
Remote Sens. 2015, 7, 12282-12296; doi:10.3390/rs70912282 

 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Mineral Classification of Makhtesh Ramon in Israel  

Using Hyperspectral Longwave Infrared (LWIR)  

Remote-Sensing Data 

Gila Notesco *, Yaron Ogen and Eyal Ben-Dor 

Remote Sensing Laboratory, Tel Aviv University, Tel Aviv 69978, Israel;  

E-Mails: yaronogen@gmail.com (Y.O.); bendor@post.tau.ac.il (E.B.-D.) 

* Author to whom correspondence should be addressed; E-Mail: gilano@post.tau.ac.il;  

Tel.: +972-3640-5679; Fax: +972-3640-5737. 

Academic Editors: James Jin-King Liu, Yu-Chang Chan, Magaly Koch and Prasad S. Thenkabail 

Received: 21 June 2015 / Accepted: 11 September 2015 / Published: 21 September 2015 

 

Abstract: Hyperspectral remote-sensing techniques offer an efficient procedure for 

mineral mapping, with a unique hyperspectral remote-sensing fingerprint in the longwave 

infrared spectral region enabling identification of the most abundant minerals in the 

continental crust—quartz and feldspars. This ability was examined by acquiring airborne 

data with the AisaOWL sensor over the Makhtesh Ramon area in Israel. The at-sensor 

radiance measured from each pixel in a longwave infrared image represents the emissivity, 

expressing chemical and physical properties such as surface mineralogy, and the 

atmospheric contribution which is expressed differently during the day and at night. 

Therefore, identifying similar features in day and night radiance enabled identifying the 

major minerals in the surface—quartz, silicates (feldspars and clay minerals), gypsum and 

carbonates—and mapping their spatial distribution. Mineral identification was improved 

by applying the radiance of an in situ surface that is featureless for minerals but distinctive 

for the atmospheric contribution as a gain spectrum to each pixel in the image, reducing the 

atmospheric contribution and emphasizing the mineralogical features. The results were in 

agreement with the mineralogy of selected rock samples collected from the study area as 

derived from laboratory X-ray diffraction analysis. The resulting mineral map of the major 

minerals in the surface was in agreement with the geological map of the area. 
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1. Introduction 

Most minerals in the Earth’s crust present spectral features in the thermal infrared (TIR) region, 

mainly in the longwave infrared (LWIR) 8.0–13 μm range. Technological developments in  

Earth-observation remote-sensing tools have positioned multi- and hyper-spectral remote sensing in the 

LWIR region as a useful tool for mineral mapping using ground, airborne and spaceborne sensors [1–5]. 

Several algorithms, normalized emissivity procedure (NEM) [6], adjusted normalized emissivity 

procedure (ANEM) [7], stepwise refining temperature and emissivity separation (SRTES) [8], and  

in-scene atmospheric compensation procedure (ISAC) [9], among others, have been applied to 

multispectral and hyperspectral LWIR data to correct for atmosphere and calculate the surface 

emissivity, an important variable for mineral mapping. We present an optional procedure that can be 

applied to hyperspectral LWIR images to identify minerals in the surface by comparing day and night 

spectral features in the at-sensor radiance, without the need to correct for atmosphere. The basis of the 

procedure is the different expression of the atmospheric contribution to the at-sensor radiance, 

measured from a surface characterized by low thermal inertia, during the day and at night. In the 

daytime, some of the radiation emitted from the hot surface is absorbed by the atmosphere, while at 

night, when the surface becomes as cold as the atmosphere or colder, the emission from the 

atmospheric gases adds to the radiation emitted from the surface. On the other hand, the expression of 

the surface mineralogy is similar during the day and at night. Therefore, locating similar features in 

both day and night at-sensor radiance spectra may assist in identifying minerals in the surface. As a 

case study, we apply the procedure to day and night data, acquired with the hyperspectral LWIR 

airborne sensor, AisaOWL (Specim), for mineral mapping. The data were acquired during the first 

hyperspectral remote sensing (HRS) LWIR airborne campaign in Israel, over Makhtesh Ramon, the 

largest erosion cirque in the world, consisting of a variety of well-known geological units. 

2. Tools and Methods 

2.1. The Study Area 

The increasing use of HRS technology in the LWIR spectral region, alongside the  

visible-near-infrared-shortwave-infrared (VNIR-SWIR, 0.4–2.5 μm) region, in environmental research, 

calls for an ideal worldwide calibration site. Makhtesh Ramon cirque is one of the most interesting and 

powerful sites for HRS sensor calibration, being an arid area with very low humidity, extremely sparse 

vegetation and clear skies most of the year. The cirque (Figure 1a) is located in the Negev Desert in 

Southern Israel; it is 40 km long and 7 km wide, with a total area of about 200 km2. The minimum 

elevation at the bottom surface is about 400 m above sea level, with cliffs at 600–900 m above sea 

level surrounding it on all sides. The bottom surface consists of a variety of geological units, including 

sandstone, gypsum, limestone, dolomite and plutonic crystalline rocks [10], as shown in Figure 1b. 
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Figure 1. (a)  The study area (image source: Esri, DigitalGlobe, GeoEye, Earthstar 

Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, 

swisstopo, and the GIS User Community); arrow indicates the acquired LWIR image (band 

10.60 μm, day image); (b) Geological map of the area (source: Geological Survey of Israel). 

The photographs show the surface of about 4 square meters of three sites, out of seventeen 

sites, which were sampled for the ground truth dataset, as described in Section 2.3. 

(a)

Symbol Geology

βlc Basalt flows (Basalt, basanite, tephrite, nephelinite) Lower Cretaceous

c1 Hevyon Fm. (Limestone, dolostone, marl, chert, sandstone 44 m) Albian-Cenomanian 

c2 En Yorqe'am, Zafit and Avnon fms. (Limestone, dolostone, marl, chert 124 m) Cenomanian

im Intrusions and volcaniclastic rocks (Basalt) Mesozoic

jl1 Mishor and Ardon fms. (Dolostone, limestone, clay, standstone 21 m) Lower Jurassic

jl2 Inmar Fm. (Sandstone, clay 120 m) Lower Jurassic

jm Mahmal, Zohar and Matmor fms. (Sandstones, limestones, marl, clay) Middle Jurassic

lck Kurnub Group (Sandstone, mudstone, clay, pebbly sandstone, conglomerate 240 m) Lower Cretaceous

q Alluvium (Gravel, sand, silt) Quaternary

tr1 Gevanim Fm. (Sandstone, limestone, siltstone, clay 68 m) Lower Triassic

tr2 Saharonim Fm. (Limestone, clay, marl, dolostone, sandstone, gypsum 117 m) Middle Triassic

tr3 Mohila Fm. (Gypsum, dolostone, limestone, clay 202 m) Upper Triassic

Site 3

Site 2

Site 1

(b)

Geological Survey of Israel (www.gsi.gov.il/eng)
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2.2. The Airborne Data 

The airborne data were acquired with Specim’s AisaOWL hyperspectral sensor, covering the LWIR 

spectral region (7.7–12 μm) with 100 spectral bands and a spectral resolution of 100 nm [11], on 1 June 

2013 at 10:00 and 20:40 UTC. The flight altitude was 1.8 km above ground level, resulting in a spatial 

resolution of 2 m. The flight line, shown in Figure 1a, covered an area of about 8 km2 of the bottom 

surface of the cirque. The elevation across the entire flight line was 475 ± 50 m above sea level. 

2.3. Field and Laboratory Measurements 

Ground temperature was measured at several sites using a Fluke 62 MAX infrared thermometer 

simultaneously with the airborne data acquisition. Daytime temperatures of 40–60 °C were measured 

(bright-dark surface, respectively) and nighttime temperatures were 22–24 °C. Air temperatures were 

32–22 °C, daytime-nighttime, respectively, as recorded in the nearby areas by the Israel Meteorological 

Service [12]. 

In addition, samples of material from the surface were collected at selected sites in the study area, 

representing different geological units. Each sample represents hundreds of square meters of a uniform 

surface, represented in the LWIR image by a region of interest (ROI) consisting of more than  

10 pixels. Their mineralogy was measured for the ground truth dataset with an X-ray diffractometer at 

the Wolfson Applied Materials Research Centre at Tel-Aviv University. X-ray diffraction (XRD) data 

were collected in symmetric Bragg-Brentano geometry with CuKα radiation on a Bruker D8 Discover 

Ɵ-Ɵ X-ray diffractometer equipped with a one-dimensional LynxEye detector based on compound 

silicon strip technology. 

2.4. Data Analysis 

The at-sensor radiance measured from a rocky surface can be approximated as the radiance from a 

blackbody surface. Therefore, the at-sensor radiance of each pixel in the day and night LWIR images 

was fitted with a tangent blackbody radiation curve, as shown in Figure 2a,b, for three ROIs 

representing the three sites shown in Figure 1b, by using an IDL algorithm as described previously [13]. 

The algorithm calculates the temperature for each pixel by applying the at-sensor radiance value of the 

first wavelength to Planck’s law. Once the temperature is known, the algorithm calculates the 

blackbody radiation curve for every wavelength. Then, the algorithm checks that the blackbody 

radiation curve is higher than the at-sensor radiance at each wavelength. If the calculated curve is not 

higher at one of the wavelengths, the process is repeated for the second wavelength and so on. In some 

cases, all calculated blackbody radiation curves tangential to the at-sensor radiance are lower at all 

wavelengths. In this case, an approximated blackbody radiation curve needs to be calculated. The 

algorithm finds the maximum value of the at-sensor radiance, calculates the blackbody radiation curve 

accordingly, and checks if it is higher at all wavelengths. If it is not, it adds 0.05 K to the temperature 

and calculates the blackbody radiation curve again in an iterative function until it finds the curve that is 

higher at all wavelengths, which will serve as the approximate blackbody radiation curve. 
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Figure 2. At-sensor radiance (Ls; solid curves) and fitted tangent blackbody radiation  

(Lb; dashed curves) of three ROIs (representing the three sites from Figure 1b) in (a) day 

and (b) night images. Gray shading marks the absorption ranges of water vapor (H2O) and 

ozone (O3). 

The temperature associated with the blackbody radiation curve of each pixel is considered to be the 

approximated surface temperature. Day and night temperature images, derived after applying the IDL 

algorithm to the LWIR images, are shown in Figure 3a,b. 

  

  

Figure 3. (a) Day and (b) night surface temperature images as derived from the LWIR 

images. The hot surface in the daytime and the cold surface at night, compared to air 

temperatures of 32–22 °C, respectively, indicate a surface with low thermal inertia, suitable 

for applying the suggested procedure. 

Deviation of the at-sensor radiance from the blackbody curve, as shown in Figure 2a,b, is due to 

two components: emissivity, expressing the chemical and physical properties of the surface, and the 

atmospheric contribution, which is expressed by absorption features, such as water vapor and 

tropospheric ozone, during the day and by emission features at night. Dividing the day and night  
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at-sensor radiance (Ls) by the fitted tangent blackbody radiation curve (Lb) resulted in day and night 

Ls/Lb images that emphasize the different atmospheric contributions, i.e., daytime absorption features 

vs. nighttime emission features, as exemplified in Figure 4a,b. However, the day and night Ls/Lb 

spectra of each ROI show similar absorption features at specific wavelengths. These noticeable 

similarities were attributed to surface properties, such as mineral content, assuming no changes in the 

minerals between the day and night datasets. 

 

Figure 4. Day and night Ls/Lb spectra of (a) ROI 1 and (b) ROI 2. Different atmospheric 

contributions are noticeable: ozone’s daytime absorption feature vs. nighttime emission 

feature ((a); dotted lines) and water vapor’s daytime absorption feature vs. nighttime 

emission feature ((b); dotted lines). Similar daytime and nighttime absorption features are 

noticeable ((a) and (b); thick lines). 

 

Figure 5. Emissivity spectra of minerals based on [14] and resampled to the AisaOWL 

spectral configuration. The minerals in the figure are mentioned in the text. Thick lines 

represent the main mineralogical features. 
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Association of the absorption features of both day and night Ls/Lb spectra to known emissivity 

features of the minerals (Figure 5)—since emissivity expresses the mineral content in the rocks—can 

indicate the mineralogy of the surface without the need to correct for atmosphere. For example, ROI 1 

(Figure 4a), with absorption features between 8.20–8.50 and 8.60–9.30 μm in both day and night 

spectra, is classified as a quartz-rich rock, whereas ROI 2 (Figure 4b), with an absorption feature 

between 9.10 and 10.10 μm in both spectra, is classified as a silicate (e.g., albite)-rich rock. 

2.4.1. Classification Based on Both Day and Night Images 

The indices described in Table 1 were created with the association to known emissivity features of 

minerals and were used to identify the presence of specific features in each pixel in the Ls/Lb images.  

A pixel was classified only if absorption features were present in both day and night images. 

Table 1. Mineral indices. 

Mineral Indices 

Quartz Ls/Lbλ = 8.26 μm a − Ls/Lbλ = 8.54 μm < 0 and Ls/Lbλ = 8.54 μm − Ls/Lbλ = 9.10 μm > 0 

Silicates b Ls/Lbλ = 9.10 μm − Ls/Lbλ = 9.43 μm > 0 and Ls/Lbλ = 9.43 μm − Ls/Lbλ = 10.09 < 0 

Gypsum CR_Ls/Lbλ = 8.68 μm (8.17–9.01) c < 0.99 and Ls/Lbλ = 8.68 μm − Ls/Lbλ = 9.10 μm < 0 

Carbonates CR_Ls/Lbλ = 11.21 μm (10.98–11.45) < 0.995 

a: Ls/Lb value at the indicated wavelength; b: Silicates that are not quartz (feldspars, clay minerals);  

c: Ls/Lb continuum-removal (CR) value at the indicated wavelength (the CR range is in parentheses). 

 

Figure 6. Day (primary y-axis) and night (secondary y-axis) Ls/Lb spectra of ROI 3.  

The radiation emitted from the warm surface during the day (60 °C, field measurement)  

was absorbed by the atmosphere, and the atmospheric emission adds to the radiation 

emitted from the cold surface at night (22 °C). Dotted lines emphasize daytime absorption 

features vs. nighttime emission features. There were no similar daytime and nighttime 

absorption features at any point along the spectrum. 
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One ROI (ROI 3) did not show any day-night similarities in absorption features across the entire 

Ls/Lb spectrum (Figure 6): each absorption feature during the day appeared as an emission at night, 

namely, each feature could be related to the interaction between surface-emitted radiation and the 

atmosphere. Therefore, the day or night Ls/Lb spectrum of this surface, representing the contribution 

of the atmosphere to the at-sensor radiance, can be applied to each pixel in the respective day or night 

image, reducing the atmospheric features. 

2.4.2. Classification Based on Gain Spectrum 

Once the Ls/Lb spectrum representing the atmosphere, henceforth gain spectrum, was found,  

the spectrum of each pixel in the day or night Ls/Lb image was divided by it (day or night, respectively) 

to reduce the contribution of the atmosphere and consequently emphasize the spectral features associated 

with the minerals. The resulting spectrum (Ls/Lb)/(gain spectrum) could be considered the approximate 

emissivity spectrum of the pixel. Figure 7 demonstrates the resemblance between day and night 

approximate emissivity spectra of a ROI with dominant features expressing the mineralogy of the 

surface—ROI 1 as a quartz-dominant rock and ROI 2 as a silicate-dominant rock. The resemblance 

appears in the mineral-related features, although not in the absolute values. Therefore, mineral 

classification can be performed using only one dataset, day or night. In addition, the approximate 

emissivity features simplify the identification of the major minerals using the indices described in Table 2. 

 

Figure 7. Day and night approximate (App.) emissivity spectra of the two ROIs, 1 and 2. 

Thick lines represent the mineralogical features. 

Table 2. Mineral indices. 

Mineral Indices 

Quartz CRλ = 8.26 μm (8.12–9.29) a < 0.993 and CRλ = 9.15 μm (8.12–9.29) < 0.995 

Silicates CRλ = 9.47 μm (9.10–10.23) < 0.993 

Gypsum CRλ = 8.63 μm (8.40–8.78) < 0.993 

Carbonates CRλ = 11.16 μm (11.02–11.49) < 0.995 

a: App. emissivity continuum-removal (CR) value at the indicated wavelength (the CR range is in parentheses). 
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3. Results and Discussion 

3.1. The Straightforward Approach 

As described in Section 2.4.1, pixels in the Ls/Lb images were classified as rich in a specific 

mineral if a corresponding absorption feature (described in Table 1) was identified in both day and 

night images. The result, a mineralogical map of the surface at the bottom of Makhtesh Ramon, is 

shown in Figure 8. Classification of the major minerals resembles the XRD analysis results of selected 

rock samples collected from the study area (Table 3). This procedure has the advantage of simplicity as 

data processing is performed directly from the at-sensor radiance. However, detectable surface spectral 

features must be significant and larger than the atmospheric features. In some ROIs, quartz was not 

identified although it was present in the XRD analysis, mainly in samples for which quartz was not the 

major mineral. ROI 3, according to Section 2.4.1, could not be classified. Its mineralogy, based on 

XRD analysis, is a mixture of silicates with ilmenite (FeTiO3), typical to mafic igneous rocks. With 

dominant atmospheric features, its Ls/Lb spectrum was used to reduce the contribution of the 

atmosphere in all other pixels in the Ls/Lb daytime image, emphasizing the mineral-related features in 

the Ls/Lb spectra. 

 

Figure 8. Mineral map of the bottom surface of Makhtesh Ramon. Sampled ROIs are 

shown and numbered (including ROIs 1, 2 and 3 from Section 2.4). 
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Table 3. Mineral classification—HRS analysis vs. XRD analysis. 

ROI HRS Analysis a 
XRD Analysis  

(from Major to Minor)b 
HRS Analysis c 

1 Quartz Quartz, Calcite, Dolomite, Kaolinite, Iron oxides Quartz 

2 Silicates Albite-low, Quartz, Clinochlore Silicates, Quartz 

3 Not classified Anorthite, Albite, Quartz, Ilmenite, Augite ---- 

4 Gypsum, Carbonates 
Gypsum, Quartz, Dolomite, Calcite, Iron oxides, 

Titanium dioxide 
Gypsum, Carbonates, Quartz 

5 Gypsum Gypsum, Quartz, Brushite Gypsum, Quartz 

6 Gypsum, Carbonates Quartz, Gypsum, Calcite, Dolomite, Brushite Gypsum, Carbonates 

7 Carbonates Calcite, Quartz Carbonates, Quartz 

8 Carbonates, Gypsum 
Dolomite, Gypsum, Calcite, Quartz, Kaolinite, 

Titanium dioxide 
Carbonates, Gypsum, Quartz 

9 Carbonates Calcite, Quartz, Dolomite, Kaolinite, Iron oxides Carbonates, Quartz 

10 Silicates Calcite, Kaolinite, Quartz, Dolomite, Iron oxides Silicates 

11 Quartz Quartz, Calcite, Kaolinite, Iron oxides Quartz 

12 Carbonates Calcite, Quartz, Dolomite, Kaolinite Carbonates, Quartz 

13 Quartz, Carbonates Quartz, Calcite, Kaolinite, Dolomite, Iron oxides Quartz, Carbonates 

14 Carbonates Calcite, Quartz, Dolomite, Kaolinite, Iron oxides Quartz, Carbonates 

15 Quartz Quartz, Calcite, Iron oxides Quartz 

16 Quartz, Carbonates Calcite, Quartz, Kaolinite, Iron oxides, Dolomite Quartz, Carbonates 

17 Carbonates, Silicates Calcite, Quartz, Dolomite, Albite Carbonates, Silicates, Quartz 

a: Classification based on the straightforward approach (Section 3.1); b: Dominant mineral in bold;  

c: Classification after the gain spectrum correction (Section 3.2). 

3.2. The Gain Spectrum Approach 

As described in Section 2.4.2, pixels in the approximate emissivity daytime image were classified as 

rich in specific minerals using the indices in Table 2. Figure 9 shows the mineral classification after 

correction with the gain spectrum. The basic mineralogy is similar to that described in Figure 8. 

However, in some areas, quartz was identified in addition to other minerals. This is exemplified in  

Figure 10 for a ROI (ROI 4) that was classified as gypsum- and carbonate-rich rock according to the 

straightforward approach (Figure 10a) and as gypsum-, carbonate- and quartz-rich rock after correction 

with the gain spectrum (Figure 10b). The classification of other ROIs and the resemblance to the XRD 

analysis results are shown in Table 3. The resulting map of the major minerals is in agreement with the 

geological map of the area, as shown in Figure 9. Across the flight line (southwest to northeast),  

the mineralogy changes from gypsum- and carbonate-rich rocks (Mohila formation “tr3”), interrupted 

by intrusion of volcaniclastic rocks (“im”) containing silicates (feldspars, “mafic” minerals and 

quartz), to quartz-rich rocks (Inmar formation “jl2”) and quartz- and carbonate-rich rocks in the 

northeast part (Kurnub group “lck”). The presence of carbonates in the northeast part demonstrates the 

contribution of weathering processes occurring in Har Ardon (Hevyon formation “c1”, outside the 

flight line) with an elevation of 700 m above sea level, adding carbonates to the lower quartz-rich 

plains (500 m above sea level). It should be emphasized that quartz and other silicates (mainly 

feldspars) are featureless in the VNIR-SWIR spectral region, and therefore these minerals can only be 
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identified with a LWIR sensor. The sub-classification of feldspars vs. clay was based on the 

wavelength of the silicate feature, 9.57 μm for feldspars vs. 9.29 μm for clay minerals, as exemplified in 

Figure 11 (and in accordance with Figure 5). 

 

Figure 9. Mineral map of the bottom surface of Makhtesh Ramon. The “mafic” minerals 

refer to mineralogy similar to ROI 3 which was mapped by applying the Spectral Angle 

Mapper algorithm [15] with the ROI 3 Ls/Lb spectrum as the endmember spectrum. 

Symbol Geology

βlc Basalt flows (Basalt, basanite, tephrite, nephelinite) Lower Cretaceous

c1 Hevyon Fm. (Limestone, dolostone, marl, chert, sandstone 44 m) Albian-Cenomanian 

c2 En Yorqe'am, Zafit and Avnon fms. (Limestone, dolostone, marl, chert 124 m) Cenomanian

im Intrusions and volcaniclastic rocks (Basalt) Mesozoic

jl1 Mishor and Ardon fms. (Dolostone, limestone, clay, standstone21 m) Lower Jurassic

jl2 Inmar Fm. (Sandstone, clay 120 m) Lower Jurassic

jm Mahmal, Zohar and Matmor fms. (Sandstones, limestones, marl, clay) Middle Jurassic

lck Kurnub Group (Sandstone, mudstone, clay, pebbly sandstone, conglomerate 240 m) Lower Cretaceous

q Alluvium (Gravel, sand, silt) Quaternary

tr1 Gevanim Fm. (Sandstone, limestone, siltstone, clay 68 m) Lower Triassic

tr2 Saharonim Fm. (Limestone, clay, marl, dolostone, sandstone, gypsum 117 m) Middle Triassic

tr3 Mohila Fm. (Gypsum, dolostone, limestone, clay 202 m) Upper Triassic
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Figure 10. (a) Ls/Lb spectra and (b) approximate emissivity spectrum of ROI 4. The 

relevant features are emphasized with thick lines for the identified minerals. 

 

Figure 11. Approximate emissivity spectrum of two ROIs representing two types of 

silicates-rich rocks. The relevant features are emphasized with thick lines for the  

identified minerals. 

4. Summary and Conclusions 

Dozens of scientific papers and reports have been published on geology, climatology, ecology and 

HRS studies of the Makhtesh Ramon area [16–21]. The current study presents the first airborne  

LWIR HRS campaign in this area, with the AisaOWL hyperspectral sensor. The ability to detect 

quartz, other silicates (feldspars and clay minerals), gypsum and carbonates in the LWIR region  

(8–12 μm spectral range) enabled mapping the spatial distribution of the dominant minerals in the 

bottom surface of Makhtesh Ramon. It should be mentioned that quartz and feldspars can only be 

mapped using the LWIR HRS data since the silicon-oxygen bond (Si-O) stretching vibrations in quartz 

and feldspars, as well as in other silicates, exhibit spectral features only in TIR, mainly in the LWIR 

region [22–24], whereas clay minerals, gypsum and carbonates can also be detected in the SWIR 

spectral region. The proposed approach is based on the fact that the contribution of the atmosphere to 

the at-sensor radiance measured from the surface is expressed differently during the day and at night. 
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In the daytime, the radiation emitted from the warmer surface is absorbed by the atmosphere whereas 

at night, when the surface becomes as cold as (or colder than) the atmosphere, the emission from the 

gases adds to the radiation emitted from the surface. The at-sensor radiance (Ls) of each pixel in the 

day and night images was divided by a fitted tangent blackbody radiation curve (Lb). The 

identification of spectral features in both day and night Ls/Lb spectra enabled mapping the content of 

minerals in the surface. Such features must be significant and larger than atmospheric features to be 

identified. The resultant mineralogy, including quartz, other silicates, gypsum and carbonates, was in 

quite good agreement with the mineralogy of selected rock samples which were collected from the 

study area as derived from XRD analysis. The Ls/Lb spectrum of a specific surface was selected as the 

gain spectrum because there were no spectral similarities between day and night over the entire 

spectral range, only atmospheric features. The spectrum of each pixel in the Ls/Lb image was divided 

by the gain-factor to reduce the atmospheric contribution, emphasize the mineralogical features in each 

pixel and improve the mineral classification. The resulting mineral image, classifying the major 

minerals in each pixel, was in agreement with the geological map of the area. 

The proposed procedure is a direct approach, with no need to correct for atmosphere, although it 

might not be applicable to fine mineralogical classification and depends on acquiring both day and 

night images. Alternatively, once an in situ surface presenting the atmosphere’s contribution is known 

to be present in the study area, its radiance can be used to calculate an approximated emissivity from a 

day or night image. Such a surface, with a featureless emissivity spectrum, should be characterized by 

low thermal inertia so that the radiation emitted from the warmer surface during the day is absorbed by 

the atmosphere, or the atmospheric emission adds to the radiation emitted from the colder surface  

at night. In this way, atmospheric features can be identified in the at-sensor radiance measured from 

the surface. 
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