an essential variable in main environmental problems of importance
to the human-environmental sciences [1-3]. Land cover classification has been widely used in the
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modeling of carbon budgets, forest management, crop yield estimation, land use change identification,
and global environmental change research [4,5]. Accurate and up-to-date land cover classification
information is fundamentally vital for these applications [1], since it significantly affects the uncertainty
of these applications. Therefore, the accurate classification of land cover, notably in areas that are
rapidly changing, is essential [6].

Remote sensing techniques provide the advantage of rapid data acquisition of land cover information
at a low cost compared with ground survey [7,8], which are an attractive information source for land
cover at different spatial and temporal scales [1]. Remotely sensed data are most frequently used for
land cover classification [6,9,10]. Many studies focusing on land cover classification using passive optical
remotely sensed data have been conducted [11,12]. However, accurate land cover classification using
remotely sensed data remains a challenging task. Multiple studies have been performed to improve
the land cover classification accuracy when using remotely sensed data, e.g., [13,14]. However, such
classifications have largely relied upon passive optical remotely sensed data alone [5]. Therefore, to
improve classification accuracies of optical remotely sensed data, some studies have been conducted
through combining other data, e.g., [15,16]. A limitation of this approach is that passive optical remote
sensing data neglect the three-dimensional characteristics of ground objects and will reduce the land
cover classification accuracy [5]. However, optical remote sensing data can provide abundant spectral
information of Earth surface and can be easily acquired at a relative low cost.

Light detection and ranging (LiDAR) systems are an active remote sensor which uses laser light as
an illumination source [17]. The LiDAR systems consist of a laser scanning system, global positioning
system (GPS) and inertial navigation system (INS) or inertial measurement units (IMU) [18]. Airborne
LiDAR can provide horizontal and vertical information with high spatial resolutions and vertical
accuracies in the format of three-dimensional laser point cloud [19-21]. In recent years, LIDAR has
been rapidly developed and widely used in estimating vegetation biomass, height, canopy closure and
leaf area index (LAI) [22-26].

Although LiDAR data are increasingly used for land cover classification [27-29], it is still
difficult to employ only discrete return LiDAR data [30,31]. LiDAR can provide accurate vertical
information, but has limited spatial coverage mostly due to its cost, especially for large-area LIDAR
data acquisition [32]. However, the incorporation of additional data sources, such as passive optical
remote sensing data, may mitigate the cost of data acquisition, and improve the accuracy and efficiency
of LiDAR applications [33]. Previous studies have shown that the combination of LIDAR and passive
optical remote sensing data can provide complementary information and optimize the strengths
of both data sources [34,35]. Therefore, this process can be useful for improving the accuracy of
information extraction and land cover mapping [36-38]. There are fewer land cover classification
studies combining airborne LiDAR and spectral remotely sensed data than traditional optical remote
sensing classifications. However, this technique is gaining popularity [6]. Several studies have
employed the fusion classification method of LiDAR and other data sources; these studies noted
improvements in the classification accuracy [38-42]. Reese, et al. [34] combined airborne LiDAR and
optical satellite (SPOT 5) data to classify alpine vegetation, and the results showed that the fusion
classification method generally obtained a higher classification accuracy for alpine and subalpine
vegetation. Mesas-Carrascosa, et al. [43] combined LiDAR intensity with airborne camera image to
classify agricultural land use, and the results showed that the overall classification accuracy improved
30%—40%. Mutlu, et al. [44] developed an innovative method to fuse LIDAR data and QuickBird image,
and improved the overall accuracy by approximately 13.58% compared with Quickbird data alone
in the image classification of surface fuels. Bork and Su [40] found that the integration of the LiDAR
and multispectral imagery classification schedules resulted in accuracy improvements of 16%—-20%.
Previous studies have highlighted the positive contribution and benefit of integrating LiDAR data
and passive optical remotely sensed data when classifying objects. Moreover, other application fields
have also reported in previous studies using a fusion method combining LiDAR and other data
sources [45-47].
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The main goal of our study is to explore the potential of fused LiDAR and passive optical data
for improving land cover classification accuracy. To achieve this goal, three specific objectives of this
paper are established: (1) fuse LIDAR and passive optical remotely sensed data with different fusion
methods; (2) classify land cover using different classifiers and input data with seven spatial resolutions;
and (3) assess the accuracies of the land cover classification and derive the best fusion and classification
method for the study area. Previous studies have shown that the spatial scale of the input data has a
substantial influence on the classification accuracy [48,49]. Consequently, all input data with a range of
spatial resolutions were classified to obtain the optimal spatial scale for the land cover classification.
The land cover classification map was then produced based on the optimal fusion method, classifier
and spatial resolution.

2. Study Areas and Data

2.1. Study Areas

The study was conducted in Zhangye City in Gansu Province, China (see Figure 1). This study
was carried out based on the HIWATER project, and the detailed scientific objectives can be found
in Li, et al. [50]. Historically, Zhangye was a famous commercial port on the Silk Road. The study
area is characterized as a dry and temperate continental climate with approximately 129 mm of
precipitation per year and a mean annual potential evapotranspiration of 2047 mm. The mean annual
air temperature is approximately 7.3 °C. The land use status of Zhangye in 2011 year was derived from
the website of Zhangye people's government. Zhangye has a total area of 42,000 km?, including arable
land (6.44%), woodland (9.47%), grassland (51.28%), urban land (1.05%), water area (2.47%), and other
lands (29.29%).

g
a
%
2

100°2530°E

Figure 1. Location of the study area in Zhangye City in Gansu Province, China. The image is a true
color composite of the Compact Airborne Spectrographic Imager (CASI) hyperspectral image with 1 m
resolution, which will be used in this study.

2.2. Field Measurements

Fieldwork was performed from the 10 to 17 of July 2012 across the study area to collect training
samples for the supervised classification. Altogether 2086 points for the training and accuracy
assessment data of supervised classification. The selection principle of the sampled points is that
the identical object is required within a radius of 3 m around the sample points. The sample point
coordinates were recorded by a high-accuracy Real Time Kinematic differential Global Position System
(RTK dGPS) with a 1-cm survey accuracy. However, for the training samples of buildings and water
bodies, we directly selected the training data from remotely sensed images because we did not
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determine the locations of the plot centers of buildings and water bodies with a GPS. In total, 240
buildings and 66 water bodies were selected based on a CASI image. Therefore, a total of 2392 samples
were used for the land cover classification.

2.3. Remotely Sensed Data Acquisition and Processing

2.3.1. Hyperspectral Data

Airborne hyperspectral data were obtained using the Compact Airborne Spectrographic Imager
(CASI-1500). The CASI-1500 sensor was on board a Harbin Y-12 aircraft on 29 June 2012. The CASI-1500
is developed by Itres Research of Canada and is a two-dimensional charge coupled device (CCD)
pushbroom imager designed to acquire the visible to near infrared hyperspectral images. The CASI
data have a 1 m spatial resolution covering the wavelength range from 380 nm to 1050 nm. The specific
characteristics of the CASI dataset used in this study are shown in Table 1. To reduce atmospheric effects
related to particulate and molecular scattering, CASI images were atmospherically corrected using
the FLAASH (Fast-Line-of-sight Atmospheric Analysis of Spectral Hypercube) [45], an atmospheric
correction module in the commercial software ENVI. Subsequently the hyperspectral data were
orthorectified using a digital terrain model (DTM) derived from LiDAR data. To retain the original
pixel values, the nearest neighbor resampling method was used [39,51]. To obtain the entire study area,
CASI images were mosaicked using the mosaicking function in the ENVI software.

Table 1. Specification of the CASI dataset used.

Parameter Specification
Flight height 2000 m
Swath width 1500 m
Number of spectral bands 48
Spatial resolution 1.0m
Spectral resolution 7.2 nm
Field of view 40°
Wavelength range 380-1050 nm

2.3.2. LiDAR Data

LiDAR point clouds were collected in July 2012 using the laser scanner of a Leica ALS70 system.
The LiDAR data used were provide by the HIWATER [52]. In this study, the laser wavelength was
1064 nm with an average footprint size of 22.5 cm. The scan angle was +18° with a 60% flight line side
overlap. The average flying altitude was 1300 m. To acquire consistent point density data across the
study area, we removed LiDAR point clouds in overlapping strips. After the removal of overlapping
points, the average point density was 2.9 points/m? with an average point spacing of 0.59 m, and the
average point density of first echoes was 2.1 points/m?. Raw LiDAR point clouds were processed
using the TerraScan software (TerraSolid, Ltd., Finland), and vegetation and ground returns were
separated using the progressive triangulated irregular network (TIN) densification method proposed
in the TerraScan software.

The digital surface model (DSM) (a grid size of 1.0 m) was created using the maximum height
to each grid cell (Figure 2a). Empty cells were assigned elevation values by a nearest neighbor
interpolation from neighboring pixels to avoid introducing new elevation values into the generated
DTM [53]. The DTM was produced by computing the mean elevation value of the ground returns
within each 1.0 m x 1.0 m grid cell (Figure 2b). The normalized DSM (nDSM) was then computed by
subtracting the DTM from the DSM to obtain relative object height above the ground level (Figure 2c).

LiDAR intensity values are the amount of energy backscattered from features to the LiDAR
sensor; these values are increasingly used [54-57]. The LiDAR intensity is closely related to laser
power, incidence angle, object reflectivity and range of the LiDAR sensor to the object [43]. All these
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factors might cause LiDAR intensity differences for the identical type of object. Therefore, the LIDAR
intensity must be corrected before they are applied to obtain a better comparison among different
strips, flights and regions. Previous studies showed that normalized LiDAR intensity values can
improve the accuracy of classification [58]. Consequently, to improve the classification accuracy of the
land cover in our study, LIDAR intensity values were normalized by Equation (1) [59].
2

Lnormalized = Iﬁ 1
where I,/ 1a1izeq 1S normalized intensity, I is raw intensity, R is sensor to object distance, R; is reference
distance or average flying altitude (in this study Rs was 1300 m) and a is incidence angle.

After normalization of the LiDAR intensity, the LiDAR intensity image with a 1.0 m spatial
resolution was created using the intensity field of the LiDAR points (Figure 2d). To alleviate the
variation in intensity values for the identical feature, only the first echoes from the LiDAR data were
used to create the intensity image [55]. When more than one laser point fell within the same pixel, the
mean value of the LiDAR intensity was assigned to that pixel [60].
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(d)

Figure 2. Four LiDAR-derived raster images with 1 m spatial resolution: (a) digital surface
model (DSM); (b) digital terrain model (DTM); (c) normalized digital surface model (nDSM); and
(d) normalized LiDAR intensity image.

3. Methodology

The flowchart for the data processing and land cover classification is presented in Figure 3.
This figure summarizes the steps of the land cover classification using LIDAR and CASI data. Four
main steps were performed including (1) pre-processing of the LIDAR and CASI data; (2) the fusion
of the LiDAR and CASI data; (3) classification of the LIDAR data alone, the CASI data alone and the
fused data, and (4) analyzing the classification results and assessing the accuracy. First of all, the data
pre-processing was performed (see Section 2.3).



Remote Sens. 2016, 8, 0003 7 of 19

(" LiDAR data ) ( Fidddata )
y :

I Atmospheric correction

|P0int cloud classification |

Orthorectification
A 4

DSM, DTM, nDSM

and normalized LIDAR

A 4

Pre-processing

| Images coregistration |

I

Images at 1, 2, 4, 8, 10, 20
and 30 m spatial resolutions

=
S
'z I Layer stacking method | I Principal component analysis
=

IMLC and SVM supervised classification I:

l

| Classified results |

I

Accuracy assessment and
comparison analysis

A

Mapping

Figure 3. Flowchart for the land cover classification using LiDAR and hyperspectral data.

3.1. Fusion of the LiDAR and CASI Data

Before the data were fused, the cell values of the four LIDAR-derived raster images were linearly
stretched to the 10 bit data range from 0 to 1023. In this study, the CASI data and LiDAR data were
collected at different times, along with differences between the data types, flight conditions and paths
produced inconsistencies in registration between the images [61]. As depicted in Figure 3a prerequisite
for all fusion approaches is the accurate geometric alignment of two different data sources. Therefore,
image-to-image registration of two data sources was necessary. To produce the best possible overlap
between the hyperspectral CASI and LiDAR data, we coregistered the hyperspectral to the LIDAR
data. The manual coregistration of these datasets was performed using the ENVI software by selecting
tie points. The coregistration accuracy resulted in a root mean square error (RMSE) of less than
1 pixel (1 m).

To investigate the effect of the spatial resolution on classification accuracy, we fused
LiDAR-derived images and CASI data at a range of spatial scales. Therefore, LIDAR-derived and CASI
data with 1 m spatial resolution were spatially resampled to 2, 4, 8, 10, 20 and 30 m resolutions using a
nearest neighbor resampling method before data fusion.
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Data fusion is the integration of two or more different datasets to form a new data utilizing a
certain algorithm. It can be implemented at different levels: at the decision level, feature level, and
pixel level [62]. The goal of data fusion is to integrate complementary data to acquire high quality
data with more abundant information. This process has been extensively used in the field of remote
sensing [63]. Data fusion of LIDAR and other remote sensing data is a critical part of this study. The
selection of data fusion methods between LiDAR and CASI data could have an influence on the land
cover classification results. Therefore, to obtain the best fusion method for different data sources and
applications, a trial and error method is necessary. In this study, to obtain the optimal fusion method
of LiDAR and CASI data for land classification, both layer stacking and principal component analysis
(PCA) fusion methods were tested. PCA is an orthogonal linear transformation, which transforms the
data to a new coordinate system to reduce the multidimensional datasets into lower dimensions [64].
PCA transformations will produce some uncorrelated variables called principal components, and only
the first few principal components may account for meaningful amounts of variance in the original
data [65]. We used the layer stacking method to combine four LiDAR-derived images (DTM, DSM,
nDSM, and intensity) and CASI data (48 bands) into one multiband image at the pixel level. This new
multiband image includes a total of 52 bands. Figure 4a shows the 3 band image (near infrared image
of CAS], the intensity image and nDSM) of the LIDAR-CASI stacked image with 52 bands. For the
stacked image, we used two methods to process the image. The first method was directly classifying
the stacked image with 52 bands. The second method was transforming the stacked image using a
PCA algorithm, and then the first few principal components derived from the PCA were used as the
data for the land cover classification. The PCA transformation could reduce data redundancy and
retain the uncorrelated variables (i.e., independent principal components). In this study, we found that
the first five principal components account for 98.93% of the total variance in the whole LiDAR and
CASI data. Therefore, the first five principal components were used to replace the stacked image (52
bands), and the redundancy, noise, and size of the dataset were significantly reduced [44]. Figure 4b
illustrates the image of the first three principal components image in the principal component analysis
of the LIDAR-CASI stacked image with 52 bands.

(b)

Figure 4. LIDAR-CASI fusion images with 1 m spatial resolution: (a) LIDAR-CASI stacked image (near
infrared image of CASI, intensity image and nDSM); and (b) principal component analysis (first three
principal components).

3.2. Classification Methods

Generally, remote sensing classification methods are divided into two broad types: parametric
and non-parametric methods [66]. Parametric methods are based on the assumption that the data
of each class are normally distributed [7,49,67]; however, non-parametric techniques do not assume
specific data class distributions [11,41]. Supervised classification is one of the most commonly used
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techniques for the classification of remotely sensed data. In this study, two supervised classification
methods were performed: (1) maximum likelihood classification (MLC) method; (2) support vector
machine (SVM) classification.

The MLC method is a simple, yet robust, classifier [39,51]. The MLC is a parametric classifier
based on the Bayesian decision theory and is the most popular conventional supervised classification
technique [68,69]. However, for the MLC method, it is difficult to satisfy the assumption of a normally
distributed dataset. Another disadvantage of conventional parametric classification approaches is
that they are limited in their ability to classify multisource and high dimensional data [67]. However,
the SVM classifier is a non-parametric classifier for supervised classification [45,70], which is able to
handle non-normal distributed datasets [11,30]. The primary advantage of the SVM method is that it
requires no assumptions in terms of the distribution of the data and can achieve a good result with
relatively limited training sample data [5,67]. In addition, the SVM method is not sensitive to high
data dimensionality [11,41,71], and is especially suited to classify data with high dimensionality and
multiple sources [9,67]. In general, previous studies have shown that the SVM is more accurate than
the MLC method, e.g., [66,72]. To validate the better performance of the SVM classifier compared with
other parametric approaches in our study, the MLC was performed and the results were compared
with those produced from the SVM classifier.

In this study, we performed a land cover classification at seven different spatial scales (1, 2, 4, §,
10, 20 and 30 m) to determine an optimal spatial scale for the classification using different datasets.
In addition, to compare the classification accuracies of the fusion data with those of a single data
source, single source LIDAR and CASI data were also classified. Therefore, four different remotely
sensed datasets were trained: (a) LIDAR-derived images alone; (b) the CASI images alone (48 bands);
(c) the layer stacking image with 52 bands (CASI: 48 bands, LiDAR: four images); and (d) the first
five principal components derived from the PCA transformation. Finally, twenty-eight datasets were
classified using the MLC and SVM supervised classifiers.

The land cover category was classified into seven classes, i.e., buildings, road, water bodies, forests,
grassland, cropland and barren land. For each land cover category, about two-thirds of the samples
were randomly selected as training data, with the remaining samples used to assess the classification
accuracies. Table 2 lists the per-class numbers for the classification training and validation data (a total
of 2392 samples).

Table 2. The number of classification training and validation data per class.

Class Number of Training Sample (Points) Number of Validation Sample (Points)
Buildings 160 80
Road 225 113
Water bodies 44 22
Forests 397 198
Grassland 278 139
Cropland 307 154
Barren land 183 92
1594 798

3.3. Accuracy Assessment

The number of validation samples per class based on separate test data is shown in Table 2.
A total of 798 samples were applied to assess the classification accuracies. Classification accuracies
were assessed based on confusion matrices (also called the error matrixes), which is the most standard
method for remote sensing classification accuracy assessments [72]. The accuracy metrics include
the overall accuracy (OA), the producer’s accuracy (PA), the error of omission (i.e., 1-PA), the user’s
accuracy (UA), the error of commission (i.e., 1-UA) and the kappa coefficient (K). These accuracy
metrics can be acquired from the confusion matrixes; these matrixes are widely used in classification
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accuracy assessment of remote sensing [13]. We assessed and compared the classification accuracies of
56 classification maps produced by the MLC and SVM classifiers.

4. Results and Discussion

Supervised classifications were performed on four datasets with seven different spatial resolutions
using the MLC and SVM classifiers. Each classifier produced 28 classification results, and a total of 56
classification results were obtained. The classification accuracies were evaluated using one-third of the
samples collected which were not used in the supervised classification. The classification accuracies of
the 56 classification maps produced by the MLC and SVM classifiers are shown in Table 3.

Table 3. Classification accuracies of the maximum likelihood classification (MLC) and support vector
machine (SVM) classifiers using four types of datasets with different spatial resolutions. The accuracy
metrics included the overall accuracy (OA) and kappa coefficient (K).

. LiDAR and CASI Data Alone Fused Data of LiDAR and CASI
Resolution Accurficy LiDAR Data CASI Data PCA Layer stacking
(meters) Metrics  —re—svMm MLC SVM MLC SVM MLC  SVM
OA (%) 25 75.6 847 887 919 953 929 97.8
1 K 0.181 0.582 0.758  0.836 0.868  0.923 0.888 0.964
OA (%) 278 782 828 871 90.7 965 92.1 97.7
2 K 0.203  0.654 0.743  0.825 0.862  0.943 0.884 0.963
OA (%) 341 745 802  85.6 89.9 945 91.2 96.3
4 K 0.262  0.626 0.726  0.803 0.86  0.922 0.878 0.948
OA (%) 378  69.5 766  81.1 871 889 89 92.8
8 K 0.292 0579 0.694 0.757 0.829  0.849 0.855 0.904
OA (%) 393 682 756  80.5 859 879 87.7 91.2
10 K 0302  0.561 0.692  0.746 0.814 0.836 0.84 0.883
OA (%) 535  62.6 748 773 815  81.2 845 86.5
20 K 0.401  0.445 0.679  0.692 0.741 0.723 0.783 0.805
OA (%) 487  60.3 731 712 814 797 83.3 82
30 K 0.298  0.401 0.619  0.589 0.696  0.644 0.727 0.686
OA (%) 38 69.8 783  81.6 869  89.1 88.7 92
Mean K 0277 055 0.702  0.75 0.81 0.834 0.836 0.879

4.1. Comparison of Classification Results with Different Datasets

Data fusion has been extensively used in the remote sensing field. Data fusion can implement
data compression, image enhancement and complementary information for multiple data sources.
To determine the performance of different fused methods for land cover classification, the PCA and the
layer stacking were applied to fuse LIDAR and CASI data. For the four types of datasets (i.e., LIDAR
data, CASI data, PCA data and layer stacking images), the LiDAR data alone produced the worst
classification result; the lowest overall classification accuracy (OA = 25.0%, K = 0.181) was produced
using the MLC classifier at 1 m resolution, and the highest accuracy was only 78.2% with a kappa of
0.654 at 2 m spatial resolution. This poor classification accuracy could be explained by the lack spectral
information in LiDAR data, which could provide useful information related to land cover. Therefore,
it was difficult to obtain accurate land cover classification using only LiDAR data. The layer stacking
fusion data obtained the best classification result, and the highest accuracy was 97.8% with a kappa of
0.964 at 1 m spatial resolution. The highest overall classification accuracies for the PCA fused data and
CASI data alone were 96.5% and 88.7%, respectively. The results showed that the overall classification
accuracies of LIDAR and CASI fusion data outperformed the LiDAR and CASI data alone (Table 3).
This result was consistent with findings reported by Singh, et al. [39]. The increased accuracies could
be attributed to complementary vertical and spectral information from the LiDAR and CASI data.
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Figure 5. Improvements in the land cover classification accuracies for the layer stacking data compared
with three other datasets (PCA, CASI and LiDAR) using the SVM and MLC classifiers at seven spatial
resolutions; (a) overall accuracy and (b) kappa coefficient.

For the fused data, all overall classification accuracies for the seven spatial resolutions were
greater than or equal to 79.7%. Moreover, the overall accuracies of fusion datasets exceeded 94% using
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the SVM classifier at the 1 m, 2 m and 4 m spatial resolutions. In our study, the overall classification
accuracies of the CASI and LiDAR fusion data were 9.1% and 19.6% higher than the CASI and LiDAR
data alone, respectively. Previous study has shown that different data fusion methods have an effect
on the land cover classification accuracies [44]. In this study, we obtained similar results. Table 3
demonstrates that the stacking fusion data produced higher overall accuracies and kappa coefficients
using both SVM and MLC classifiers than that of PCA fusion data. The average overall classification
accuracies of the layer stacking fusion data based on the SVM and MLC classifier were 2.90% and
1.76% higher than that of the PCA fusion data, respectively. Figure 5 shows the improvements in the
classification accuracies for the layer stacking data compared with three other datasets (PCA, CASI
and LiDAR) using the SVM and MLC classifiers at seven spatial resolutions. In short, the fused data of
LiDAR and CASI improved the classification accuracy, and we found that the layer stacking fusion
method generally performed better than the PCA fusion method for land cover classification. However,
these results do not indicate that the layer stacking method always performs better than the PCA
method in all cases.

4.2. Classification Performance of the MLC and SVM Classifiers

Figure 6 illustrates the comparison of the classification results produced from the MLC and
SVM classifiers with all four datasets at seven spatial resolutions. For the stacked image, the average
overall accuracies for the SVM and MLC classifiers at all seven spatial resolutions were 92% and 88.7%,
respectively. Comparison of the highest classification accuracies produced from the SVM and MLC
classifier showed that the SVM classifier obtained a slightly higher accuracy, improving the overall
accuracy of approximately 4.9%. The result indicated that the distribution-free SVM classifier generally
performed better than the MLC classifier. This result was consistent with the findings presented
by Garcia et al. [67], who found that the SVM classifier could improve the overall accuracy of land
cover classification. Therefore, the SVM is more suitable for a high dimensionality and multiple
sources dataset than the parametric methods commonly used in remotely sensed image supervised
classification [9,41]. However, the disadvantage of the SVM classifier is that it increases computational
demands compared with the MLC classifier [73]. Consequently, the SVM classifier may be time
consuming when classifying the land cover of a large data volume. We must acquire a good balance
between the accuracy and efficiency of the classification according to the purposes and requirements
of the work.

Table 4 shows the accuracy of each class from the confusion matrices of the highest overall
classification accuracy produced by the SVM and MLC classifiers for layer stacking fusion data at
1 m spatial resolution. The results showed that the SVM classifier generally obtained higher user’s
accuracy and producer’s accuracy than the MLC classifier. For the SVM classifier, the user’s accuracies
and producer’s accuracies of all seven classes (i.e., buildings, road, water bodies, forests, grassland,
cropland and barren land) exceed 80.1% and 84.5%, respectively. Although the overall accuracy of the
MLC classifier was relatively high (OA = 92.9%, kappa = 0.888), the two largest errors of commission
were observed for forests (63.67%) and grassland (43.99%), and the two largest errors of omission
were road (29.85%) and forests (18.05%). Correspondingly, low errors were obtained using the SVM
classification method, and the errors of commission were 1.93% (forests) and 19.87% (grassland), and
the errors of omission were 8.85% (road) and 15.47% (forests). In general, compared with the MLC
classifier, the SVM improved the user’s accuracies of forests and grassland and producer’s accuracies
of road and forests in this study. Therefore, we produced a land cover classification map of the study
area using the SVM classifier, obtaining the highest overall accuracy using the layer stacking fusion
data at a 1 m spatial resolution. Following the supervised classification, a post-classification process
based on a majority filter was used to remove isolated pixels [68]. Figure 7 is the subset of the study
area classification map with an overall accuracy of 97.8% (kappa = 0.964).



Remote Sens. 2016, 8, 0003

Overall accuracy (%)

0.3

0.2

0.1

100

90

80

70

60

50

40

30

20

—@— Stacking (SVM)
—e— LiDAR (SVM)

—&— PCA (SVM)
= =% == Stacking (MLC)

—e— CASI (SVM)
==¥==-PCA (MLC)

10

Spatial resolution (m)

(a)

—@— Stacking (SVM) —&— PCA (SVM)
= =¥ == Stacking (MLC) ==%=-PCA (MLC)

mm————"

—e— CASI (SVM)
= === CASI (MLC)

20

—e— LiDAR (SVM)
==%==-LiDAR (MLC)

30

Spatial resolution (m)

(b)

20

30

13 of 19

Figure 6. Comparison of the classification accuracies using different classifiers, datasets and spatial
resolutions; (a) overall accuracy and (b) kappa coefficient.

Table 4. Per-class accuracies obtained with the highest overall accuracy produced by the support vector

machine (SVM) and maximum likelihood (MLC) classifiers for layer stacking fusion data ata 1 m

spatial resolution. The accuracies included the producer’s accuracy (PA), user’s accuracy (UA), error of

commission (EC) and error of omission (EO).

SVM Classifier MLC Classifier
Class Name PA (%) UA(%) EO (%) EC (%) PA (%) UA(%) EO (%) EC(%)
Buildings 94.78 99.58 5.22 0.42 94.73 97.85 5.27 2.15
Road 91.15 94.58 8.85 5.42 70.15 88.42 29.85 11.58
Water bodies 99.99 99.92 0.01 0.08 96.05 100 3.95 0
Forests 84.53 98.07 15.47 1.93 81.95 36.33 18.05 63.67
Grassland 93.44 80.13 6.56 19.87 89.55 56.01 10.45 43.99
Cropland 99.8 95.42 0.2 4.58 99.53 94.2 0.47 5.8
Barren land 94.7 94.48 53 5.52 89.76 99.4 10.24 0.6
OA (%) 97.8 92.9
K 0.964 0.888
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Figure 7. Land cover classification map using the SVM classifier based on the layer stacking fusion
method at a 1 m spatial resolution (OA = 97.8%, kappa = 0.964).

For the layer stacking fusion data and CASI data alone at a 30 m spatial resolution, the MLC
classifier obtained better results (OA = 83.3% and 73.1%, respectively) than that of the SVM classifier
(OA =82% and 71.2%, respectively). For the PCA fusion data, the overall classification accuracies of the
MLC classifier both at 20 m and 30 m were higher than that of the SVM classifier. Therefore, the SVM
classifier was not always the optimal classifier at all seven resolutions. This result was consistent with
the results observed by Ghosh, et al. [48], who claimed that none of the classifiers produced consistently
higher accuracies at all spatial resolutions. For the LiDAR data alone, the SVM classifier displayed
higher accuracies than the MLC classifiers at all seven spatial resolutions. In general, our results
demonstrated that the classification accuracies were affected by the dataset types, spatial resolutions
and classifiers.

4.3. Influence of the Spatial Resolution on the Classification Accuracy

Spatial resolution of remotely sensed data is one of the most critical factors that affects the
classification accuracies [74]. In this study, therefore, the land cover was classified at seven spatial
scales (1, 2, 4, 8, 10, 20 and 30 m) to obtain an optimal spatial resolution for the classification with
four types of datasets. We analyzed the optimal resolutions for each datasets and classifier. Different
optimal resolutions were found for the four datasets and two classification methods, and similar results
were also presented by Ke, et al. [74]. For the PCA and LiDAR data using the SVM classifier, the highest
classification accuracies were obtained at a 2 m spatial resolution (Figure 6). After that, the overall
classification accuracy started to decrease. However, for the LIiDAR data using the MLC classifier, the
classification accuracies increased as spatial resolutions became coarser (from 1 m to 20 m), and the
overall accuracy was the highest at a 20 m spatial resolution. Except for the above-mentioned results,
the classification results showed that classification accuracy generally decreased as spatial resolution
of the input datasets became coarser, and the highest classification accuracies were found at a 1 m
spatial resolution (Figure 6). Therefore, the higher classification accuracy does not always occur for the
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higher spatial resolutions in the different datasets. In addition, although the classification accuracy
is high for select datasets with a fine resolution, a substantial amount of data covers large areas for
land cover classification. Thus, data management and processing will become a problem, and the
classification performance will decrease. In conclusion, when classifying land cover, we should select
the optimal spatial resolution based on the application and research purposes.

5. Conclusions

This study explored the potential for fusing airborne LiDAR and hyperspectral CASI data to
classify land cover. We fused LiDAR and CASI data using layer stacking and PCA fusion methods,
and successfully performed supervised image classification using the SVM and MLC classifiers.
Overall, the use of fused data between LiDAR and CASI for land cover classification outperformed
the classification accuracies produced from LiDAR and CASI data alone (Table 3). The highest overall
accuracy (OA = 97.8% with a kappa of 0.964) was generated by the non-parametric SVM classifier
when using layer stacking fusion data at 1 m spatial resolution. Compared with the best classification
results of the CASI and LiDAR data alone, the overall classification accuracies improved by 9.1% and
19.6%, respectively. Moreover, we found that the classification accuracies based on the layer stacking
data were higher than that based on a PCA for all spatial resolutions. In this study, therefore, the
layer stacking fusion method was more suitable for the land cover classification compared to the PCA
fusion method. Using the SVM classifier to classify the fused LiDAR and CASI data produced a higher
accuracy than that of the MLC classifier. This result showed that the SVM classifier possesses a higher
potential than the MLC for land cover classification using multisource fusion data from LiDAR and
CASI data.

LiDAR and multi/hyperspectral remote sensing fusion data have provided complementary
information that LIDAR and multi/hyperspectral data alone have not. Therefore, the fusion of LIDAR
and multi/hyperspectral data has a great potential for highly accurate information extraction of objects
and land cover mapping. Our future work will focus on fusing LiDAR and passive optical remotely
sensed data to classify different vegetation types and land covers to estimate the vegetation biomass
and to detect land cover changes.
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