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Abstract: In this paper, by analyzing the characteristics of infrared moving targets, a Symmetric
Frame Differencing Target Detection algorithm based on local clustering segmentation is proposed.
In consideration of the high real-time performance and accuracy of traditional symmetric differencing,
this novel algorithm uses local grayscale clustering to accomplish target detection after carrying out
symmetric frame differencing to locate the regions of change. In addition, the mean shift tracking
algorithm is also improved to solve the problem of missed targets caused by error convergence.
As a result, a kernel-based mean shift target tracking algorithm based on detection updates is also
proposed. This tracking algorithm makes use of the interaction between detection and tracking
to correct the tracking errors in real time and to realize robust target tracking in complex scenes.
In addition, the validity, robustness and stability of the proposed algorithms are all verified by
experiments on mid-infrared aerial sequences with vehicles as targets.

Keywords: moving target detection and tracking; symmetric frame differencing; mean shift; infrared
image sequence; aerial platform

1. Introduction

Detection and tracking of moving targets is a process that involves finding targets of interest
in every frame of an image sequence. Infrared technology has been used in research into target
detection and tracking because of its advantages, including the ability to penetrate through fog, 24-h
all-weather observations and imaging, and lack of sensitivity to changes in light conditions. However,
infrared images have relatively low contrast and signal-to-noise ratios (SNR) and also contain little
target information, and so the detection and tracking of moving targets using infrared imagery is
difficult. In addition, the use of moving imaging platforms such as aircraft gives rise to the problems
of background motion and low target resolution [1,2], and correspondingly raises the requirements for
the detection and tracking technology that is used.

As far as studies to date are concerned, infrared moving target detection algorithms can be roughly
divided into background modeling [3–5], optical flow [6–8] and frame differencing [9–11] methods.
For example, Akula et al. [12] used an initial set of frames without targets to construct a statistical
background model and proposed an adaptive contour-based background subtraction technique for
accurate moving target detection in infrared image sequences by producing binarized thin contour
saliency map. Xu et al. [13] intelligently combined the Lucas Kanade optical flow method and the frame
differencing method to effectively detect infrared targets in simulations where the detector was either
static or moving. Bhattacharya et al. [14] analyzed and solved the problem of the traditional symmetric
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frame differencing algorithm using only three frames for moving target detection, and proposed that
the frames used in cumulative-differencing detection can be determined by the image conditions so
that the target region in an infrared aerial sequence can be easily detected.

In the field of infrared target tracking, good results have been obtained in previous research using
region-based [15,16], contour-based [17,18], model-based [19,20] and feature-based [21,22] algorithms.
For example, Ling et al. [23] defined the evaluation criterion for the tracking effect and searched for
the relatively accurate region similar to the reference region by maximizing the eigenvalues of the
covariance matrix of the local complexity when the tracking error was large. Based on active contours,
Salah et al. [24] combined a kernel photometric tracking term and a model-free shape tracking term
to track several objects independently and accurately in infrared image sequences. Using a particle
filter, Tang et al. [25] described the infrared target as being sparsely represented in an over-complete
dictionary and thus effectively suppressed the influence of background and noise on target tracking.
Yilmaz et al. [26], in contrast, tracked infrared targets in aerial sequences using both the distribution
and intensity of the local standard deviation as target features in order to build the dual kernel density
estimation of the mean shift.

There have been many studies of infrared target detection and tracking and much progress has
been made. However, not enough research using aerial moving platforms has been done. In the face of
problems such as platform motion and scene change, detection and tracking algorithms with a high
accuracy and good real-time performance remain undeveloped. Especially when the imaging scene is
complex and contains targets with different attributes and motion characteristics, the rapid detection
and accurate location of every moving target of interest becomes a real challenge.

In view of the problems described above and the imaging characteristics of aerial infrared
sequences, especially those acquired by vertical photography, a moving target detection algorithm
(Section 2) and an improved target tracking algorithm (Section 3) for vehicle targets in aerial infrared
sequences are proposed in this paper. The validity of the new algorithms is tested using three real
aerial mid-infrared sequences (Section 4) after registration. After an analysis of the experimental results
(Section 5), the practical application of the proposed algorithms is evaluated (Section 6).

2. Moving Target Detection

The movement of the observation platform leads to big changes in the imaged scene in aerial
sequences. In other words, the region covered by each image in a sequence varies as the camera
moves. This limits the number of frames that have regions in common and produces pixel-level
differences between images even after registration is carried out to compensate for the background
motion. These problems cause difficulties for target detection methods such as background modeling.
The frame differencing algorithm can reduce these problems to some extent and calculations made in
real-time moving target detection using this algorithm are remarkably efficient [14]. For this reason,
in this paper the traditional frame differencing algorithm is improved and developed to produce a new
infrared moving target detection algorithm for aerial sequences. The proposed algorithm is given
the name Symmetric Frame Differencing Target Detection Based on Local Clustering Segmentation
(SFDLC). Figure 1 shows the flow of target detection using SFDLC.

Before introducing the SFDLC, it is necessary to discuss the traditional symmetric frame
differencing algorithm (SFD). SFD [27] is an improved detection method of traditional frame
differencing that uses differencing between two frames. It chooses three successive frames in the
image sequence to carry out the difference operation. Thus, the SFD can eliminate background
detection caused by movement to accurately extract the target location and contour information.
Setting f k´1, f k, f k+1 as the three successive frames, SFD is described by the following three equations:

d1 “ | fk ´ fk´1| (1)

d2 “ | fk`1 ´ fk| (2)
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d “ d1 b d2 (3)

where d is the difference image, and b signifies “AND” operation.
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Figure 1. Flow chart of Symmetric Frame Differencing Target Detection Based on Local Clustering 
Segmentation (SFDLC) for target detection in aerial infrared image sequence. 

In most cases, SFD is simple to use and it performs moving target detection efficiently for 
complex scenes. However, there are some situations in which traditional SFD cannot produce 
satisfactory detection results. The first problem is that, because of the motion of the platform, the 
aerial camera acquires images at a high frequency in order to acquire continuous, real-time 
information about the target. The real geographical location and state of motion of the target thus 
change very little between successive frames. In other words, the target displacement between the 
successive frames after registration is small, or the target is slow-moving. When SFD is used to 
detect these “slow-moving” targets, problems such as the “Hole Effect” and false targets arise [28].  
As shown in Figure 2, the diagonal-filled region of change caused by the motion of target is obtained 
by differencing between fk and fk-1. The vertical line-filled region is obtained by differencing between 
fk and fk+1. Clearly, there is a small area of overlap between these two regions and a detection “hole” 
appears in the middle of the target detected in fk. 

 

Figure 1. Flow chart of Symmetric Frame Differencing Target Detection Based on Local Clustering
Segmentation (SFDLC) for target detection in aerial infrared image sequence.

In most cases, SFD is simple to use and it performs moving target detection efficiently for complex
scenes. However, there are some situations in which traditional SFD cannot produce satisfactory
detection results. The first problem is that, because of the motion of the platform, the aerial camera
acquires images at a high frequency in order to acquire continuous, real-time information about
the target. The real geographical location and state of motion of the target thus change very little
between successive frames. In other words, the target displacement between the successive frames after
registration is small, or the target is slow-moving. When SFD is used to detect these “slow-moving”
targets, problems such as the “Hole Effect” and false targets arise [28]. As shown in Figure 2,
the diagonal-filled region of change caused by the motion of target is obtained by differencing between
f k and f k´1. The vertical line-filled region is obtained by differencing between f k and f k+1. Clearly,
there is a small area of overlap between these two regions and a detection “hole” appears in the middle
of the target detected in f k.
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Figure 2. “Slow-moving” target in three consecutive frames. In frame differencing result, the
diagonal-filled region is obtained by differencing between f k and f k´1; the vertical line-filled region is
obtained by differencing between f k and f k+1.

Because of the problem just described, this paper improves SFD by introducing the idea that
clustering follows locating, and therefore proposes SFDLC to detect “slow-moving” targets in real
time. On account of the grayscale consistency for a single target in the infrared image, SFDLC first
locates the target by improved symmetrical differencing and then separates the entire target out by
cluster analysis based on the preliminary location result. The SFDLC algorithm can be described in
more detail as follows.

Step 1. Image Difference and Binarization. The difference images d1 and d2 are calculated by carrying
out symmetric differencing on three successive infrared images after registration, f k´1, f k and f k+1.
Then d1 and d2 are converted to binary images according to Equation (4), which sets a threshold T to
distinguish between region of change caused by the motion of target and noise:

di “

#

0 di ă T
255 di ą T

, i “ 1, 2 (4)

where T was set as 10 for the empirical experimental value.
Step 2. Region of Change Extraction and Description. First the small amount of noise needs to be

removed by median filtering. Then the non-zero pixel blocks in d1 and d2 are extracted to represent
region of change caused by the motion of target, and the contours of these blocks are described by
minimum enclosing rectangles (the dashed rectangles in Figure 3a). Due to the irregular shapes of most
of the real regions of change, the use of minimum enclosing rectangles can help enlarge real regional
contours to ensure a larger overlap (the red areas in Figure 3b) between the regions of change in d1 and
d2 produced by the same target. From the perspective of the traditional SFD algorithm, which may not
produce any overlap such as that shown in Figure 2, using minimum enclosing rectangles is a key way
to generate d in Equation (3).
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of the target (red areas).
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Step 3. Initial Location of the Target. The initial location of the moving target in f k is acquired
from the calculation of d (the red areas in Figure 3b), which is the set of pixels corresponding to the
overlap between the rectangles enclosing the areas of change in d1 and d2 Because d intersects with
the real target to be detected in f k, in SFDLC, the location of d is taken as the initial location of the
moving target.

Step 4. Cluster Analysis. In order to extract the entire target in f k, a region of interest which is
regarded as the likeliest area for the target to be present needs to be set first. In order to cover the initial
location described in Step 3, this region is centered on d and defined as square because the direction of
motion of the target is not yet set. The size of this region is determined by the size of the real target
and also the image resolution, as described by Equation (5):

L “
maxpl, w, hq

c
ˆ 2 (5)

where L is the side length of the region of interest; l, w, h are respectively the length, width and height
of the target and c is the image resolution. Next, pixel clustering is carried out in the regions of interest
centered on d using the K-means algorithm [29]. In this way, the regions of interest are divided into
different clustering objects according to the different grayscales of the various targets in the infrared
image. Also, the number of clustering categories used in the K-means algorithm is defined by the
image. Because of the remote imaging distance and the uniform grayscale of the target, and as there
are few occlusions, this number is usually set as 2 for vertical aerial photographs.

Step 5. Target extraction. Because of the uniform grayscale of the target and the overlap between d
and the target, the clustering objects that match d both in terms of grayscale category and location are
taken to be the target candidates. On this basis, the target detection results are filtered out from the
target candidates according to the possible area range of the real targets and these detected targets are
represented in the final image, f k, by minimum enclosing rectangles.

According to the above steps, SFDLC can be carried out to detect targets in every image of aerial
infrared image sequence.

3. Moving Target Tracking

Because of the lack of real-time information about the target, currently used tracking algorithms
have difficulty in tracking infrared targets especially when the characteristics of the target and
background change in complicated scenes. In this study, we aimed to produce a tracking method that
is highly robust and accurate by drawing on the idea of Tracking Learning Detection (TLD) [30–32]
and combining target tracking with real-time detection in order to realize real-time updating of the
target model. Based on these ideas and the characteristics of infrared images, we investigated the
use of kernel-based tracking theory [33], which has previously performed well in infrared target
tracking [23,26]. As a result, a novel tracking algorithm referred to as the Kernel-Based Mean Shift
Target Tracking Based on Detection Updates (MSDU) is proposed to realize stable target tracking in
infrared aerial sequences.

Kernel-based tracking theory, and the kernel-based mean shift target tracking (MS) algorithm,
are based on the target features. Specifically, MS describes the target using a statistical distribution of
features such as color; it takes the Bhattacharyya coefficient as the similarity measurement and searches
for the pattern most similar to the target by gradient descent of the mean shift vector. In general, the
MS algorithm involves little calculation, is highly robust and is well suited to tracking targets where
there is little change in position. These characteristics are precisely the characteristics of targets in
high-frequency aerial image sequences. However, MS easily produces the wrong convergence and
finally leads to divergence when the overlap in features between the target and background is large or,
in other words, when the contrast between target and background is low [26,34].

For better target tracking using infrared aerial sequences, the MSDU algorithm is proposed as
an improvement of MS and brings the real-time target detection in the tracking process. In MSDU,
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the detection result is first used to discover and track the emerging target in good time; it is also used
to selectively update the tracking model of the tracked target to produce improved tracking of the
target and its trajectory.

The theory relevant to the MSDU algorithm and the steps involved in the algorithm are discussed
in detail below.

3.1. Target Description Based on the Kernel Function Histogram

In MSDU, the gray space is chosen as the feature space of the infrared target and the histogram of
gray levels based on the kernel function is accordingly taken as the descriptive model of the infrared
target area in the image. The attributes of a specific target are represented by a rectangle describing the
target’s location and size and so the target area is also a rectangle.

The model of the target is thus assumed to be a rectangular region centered on the point y*
and consisting of n points expressed as

 

x˚
i
(

i“1,¨¨¨ ,n. By dividing the gray space of this rectangular
region into m equal divisions, the kernel function histogram of the target model can be written as
q̂py˚q “ tq̂upy˚quu“1,¨¨¨ ,m:

q̂upy˚q “ C1

n
ÿ

i“1

kp||
y˚ ´ x˚

i
h1

||
2

qδrbpx˚
i q ´ us, u “ 1, ¨ ¨ ¨ , m (6)

where C1 denotes the normalization constant such that
řm

u“1 q̂upy˚q “ 1; k(x) is defined as the profile
function of the kernel function; h1 is the window width of k(x); δ is Kronecker Delta function satisfying
řm

u“1 δ “ 1; and bpx˚
i q is the quantized value of the pixel at x˚

i .
Similarly, the target candidate centered on point y can be described by the kernel function

histogram as p̂pyq “ tp̂upyquu“1,¨¨¨ ,m:

p̂upyq “ C2

s
ÿ

i“1

kp||
y´ xi

h2
||

2
qδrbpxiq ´ us, u “ 1, ¨ ¨ ¨ , m (7)

where C2 denotes the normalization constant such that
řm

u“1 p̂upyq “ 1, s denotes the total number of
points in rectangular region of the target candidate, and h2 is the window width of k(x).

In this study, the Epanechnikov kernel function, expressed as KE(x), was selected to calculate k(x).
In terms of the integral mean square error, KE(x) is the most suitable of the commonly used kernel
functions; it can be calculated according to:

KEpxq “

$

&

%

1
2

c´1
d pd` 2qp1´ ‖ x ‖2

q, ‖ x ‖ ă 1

0, ‖ x ‖ ě 1
(8)

where cd denotes the volume of a d-dimensional sphere and can be set to π.

3.2. Target Location Based on Mean Shift

Mean shift is a method of estimating probability density extrema by continuously moving the
point estimation to the position of the sampling mean. In MSDU, mean shift theory is used to move
the target candidate to the location most similar to that of the target model. In fact, this location
corresponds exactly to the most likely new target location. To find this location, the Bhattacharyya
coefficient, written as ρ̂pyq, is chosen as the similarity measure between target candidate and target
model. ρ̂pyq gets larger as the similarity increases and the location where ρ̂pyq reaches its maximum is
the correct target location.
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In the process of target location, ρ̂pyq relating p̂pyq and q̂py˚q is expressed as:

ρ̂pyq ” ρrp̂pyq, q̂py˚qs “

m
ÿ

u“1

b

p̂upyqq̂upy˚q (9)

In addition, the iterative calculation of the new target candidate location (y1) using the mean shift
vector can be written as:

y1 “

s
ř

i“1
xiωigp||

y´ xi
h

||
2
q

s
ř

i“1
ωigp||

y´ xi
h

||
2
q

(10)

where gpxq “ ´k1pxq, and tωiui“1,¨¨¨ ,s denotes the weight coefficient which can be calculated as:

ωi “

m
ÿ

u“1

d

q̂upy˚q

p̂upyq
δrbpxiq ´ us (11)

According to Equation (10), the location of the target candidate is iteratively calculated until the
calculated location maximizes ρ̂pyq.

3.3. Target Model Updating Based on Detection

During the tracking process, a conventional tracking algorithm such as MS assumes that the
target model is invariable. Therefore, the tracking will be adversely affected by changes in the target
and background during the process. However, this effect can be controlled by taking advantage of
real-time target information for model updating. For the collection of real-time target information,
MSDU draws lessons from TLD and uses the real-time target detection results as a priori knowledge.
To be specific, the detection results give real-time information about the target, and consequently,
if there is an obvious difference between the detection results and the tracking results, the tracking
results are probably not believable. Because of this, in MSDU, the tracking results are compared with
their nearest-neighbor matched detection results in order to decide whether the tracking is effective
and whether to update the current target model. Once the effectiveness of the tracking has been
shown to be low, the target model is updated using the detection results in order to give accurate
target tracking.

In practice, the target model is updated according to the following two criteria.

3.3.1. Tracking Effectiveness Evaluation Criterion

The tracking effectiveness is evaluated by taking similarity in the spatial domain, δ, as measure.
The δ between the detection result and its nearest-neighbor matched tracking prediction is expressed
as the Euclidean distance between their centers:

δ “

b

pxdtc ´ xtrkq
2
` pydtc ´ ytrkq

2

dtrk
(12)

where (xdtc, ydtc) is the detection central point, (xtrk, ytrk) is the tracking central point, dtrk is the
tracking diameter. As shown in Equation (12), a higher value of δ indicates a bigger difference between
the detection result and its matched prediction.

In MSDU, ε is defined as the threshold of difference in the spatial domain between the detection
result and its matched tracking result. If δ is greater than ε, the similarity between the detection
and tracking results is low. In this case, the tracking is more likely to be inaccurate and the tracking
effectiveness will be evaluated as poor. In contrast, if δ is smaller than ε, the tracking effectiveness will
be evaluated as good.
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The value of ε can be set according to the requirement of tracking accuracy in practical application.
The higher the accuracy requirement is, the smaller the value of ε needs to be set. In this case, the minor
difference between the detection result and the tracking result can be valued and the frequency of
tracking model updating may increase. In contrast, the bigger value of εmay lead to a lower tracking
accuracy. On account of the detection result used in MSDU not being exactly the same as the true
target, εwas set as 0.1 in the experiment to avoid the unreliable evaluation on tracking effectiveness
caused by the detection results, and also to find the possibly inaccurate tracking result in time for
ensuring a high tracking accuracy.

3.3.2. Tracking Model Updating Criterion

Once δ is greater than ε, MSDU begins to seek accurate detection results in the subsequent frames
as the real-time target information to be used for the correction of the tracking. As the target shape and
size vary little between multiple consecutive frames in a high-frequency sequence, the detection result
is considered to be accurate if there is a nearest-neighbor matched tracking result and the following
morphological difference formula is satisfied:

$

’

’

&

’

’

%

widthdtc ´widthtrk
widthtrk

ă τ

heightdtc ´ heighttrk
heighttrk

ă τ
(13)

where widthtrk and heighttrk, respectively, denote the width and height of the tracking result; widthdtc
and heightdtc, respectively, denote the width and height of the detection result; τ is the shape stability
threshold.

Once the accurate detection result has been obtained, the target model q̂ needs to be replaced
and updated; the status attributes, such as the location, of the target are then determined and
changed accordingly.

In MSDU, τ can be set according to the target detection effectiveness. Due to the slow change
of target between the successive frames in the high-frequency image sequence, the more accurate
the detection result is, the smaller the value of τ can be set to find a satisfactory detection result
for updating the tracking model in a timely manner, and the model turns out to be more reliable.
In contrast, the bigger the value of τ is, the less accurate the target detection needs to be, and the
tracking model can be updated more frequently but less reliably. However, the inexact detection result
with rather low accuracy has little practical significance and cannot be taken as the tracking model.
Therefore, in the experiment, it was assumed that the detection result was available if the difference
between the height and also the width of the detection result and the real height and width of target
was smaller than 10% of the real ones. In this case, τ was set as 0.1 under the premise of only selecting
detection results with relatively high precision for updating, to improve the accuracy and stability of
target tracking by a timely updating tracking model.

3.4. Kernel-Based Mean Shift Target Tracking Based on Detection Updates (MSDU) Process

Setting q̂ as the target model and ŷ0 as the target position in the preceding frame, MSDU is
implemented according to the following steps.

(1) The target position in the current frame is initialized as ŷ0 and, accordingly, the target candidate
can be expressed as p̂pŷ0q, calculated by Equation (7).

(2) The value of ρrp̂pŷ0q, q̂s is calculated according to Equation (9).
(3) By computing and using tωiui“1,¨¨¨ ,s, the new position, ŷ1, of the target candidate is estimated

using Equation (10).
(4) The target candidate is updated as p̂pŷ1q and ρrp̂pŷ1q, q̂s is recalculated.



Remote Sens. 2016, 8, 28 9 of 21

(5) If the condition ρrp̂pŷ0q, q̂s ă ρrp̂pŷ1q, q̂s is satisfied, ŷ0 “ ŷ1 is performed until this condition is
not met or ||ŷ1 ´ ŷ0|| ă 1. Through this iteration process, the similarity coefficient between the
target model and candidate reaches a maximum and thus the final location of the target candidate
is just the tracking result.

(6) All targets are tracked respectively according to the above steps, and the tracking results are
nearest-neighbor matched with the target detection results to determine whether a new emerging
target has been detected. Once a new target exists, timely tracking of it is necessary.

(7) A judgment regarding the validity of the tracking is made based on the tracking effectiveness
evaluation criterion.

(8) If the tracking effectiveness is poor, q̂ is updated according to the tracking model updating
criterion. If this updating succeeds, a new q̂ will be used for subsequent tracking.

4. Experimental Data

In order to verify the validity and accuracy of the proposed detection and tracking algorithm
for infrared moving targets, a series of experiments was carried out using aerial mid-infrared
image sequences with multiple vehicles in the sequences as the experimental targets. In addition,
the experiments were carried out on an Intel(R) 3.1 GHz computer with 4.0 GB RAM, and all algorithms
were implemented using Visual C++ and the OpenCV library.

4.1. Data

To verify the effectiveness of the algorithm proposed in this paper, the three mid-infrared image
sequences A, B and C, which had the different imaging heights, backgrounds and target characteristics
shown in Table 1, were chosen as the experimental data. These experimental sequences were acquired
by vertical photography in the vicinity of Yantai Port located in Shandong province, China between
18:30 and 19:30 local time on 6 October 2014. The instrument used was from the Telops Infrared
Camera Series—more specifically, the camera had a mid-infrared lens. During the data acquisition,
the camera was fixed to the aircraft and images were acquired at a frequency of 50 Hz, namely 50 frames
per second. The images acquired were 640 ˆ 512 pixels in size and the gray level of the pavement
background was high because of its high temperature. The experimental targets, the moving vehicles,
had relatively low grayscale values.

Table 1. Specification of experimental sequences.

Sequence
Image Characteristics Target Characteristics

Total Number
of Frames Resolution (m) Imaging

Height (m) Total Number Direction of
Movement

A 138 0.20 400 2 Same
B 171 0.45 700 7 Opposite
C 128 0.64 1000 5 Opposite

4.2. Data Pre-Processing

In order to better detect, track and locate moving targets in the aerial image sequences, the images
needed to be pre-processed. The primary task of the pre-processing was to convert the problem of the
dynamic background into a static background problem; that is, all the images in one sequence had
to be aligned with a single datum in order to compensate for their ego-motions. In this verification
experiment, the registration method based on SIFT feature matching [35] was used to align the images
in each experimental sequence. During registration, the reference image was changed to the currently
aligned image once every ten images. In this way, the sustainability of the registration process could be
ensured by aligning all the images in all three experimental sequences and the cumulative registration
error was reduced to less than 2 pixels. In addition, the noise in all the images was removed during
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the pre-processing process by the use of a median filter. This reduced the effect of noise on the
tracking accuracy.

The experimental images after pre-processing are shown in Figure 4.Remote Sens. 2016, 8, 28 
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Figure 4. Images in the experimental sequences after pre-processing: (a) the 50th frame of Sequence A;
(b) the 50th frame of Sequence B and (c) the 50th frame of Sequence C.

5. Results and Discussion

5.1. Detection Experiment Results

After pre-processing, the three experimental sequences described above were taken as the target
detection sequences. For comparison, the SFDLC algorithm, the traditional SFD algorithm and the
Accumulative Frame Differencing (AFD) algorithm [36] were each used to detect moving vehicles
in these sequences. In each case, the area range for the detectable targets was set to the same value,
based on the vehicle type common in the imaging region.

AFD is an improved frame differencing algorithm which has proved to be useful in slow-moving
target detection [14,37,38]. In the experiment, the number of frames used in the AFD was set as the
average of the maximum and minimum number of frames required for the targets to move a distance
equal to their own length. This was done in order to ensure the real-time capability of the algorithm
while reducing the number of false targets.

The target detection experimental results are shown in Figures 5–7. The subsequent quantitative
evaluation of the validity of SFDLC was based on these results.

Looking at the overall detection results, SFDLC, in most cases, can detect intact targets of different
sizes approximately equal to those of the real targets. In addition, SFDLC can effectively remove
the impact of noise and eliminate false targets. In contrast, SFD cannot detect all intact targets in
most images due to the detection “hole”; however, it is good at detecting smaller targets in the same
sequence because the changes are more obvious for smaller targets moving at similar speeds and
thus “hole” may not arise in these smaller targets. In addition, SFD is relatively poor at limiting the
amount of noise compared with SFDLC. For this reason, false targets occur when the minimum area
restriction for the detectable target is small, as shown in Figure 7f. The results obtained using AFD are
also unsatisfactory. Because of the cumulative calculations, AFD can detect most targets with an area
far greater than the real target’s area and thus produces a large number of false targets caused by noise.
In addition, as shown in Figure 6g, the AFD delay phenomenon is obvious, which means that a target
can only be detected completely by AFD after moving for a certain number of consecutive frames.
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In order to quantitatively evaluate the detection results, the parameters Probability of Detection
(PD) and False Alarm Rate (FAR) [14] were used.

PD “
1
N

N
ÿ

k“1

TPk
TPk ` FNk

ˆ 100% (14)

where TPk is the number of pixels detected in frame k that belong to the real target, FNk is the number
of pixels belonging to the real target but not detected in frame k, and N is the total of frames in the
sequence.

FAR “
1
N

N
ÿ

k“1

FPk
TPk ` FPk

ˆ 100% (15)

where FPk is the number of pixels detected in frame k that do not belong to the real target.
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Figure 5. Target detection results for Sequence A. The area range for the detectable targets was set 
from 80 pixels to 350 pixels. Red rectangles are used in parts (a–c) respectively to represent the 
results obtained using SFDLC for the 10th, 55th and 100th frames; blue rectangles are used in parts 
(d–f) to represent the corresponding results obtained using SFD; and green rectangles are used in 
parts (g–i) to represent the corresponding results obtained using AFD. 

Figure 5. Target detection results for Sequence A. The area range for the detectable targets was set
from 80 pixels to 350 pixels. Red rectangles are used in parts (a–c) respectively to represent the results
obtained using SFDLC for the 10th, 55th and 100th frames; blue rectangles are used in parts (d–f) to
represent the corresponding results obtained using SFD; and green rectangles are used in parts (g–i) to
represent the corresponding results obtained using AFD.
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Figure 6. Target detection results for Sequence B. The area range for the detectable targets was set 
from 20 pixels to 800 pixels. Red rectangles are used in parts (a–c) respectively to represent the 
results obtained using SFDLC for the 10th, 55th and 100th frames; blue rectangles are used in parts 
(d–f) to represent the corresponding results obtained using SFD; and green rectangles are used in 
parts (g–i) to represent the corresponding results obtained using AFD. 

Figure 6. Target detection results for Sequence B. The area range for the detectable targets was set
from 20 pixels to 800 pixels. Red rectangles are used in parts (a–c) respectively to represent the results
obtained using SFDLC for the 10th, 55th and 100th frames; blue rectangles are used in parts (d–f) to
represent the corresponding results obtained using SFD; and green rectangles are used in parts (g–i) to
represent the corresponding results obtained using AFD.
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represent the corresponding results obtained using SFD; and green rectangles are used in parts (g–i) 
to represent the corresponding results obtained using AFD. 
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SFD 29.61 28.14 47.97 22.23 52.46 48.74 
AFD 59.98 78.25 43.88 58.32 55.93 77.35 

It can be seen that SFDLC has the highest PD (90.48% on average) and the lowest FAR (27.96% 
on average) than SFD and AFD. The PD for SFDLC falls slightly from 93.95% to 90.52%, and then to 
86.97% as the imaging height increases from 400 m to 700 m, and then to 1000 m. This is because both 
the target resolution and also the difference in gray level between the target edge and background 
both decrease as the imaging height increases, and thus the regions of targets detected by the 

Figure 7. Target detection results for Sequence C. The area range for the detectable targets was set
from 9 pixels to 200 pixels. Red rectangles are used in parts (a–c) respectively to represent the results
obtained using SFDLC for the 10th, 55th and 100th frames; blue rectangles are used in parts (d–f) to
represent the corresponding results obtained using SFD; and green rectangles are used in parts (g–i) to
represent the corresponding results obtained using AFD.

A quantitative evaluation of the results of the moving target detection experiment using these
two measures is shown in Table 2.

Table 2. Quantitative evaluation of moving target detection.

Method
Sequence A Sequence B Sequence C

PD (%) FAR (%) PD (%) FAR (%) PD (%) FAR (%)

SFDLC 93.95 25.94 90.52 36.31 86.97 21.63
SFD 29.61 28.14 47.97 22.23 52.46 48.74
AFD 59.98 78.25 43.88 58.32 55.93 77.35

It can be seen that SFDLC has the highest PD (90.48% on average) and the lowest FAR (27.96%
on average) than SFD and AFD. The PD for SFDLC falls slightly from 93.95% to 90.52%, and then to
86.97% as the imaging height increases from 400 m to 700 m, and then to 1000 m. This is because both
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the target resolution and also the difference in gray level between the target edge and background
both decrease as the imaging height increases, and thus the regions of targets detected by the grayscale
clustering accordingly becomes smaller than the regions of real targets. In contrast, the PD for SFD
(43.35% on average) is low but increases as the imaging height increases because the smaller targets
with obvious change can be more easily detected in Sequence B and Sequence C by SFD than the
bigger targets with “slow” change. Although the PD increases from 29.61% to 52.46%, the FAR for SFD
accordingly increases sharply from 28.14% to 48.74%. In addition, due to the level at which the number
of frames included in the accumulative calculation is set and the area restriction for the detectable
targets, AFD accumulates changes from many frames leading to a high FAR (71.31% on average) but
a low PD (53.26% on average).

5.2. Tracking Experiment Results

After the effectiveness of the SFDLC algorithm had been verified, a tracking experiment based on
the SFDLC target detection results was carried out. In this experiment, the use of MSDU and MS to
track moving vehicle targets was compared. A quantitative analysis of the tracking results was then
carried out. In the experiment, by setting h as half the target size [33], ε as 0.1, and τ as 0.1, each target
could be tracked individually because of the large distances between them.

The tracking results for representative vehicle targets in sequences A, B and C are shown in
Figures 8–10.

By analyzing and comparing the experimental results, it can be seen that MSDU can produce
good results that match the real targets. With the help of target detection information, the targets are
accurately located by MSDU for appropriate and timely updating of the target models. In contrast, the
tracking results obtained by MS deviate far from what should be the result for the real targets. Also,
the targets tracked by MS are likely to show as missing as the deviation increases and a detected target
that has already been tracked may be tracked again as a new target, as shown in Figure 9h. The reason
for the poor performance of MS is that the target model and position are not updated and corrected as
the target and background change and this causes wrong convergence in MS.
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Figure 8. Comparison of results of target tracking by MSDU and MS for Sequence A. Green 
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30th, 60th, 90th and 120th frames; red rectangles are used in parts (e–h) to represent the 
corresponding results obtained using MS. 

Figure 8. Comparison of results of target tracking by MSDU and MS for Sequence A. Green rectangles
are used in parts (a–d) respectively to represent the results obtained using MSDU in the 30th, 60th, 90th
and 120th frames; red rectangles are used in parts (e–h) to represent the corresponding results obtained
using MS.
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In order to avoid the effects due to the target size and image resolution, the ratio of the 
Euclidean distance between the tracking result and the real target to the size of the target diameter 
was defined as the tracking error [20]. On this basis, the average tracking error of all the targets in 
each frame, Dev, was used as the index for quantitative evaluation of the tracking results. Dev can be 
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where n is the total number of targets in the frame, (xti, yti) is the central point in the tracking result 
for the i th target, (xi, yi) is the true central point of the i th target and di is the diameter of the i th 
target. The values of Dev for each frame are shown in Figure 11 and the average Dev for each 
complete sequence is listed in Table 3. 

Figure 9. Comparison of results of target tracking by MSDU and MS for Sequence B. Green rectangles
are used in parts (a–d) respectively to represent the results obtained using MSDU in the 30th, 60th, 90th
and 120th frames; red rectangles are used in parts (e–h) to represent the corresponding results obtained
using MS.
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Figure 10. Comparison of results of target tracking by MSDU and MS for Sequence C. Green rectangles
are used in parts (a–d) respectively to represent the results obtained using MSDU in the 30th, 60th, 90th
and 120th frames; red rectangles are used in parts (e–h) to represent the corresponding results obtained
using MS.

In order to avoid the effects due to the target size and image resolution, the ratio of the Euclidean
distance between the tracking result and the real target to the size of the target diameter was defined
as the tracking error [20]. On this basis, the average tracking error of all the targets in each frame, Dev,
was used as the index for quantitative evaluation of the tracking results. Dev can be calculated using
Equation (16):

Dev “
1
n

n
ÿ

i“1

b

pxti ´ xiq
2
` pyti ´ yiq

2

di
(16)

where n is the total number of targets in the frame, (xti, yti) is the central point in the tracking result
for the i th target, (xi, yi) is the true central point of the i th target and di is the diameter of the i th
target. The values of Dev for each frame are shown in Figure 11 and the average Dev for each complete
sequence is listed in Table 3.
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Table 3. Quantitative evaluation of moving target tracking by MSDU and MS. The values shown are
the values of the average tracking error for each sequence.

Method Sequence A Sequence B Sequence C

MSDU 0.1581 0.1061 0.5427
MS 0.2706 0.4165 1.0201

As shown in Figure 11 and Table 3, the tracking error for MSDU (0.2689 on average) is much
smaller than that for MS (0.5690 on average). In Figure 11, the error for MS shows an increasing trend
for each sequence—the sharp rises and falls occur when a target disappears from the imaging scene.
In contrast, if the target detection is good, especially when PD > 90%, MSDU can effectively control the
error accumulation and achieve stable target tracking by means of updating the tracking model, as is
the case for Sequence A and Sequence B in these results. In addition, as shown in Table 3, the overall
error for MS increases from 0.2706 to 0.4165, and then to 1.0201 as the imaging height increases from
400 m to 700 m, and then to 1000 m. This is because the image resolution decreases as the height
increases, leading to the low contrast but large overlap in grayscale characteristics between the target
and background. However, with the help of effective target detection, MSDU greatly reduces the
negative influence of imaging height on the target tracking and produces better tracking results.

Based on the tracking experiment described above, other three popular tracking algorithms,
such as the Kalman filter tracking algorithm based on mean shift (KFMS), the particle filter tracking
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algorithm (PF) and the hash tracking algorithm (HT), were also used to track moving vehicles in the
three experiment sequences. The tracking results produced by these three algorithms were compared
with that produced by MSDU, and the average Dev for each algorithm used in each sequence is listed
in Table 4.

Table 4. Quantitative evaluation of moving target tracking by KFMS, PF, HT and MSDU. The values
shown are the values of the average tracking error for each sequence.

Method Sequence A Sequence B Sequence C

MSDU 0.1581 0.1061 0.5427
KFMS 0.2593 0.2007 0.5501

PF 0.6018 0.4760 0.9463
HT 0.1974 0.5369 1.4698

The evaluation result shows that MSDU achieves the best performance compared with the other
algorithms. This further illustrates that MSDU is an effective improvement of MS, and it works well in
tracking moving targets in aerial infrared image sequences.

With regard to the processing speed of the algorithms, by taking the SFDLC and MSDU as a whole,
58 frames can be processed per second on average, and this meets the real-time application requirement
of the experiment data acquired at a frequency of 50 frames per second in this paper. In addition,
the algorithms can be further optimized and improved for more high-frequency image sequences.

5.3. Discussion

The SFDLC algorithm proposed in this study is mainly used to detect “slow-moving” targets in
the high-frequency aerial infrared image sequences. It can be seen from the target detection experiment
results and analysis that, using accurate initial locations and clustering analysis, the SFDLC algorithm
proposed in this paper has the following advantages: good detection capability, which produces
complete and accurate detection results; effective immunity to noise, which avoids the detection of
false targets; no detection delay phenomenon; and high robustness, meaning that it can be used for
a range of different targets and different image sequences. However, the region of detection result
by clustering becomes a little smaller than the region of real target when the contrast between target
and background is not obvious in an image with low resolution. As shown in Figure 7c and Table 2,
this may lead to target misdetection and unsatisfactory PD because the grayscale clustering result does
not meet the minimum area restriction for the detectable targets. One possible solution to this problem
is by introducing some other clustering techniques for separating the target from the background
to take the place of the K-means algorithm used in SFDLC. However, no technique can guarantee
detecting every pixel belonging to the target under different imaging conditions [5], and thus the most
suitable technique may be determined after a lot of trials on more data and experiments in future
work. Another possible solution is to enlarge the possible area range for the detectable targets which
is set according to the real vehicle type common in the imaging region. By lowering the minimum
area restriction, the target can be easily detected. However, the detection result is still smaller than the
region of real target and it can be looked as a part of the real target. Therefore, this result is useful for
the target location and the improvement of PD but cannot provide all information of the target.

Within the limited area of the detectable targets used in the experiments, SFD and AFD also
produced different degrees of misdetection, and the rate of misdetection using SFDLC is really quite
low compared with which occurs when either SFD or AFD is used. As shown in Figure 5d, misdetection
happens using SFD because the detection “hole” leads to the area detected of a slow-moving target
smaller than the minimum area restriction. This happens in every case with SFD except for the case
shown in Figure 7f. As shown in Figures 5i and 6h, when the detection results contain too much
false information, misdetection happens using AFD because the area detected by the accumulation of
multiple consecutive frames exceeds the limit for the maximum area restriction. Although the rate of
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misdetection can be reduced by increasing the maximum area restriction and the PD for AFD may
accordingly increase, the accurate location and other information of target cannot be obtained without
extra processing [14]. After analyzing these experimental results, it was found that the misdetection
is closely related to features of the target such as speed, gray level and size. For this reason, it is not
advisable to try to avoid misdetection by randomly enlarging the range of the area of the detectable
targets—this lacks a factual basis and will reduce the SNR of the detection.

While the PD for SFDLC decreases slightly as the image resolution decreases and the imaging
height increases, the PD for SFD increases as the imaging height increases. This is because the changes
of some smaller targets are obvious in image sequence with lower resolution and these targets can be
detected by SFD [27,28], and also by SFDLC. However, the bigger targets whose changes are relatively
little or slow when moving at speeds similar to those of smaller targets can never be detected without
“hole” by using SFD. For this reason, the PD for SFD can never increase to the same high level as that
for SFDLC once the “slow-moving” target exists in image. In addition, the FAR for SFDLC in Sequence
B is 36.31%, which is higher than that for SFD equaling 22.23%. The reason for this higher FAR is that
the detection noise caused by pixel-level differences between the successive images may be enlarged
by clustering in SFDLC when the imaging background is complicated, as in Sequence B with various
buildings, vegetation and parked vehicles. This problem can be solved by setting general statistical
value ranges of attributive characters for targets to be detected. However, once the characteristic values
are set, the reliability of the detection results by SFD and AFD becomes low. Therefore, these values
were not set in the experiment of this paper for the purpose of comparison among the three different
detection algorithms with as little a priori knowledge as possible, but rather, in practical application,
these values can be set for a better FAR.

Although SFDLC is proposed as a method for “slow-moving” target detection, in most cases,
it can also perform well in detecting a target whose change is not so slow. Furthermore, SFDLC proving
effective for vehicle targets can thus also be employed for other rigid targets such as ships.

In addition, the MSDU algorithm proposed in this study serves mainly for providing an idea
to improve the traditional MS algorithm and realize stable target tracking in high-frequency aerial
infrared image sequence. It can be seen from the target tracking experiment results and analysis
that the MSDU begins to find and update the tracking model once the target tracking result becomes
unreliable so that the target tracking error is significantly reduced. MSDU, therefore, is shown to be
a tracking algorithm with good stability and reliability and an improvement on the MS algorithm.
However, by using the real-time target detection results to update the tracking model, MSDU may
loosen controls of the target tracking errors when the detection results are not good enough for timely
updates, as shown in Figure 11c. The way to solve this problem is by enhancing the effectiveness
of the detection results used in the tracking process, and this mostly relates to the improvement
of the target detection algorithm, which has been described above in the discussion about SFDLC.
Despite this problem, for the infrared target containing little feature information, MSDU is an effective
improvement on MS to substitute the commonly used idea of incorporating multi-feature information
into MS for improvement [39–41].

6. Conclusions

Infrared images represent the temperature distribution of objects with little influence from the
imaging environment. However, the characteristics of objects in infrared images are not obvious
and lack diversity, especially when the images are acquired from a moving airborne platform.
These problems, inherent in infrared target detection and tracking technology, need to be overcome.
By making use of the characteristics of image gray levels, a study of target detection and tracking in
aerial image sequences was carried out. Multiple moving vehicles of different sizes and with different
characteristics, in images with different resolutions, were used as detection and tracking targets.
Based on clustering analysis and frame differencing, in this paper a SFDLC moving target detection
algorithm was proposed for infrared aerial sequences after registration. The experiments carried out
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in this study showed that SFDLC can accurately detect infrared targets in aerial sequence in real time.
The detection results showed that this algorithm produces a high probability of detection (90.48%)
but a low false alarm rate (27.96%) because it effectively avoids the influence of noise. In addition,
based on kernel-based tracking theory, the target detection was combined with a tracking algorithm
and, based on the interaction between detection and tracking, a MSDU target tracking algorithm was
proposed with information from the tracking model continuously provided by the detection results.
The experiments also showed that the MSDU algorithm is superior to the traditional method in terms
of effectiveness and robustness by virtue of the timely correction of the tracking results and updating
of the tracking model. Specifically, as shown in the tracking results, the tracking error was reduced
from 0.5690 for MS to 0.2689 for MSDU and the negative influence of imaging height on the target
tracking using MSDU was remarkably weakened compared with that using MS.
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