Next Article in Journal
Remote Sensing Based Simple Models of GPP in Both Disturbed and Undisturbed Piñon-Juniper Woodlands in the Southwestern U.S.
Next Article in Special Issue
Improved Band-to-Band Registration Characterization for VIIRS Reflective Solar Bands Based on Lunar Observations
Previous Article in Journal / Special Issue
Radiometric Stability Monitoring of the Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Reflective Solar Bands Using the Moon
Article Menu

Export Article

Open AccessArticle
Remote Sens. 2016, 8(1), 17; doi:10.3390/rs8010017

Comparison between the Suomi-NPP Day-Night Band and DMSP-OLS for Correlating Socio-Economic Variables at the Provincial Level in China

1
Department of Astronomy, University of Maryland, College Park, MD 20742, USA
2
School of Earth & Space Sciences, Yaogan Bldg, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
3
NOAA/NESDIS/STAR, College Park, MD 20742, USA
4
School of Economics, Mingde Bldg, Renmin University of China, Beijing 100872, China
*
Author to whom correspondence should be addressed.
Academic Editors: Changyong Cao, Richard Müller and Prasad S. Thenkabail
Received: 27 November 2015 / Revised: 15 December 2015 / Accepted: 21 December 2015 / Published: 25 December 2015
(This article belongs to the Collection Visible Infrared Imaging Radiometers and Applications)
View Full-Text   |   Download PDF [2091 KB, uploaded 25 December 2015]   |  

Abstract

Nighttime light imagery offers a unique view of the Earth’s surface. In the past, the nighttime light data collected by the DMSP-OLS sensors have been used as an efficient means to correlate regional and global socio-economic activities. With the launch of the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite in 2011, the day-night band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard represents a major advancement in nighttime imaging capabilities, because it surpasses its predecessor DMSP-OLS in radiometric accuracy, spatial resolution and geometric quality. In this paper, four variables (total night light, light area, average night light and log average night light) are extracted from nighttime radiance data observed by the VIIRS-DNB composite in 2013 and nighttime digital number (DN) data from the DMSP-OLS stable dataset in 2012, respectively, and correlated with 12 socio-economic parameters at the provincial level in mainland China during the corresponding period. Background noise of DNB composite data is removed using either a masking method or an optimal threshold method. In general, the correlation of these socio-economic data with the total night light and light area of VIIRS-DNB composite data is better than with the DMSP-OLS stable data. The correlations between total night light of denoised DNB composite data and built-up area, gross regional product (GRP) and power consumption are higher than 0.9 and so are the correlations between the light area of denoised DNB composite data and city and town population, built-up area, GRP, power consumption and waste water discharge. However, the correlations of socio-economic data with the average night light and log average night light of VIIRS-DNB composite data are not as good as with the DMSP-OLS stable data. To quantitatively analyze the reasons for the correlation difference, a cubic regression method is developed to correct the saturation effect of the DMSP stable data, and we artificially convert the pixel value of the DNB composite into six bits to match the DMSP stable data format. The correlation results between the processed data and socio-economic data show that the effects of saturation and quantization are two of the reasons for the correlation difference. Additionally, on this basis, we estimate the total night light ratio between saturation-corrected DMSP stable data and finite quantization DNB composite data, and it is found that the ratio is ~11.28 ± 4.02 for China. Therefore, it appears that a different acquisition time is the other reason for the correlation difference. View Full-Text
Keywords: nighttime light; socio-economic statistics; visible infrared imaging radiometer suite (VIIRS); day-night band; DMSP-OLS nighttime light; socio-economic statistics; visible infrared imaging radiometer suite (VIIRS); day-night band; DMSP-OLS
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Jing, X.; Shao, X.; Cao, C.; Fu, X.; Yan, L. Comparison between the Suomi-NPP Day-Night Band and DMSP-OLS for Correlating Socio-Economic Variables at the Provincial Level in China. Remote Sens. 2016, 8, 17.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top