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Abstract: Vegetation plays a key role in the environmental function of wetlands. The  

Ramsar-listed wetlands of the Magela Creek floodplain in Northern Australia are identified as 

being at risk from weeds, fire and climate change. In addition, the floodplain is a downstream 

receiving environment for the Ranger Uranium Mine. Accurate methods for mapping wetland 

vegetation are required to provide contemporary baselines of annual vegetation dynamics on 

the floodplain to assist with analysing any potential change during and after minesite 

rehabilitation. The aim of this study was to develop and test the applicability of geographic 

object-based image analysis including decision tree classification to classify WorldView-2 

imagery and LiDAR-derived ancillary data to map the aquatic vegetation communities of the 

Magela Creek floodplain. Results of the decision tree classification were compared against a 

Random Forests classification. The resulting maps showed the 12 major vegetation 

communities that exist on the Magela Creek floodplain and their distribution for May 2010. 

The decision tree classification method provided an overall accuracy of 78% which was 

significantly higher than the overall accuracy of the Random Forests classification (67%). 

Most of the error in both classifications was associated with confusion between spectrally 

similar classes dominated by grasses, such as Hymenachne and Pseudoraphis. In addition, the 

extent of the sedge Eleocharis was under-estimated in both cases. This suggests the method 

could be useful for mapping wetlands where statistical-based supervised classifications have 

achieved less than satisfactory results. Based upon the results, the decision tree method will 

form part of an ongoing operational monitoring program. 
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1. Introduction 

Vegetation is a vital component, and plays an important role in the environmental function, of 

wetland ecosystems [1]. The mapping and monitoring of vegetation status are key technical tasks 

required for the sustainable management of wetland ecosystems. In addition, detectable changes in 

vegetation structure and distribution in wetlands may be indicators of system change which maybe 

natural or the result of degradation. Satellite multispectral imagery can be used to detect the spectral 

characteristics of features on the Earth’s surface which in turn can be linked to bio-physical parameters 

of the region under investigation. Remote sensing has been a popular tool for mapping wetlands [2,3] 

and has advantages over field-based techniques, which can be resource intensive and problematic 

when the study area is remote and hazardous. 

There have been a number of recent reviews of remote sensing of wetlands [2,4–6]. Remote sensing 

examples show that Landsat imagery has been used to successfully map many wetlands across the 

planet [7–9]. Aerial photography has been used to map wetlands with success, and despite the limited 

spectral information, is the preferred option for some researchers over moderate resolution satellite 

imagery such as Landsat. The finer spatial resolution of aerial photography enables the detection of 

features and classification of a large number of classes [5,10,11]. Synthetic aperture radar (SAR) data 

has also been used to map wetland vegetation and is often preferred due to the sensitivity of 

microwave energy to soil moisture and its ability to penetrate vegetative canopies [4]. L-band SAR 

data has been successful in discriminating inundated areas that are vegetated, such as Melaleuca 

swamps [12]. In addition, the fusion of optical and radar data has been shown to be effective in 

mapping long term vegetation and inundation dynamics of tropical floodplains [12]. 

The optical remote sensing of wetland vegetation can be problematic. For example, medium spatial 

resolution (MSR) imagery (with pixels with a ground sample distance (GSD) of 10–30 m), such as 

Landsat TM data, have proven insufficient for discriminating vegetation species in detailed wetland 

environments [10,13,14]. According to Adam et al. [2], MSR imagery is spatially and spectrally too 

coarse to distinguish the fine ecological divisions and gradients between vegetation units in wetland 

ecosystems. Boyden et al. [9] identified a number of challenges for remote sensing of monsoonal 

wetland environments, mostly associated with the highly variable annual rainfall and subsequent 

variation in water extent and levels within the floodplain. The use of high spatial resolution (HSR) 

multispectral satellite data (GSD < 5 m) should address the issues raised by Adam et al. [2]. However, 

HSR data displays greater within-class spectral variability than MSR data, and consequently, it is more 

difficult to discriminate spectrally mixed land covers using per-pixel classifications. 

To reduce the spurious classification of pixels in HSR imagery, geographical object-based image 

analysis (GEOBIA) methods are widely used [15,16], whereby imagery is initially segmented into 

homogenous image objects that reflect spatial patterns in the imagery prior to classification. While the 

concepts of image segmentation and object classification have been around for several decades [17], 
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the emergence of robust object-oriented approaches to the automated classification of satellite imagery 

appears to be one of the major advances in image processing in the last ten years [18]. GEOBIA has 

recently been identified as a paradigm [15] and is finding increasing popularity particularly when 

applied to HSR satellite imagery [19]. Within HSR imagery, pixels more closely approximate these 

landscape objects or their components [20]. 

GEOBIA involves the partitioning of remotely sensed imagery into spectrally homogeneous image 

objects and using the spectral, spatial and topological features of the objects to assist with image 

classification. The classification of the image objects then not only uses the spectral features of the 

objects but also uses topological and hierarchical relationships between the image objects [18,21]. 

Ancillary data, such as topographic information, may also be included to improve classification 

accuracies. The steps of segmentation and classification are typically iterative through an analysis 

creating a step-wise approach to classification. 

Coincident with the increasing use of GEOBIA applications for classifying HSR imagery has been the 

utilisation of sophisticated algorithms from machine learning, such as Random Forests (RF) as methods 

of interpreting HSR data [22]. RF is an ensemble classifier that builds a forest of classification trees, 

using a different bootstrapped training sample and randomly selected set of predictor variables for each 

tree. Unweighted voting is then used to produce an overall prediction for each site in the sample [22,23]. 

RF has been previously used for high accuracy vegetation classification in a number of mapping 

applications, including forest communities [24], invasive species [25–27], and the estimation the 

distribution of rare species [25]. It has also been shown to perform well in comparison to decision trees 

and other ensemble classifiers [28] and can capture complex, non-linear interactions among noisy,  

non-normal predictor variables [24,25]. In addition, RF provides measures of variable importance that 

can be used for further interpretation [24,25,28]. 

According to the criteria of the Ramsar Wetlands Convention, the wetlands within Kakadu National 

Park (KNP), Northern Australia have been designated as internationally important [29]. The wetlands, 

including the floodplain within the Magela Creek catchment are significant not only in their 

biogeographical context, but also for the diversity of plant communities [29] as well as habitat refuges for 

abundant and diverse waterbird populations [30,31]. KNP’s World Heritage listing in part refers to the 

natural heritage value of the diversity and endemism of the wetland vegetation [29]. Current landscape 

level ecological risks within the region are identified as weeds, feral animals and unmanaged wildfire [32]. 

In addition, the floodplain is a downstream receiving environment for Ranger Uranium Mine. 

The spatial distribution of a number of the vegetation communities is annually dynamic, although 

reasons for the dynamics are not fully understood. The annual change has been observed as a naturally 

occurring phenomenon and, despite the importance of these wetlands, there has been little research of 

the dynamics [29]. Finlayson et al. [33] have postulated that the major determinant in the composition 

of flora was the duration and period of inundation, with lesser contributions from other factors such as 

water flow velocity and depth. 

Mapping of the communities within the floodplain at the appropriate spatial and temporal scale can 

provide information to determine the drivers of the dynamics and establish a baseline for natural 

variability, which will be useful for monitoring this offsite environment when rehabilitation of Ranger 

uranium mine takes place. Vegetation community mapping of the floodplain will also inform 

ecological risk assessment that forms a basis for park management [32]. 
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The aim of this project is to develop and test the utility of a decision-based methodology to 

accurately classify the vegetation communities of the Magela Creek floodplain using high spatial 

resolution multispectral satellite imagery and LiDAR-derived ancillary data. The procedure involves 

the application of GEOBIA techniques to segment and classify the imagery and data. To test the 

performance of the decision-based method, the results are compared against a Random Forests 

classification of the same data. 

2. Methods 

2.1. Study Site Description  

The Magela Creek sub-catchment is located on the boundary between KNP and Western Arnhem 

Land, in the Alligator Rivers Region (ARR) of Australia’s Northern Territory about 250 km east of 

Darwin (Figure 1). The ARR covers an area of approximately 28,000 km2, including the World Heritage 

listed KNP. Magela creek is a seasonally-flowing tributary of the East Alligator River, originating in the 

sandstone Arnhem Land plateau [34]. There are ten distinct reaches of the creek [35]: The first seven 

reaches are channels intersecting the escarpment; the eighth reach consists of the anabranching sandbed 

channels of the lowlands (adjacent to Ranger Uranium Mine); the ninth reach is the narrow Mudginberri 

Corridor (a series of billabongs and connecting channels) and the Magela Creek floodplain (consisting 

mostly of seasonally inundated black-clay with a number of permanent billabongs); and the tenth is a 

single channel that flows into the East Alligator River. The corridor and floodplain sections (reach 9) are 

the focus of this research. The floodplain extent is over 220 km2. 

Floodplain vegetation is primarily Paperbark (Melaleuca spp.) forests, open perennial and annual 

swamps, billabongs and grass/sedge/herb fields. Major ecological weeds are Para grass (Eurochloa 

mutica), and Salvinia molesta. Previous research has identified 10 major vegetation communities within 

the Magela Creek floodplain [33], the species composition of most communities can be seasonally 

dynamic [29]. The most recent community level vegetation map for the whole of the Magela Creek 

floodplain was based on time series (May–September 2006) Landsat 5 TM satellite imagery [9]. Sixteen 

classes were identified and then merged into 10 vegetation community types. This study has identified 

12 vegetation classes. Hymenachne grassland is dominated by H. acutigluma throughout the year. Other 

species that may occur include Oryza meridionalis, Nymphaea spp., and Pseudoraphis spinescens [33]. 

The classes Melaleuca woodland and Melaleuca open forest typically contain M. cajaputi and  

M. viridiflora in the northern regions and at the edges of the floodplain, and M. leucadendra in the 

backswamps that are inundated for most of the year (December–August) [33]. Woodland communities 

have 10%–50% woody cover, whereas open forest communities have 50%–70% cover. These 

communities are typically inundated for 5–8 months of the year [29]. The Oryza grassland class is 

dominated by the annual grass, Oryza meridionalis towards the end of the Wet season. In the Dry, it is 

mostly bare ground or dead stems. The Pseudoraphis spinescens grassland class occurs in the southern 

half of the floodplain. The class, Pseudoraphis/Hymenachne consists of areas that are co-dominated by 

P. spinescens and H. acutigluma. Larger areas of Eleocharis dulcis sedgeland class mostly occupy the 

northern areas of the floodplain. The weed, Urochloa mutica (Para grass), is an invasive species from 

Africa that can form dense monocultures and outcompetes native vegetation in communities of 
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Hymenachne, Oryza and Eleocharis [36]. This community occurs mostly in the central plains region. 

The class, Nelumbo herbland, is dominated by the water lilies, Nelumbo nucifera or to a lesser extent 

Nymphoides spp. These communities occur in permanent and semi-permanent wet areas. Other species 

that may be present include Leersia hexandra, Hymenachne acutigluma, Nymphaea spp. The floating 

fern, Salvinia molesta, can completely cover small areas of open water. The class, Leersia hexandra 

grassland can form large floating mats. The Mangrove communities are located mostly adjacent to the 

Magela Creek where it enters the tidal East Alligator River. 

 

Figure 1. Location of the study site and extents of three WorldView-2 images used. 

2.2. Data Sets 

The data sets used in this study included high spatial resolution multispectral satellite image, 

elevation and canopy height data and field data. The data sets are summarised in Table 1 and described 

in detail in the following sections. 

2.2.1. Multispectral Data 

The primary data set for this project consisted of three overlapping scenes of WorldView-2 (WV-2) 

multispectral data captured at approximately 1130 ACST, 11 May 2010. The sensors onboard the  

WV-2 satellite acquire data with image pixels representing 2 m ground sample distance (GSD) at 

nadir. The multispectral data consist of 8 spectral bands coastal (400–450 nm), blue (450–510 nm), 
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green (510–580 nm), yellow (585–625 nm), red (630–690 nm), red edge (705–745 nm), NIR1  

(770–895 nm), and NIR2 (860–1040 nm). For a detailed description of the sensor and data 

characteristics see Updike and Comp [37]. One feature that distinguishes WV-2 data from other HSR 

multispectral satellite data is the increased spectral resolution resulting from the inclusion of the 

coastal, yellow, red edge and NIR2 bands. Of particular interest to vegetation analysis is the red edge 

band which is optimal for the spectral characterisation of chlorophyll and water deficit in vegetation 

biomass, and thus useful for detecting vegetation under stress [38]. The red edge is defined as the 

abrupt change in leaf reflectance between 680 and 780 nm resulting from the strong chlorophyll 

absorption in the red and high reflectance in the NIR due to internal leaf scattering [39].  Red edge 

reflectance has been found to be strongly correlated to plant biochemical parameters (including 

chlorophyll content) and biophysical parameters (including leaf area index) [40]. Vegetation indices 

including the WV-2 red edge band have been used successfully to estimate wetland biomass [41]. 

Table 1. List of remotely sensed and field data used for the classification of Magela Creek 

floodplain vegetation communities, as well as the validation of the classification. 

Data Date Relevant or Derived Information Use of Data 

WorldView-2 

imagery 
May 2010 8 spectral bands in VNIR 

Spectral class discrimination 

including derivation of indices 

SRTM Digital 

Elevation Model 

February 

2000 
Terrain (elevation) Floodplain boundary delineation 

Air photo DEM June 2006 Terrain (elevation) 
Floodplain boundary delineation 

(upper reaches) 

Canopy Height 

Model derived from 

LiDAR data 

October 

2011 

Canopy height and proportional 

cover of woody species (Melaleuca 

and mangroves) 

Identification of woody cover 

classes 

Helicopter survey May 2010 
Dominant species and proportional 

cover 
Validation data 

Airboat survey May 2010 
Proportional cover and species 

within homogeneous patches 
Validation data 

The imagery acquired covered approximately 730 km2 of the Magela Creek sub-catchment 

including the 220 km2 of the Magela Creek floodplain (Figure 1). As the requested study area 

exceeded the maximum swath width of the WorldView-2 satellite, three images were acquired during 

the satellite overpass (Table 2). The area of the image covered by Region 1 has approximately 1 km2 

overlap with the Region 2 image. For Regions 2 and 3, there exists an overlap of 40 km2 between the 

two images. 

The mean satellite azimuth for the Region 1 image was noticeably different to Regions 2 and 3 

(Figure 2a). As a result, there was visible sun glint from patches of water in Region 1, where this 

is not evident in Regions 2 and 3 (Figure 2b). 
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Table 2. Summary of the specifications for the three WorldView-2 images acquired for 

this study. 

 Region 1 Region 2 Region 3 

Time of capture 11:15:19 CST 11:14:28 CST 11:14:41 CST 

Scene centre 
12°19′26.28″S 

132°50′7.23″E 

12°26′56.68″S 

132°50′19.5″E 

12°32′21.55″S 

132°53′6.92″E 

Mean off-nadir view angle 19.2° 18.3° 16.5° 

Mean satellite azimuth 237.2° 323.2° 311.2° 

Mean satellite elevation 68.4° 69.3° 71.3° 

Area covered 196 km2 183 km2 479 km2 

Cloud cover 0.012 0.009 0.014 

  

(a) (b) 

Figure 2. (a) Azimuth (angle) and elevation (radial) of the satellite relative to the sun for 

each of the WV-2 image captures over Magela Creek floodplain, 11 May 2010. The 

position of the red circles represents the mean azimuth (angle) and elevation (radial) of the 

satellite for each of the images. The yellow circle represents the solar azimuth and 

elevation at the time of image capture. (b) The effect of different mean azimuth angles on 

the amount of sun glint from water on the floodplain for regions 1 and 2. 

2.2.2. Digital Elevation and Canopy Height Models 

Terrain information in the form of two digital elevation models (DEMs) was included to aid in 

delineating the floodplain/uplands boundary and in masking out non-target land covers such as the 

surrounding savanna and escarpment outliers. This eliminated unnecessary analysis of non-floodplain 

surfaces. The primary DEM was Geoscience Australia’s 1 Arc Second Digital Elevation Model 

Version 1.0 derived from the Shuttle Radar Topography Mission (SRTM). The SRTM DEM with a 

spatial resolution of 30 m was included to enable the delineation of the floodplain boundary. A finer  

132°51'0"E

132°51'0"E

132°50'50"E

132°50'50"E

132°50'40"E

132°50'40"E

132°50'30"E

132°50'30"E

1
2

°2
3

'3
0

"S

1
2

°2
3

'3
0

"S

1
2

°2
3

'4
0

"S

1
2

°2
3

'4
0

"S

1
2

°2
3

'5
0

"S

1
2

°2
3

'5
0

"S

1
2

°2
4

'0
"S

1
2

°2
4

'0
"S

Darwin

Jabiru

Pine 
Creek

Darwin

m

Alligator 
Rivers 
Region

N0 500

Meters

Region 1

Region 2



Remote Sens. 2015, 7 11671 

 

 

10 m resolution DEM derived from a 2004 aerial photograph survey of KNP was also included for the 

purpose of delineating the upper reaches of the floodplain that were not well defined in the SRTM 

DEM.Initial analyses showed that the cover of Melaleuca spp. trees and shrubs and some grass and 

sedge cover, such as Eleocharis sp., were very similar spectrally and difficult to differentiate. A 

canopy height model (CHM) was incorporated into the project with the intent to distinguish between 

treed land cover and the spectrally similar but non-treed land cover. The CHM was derived from an 

airborne laser scanning (LiDAR) survey conducted within KNP between 22 October and 16 November 

2011 using a Leica ALS60 laser scanner to collect the discrete multiple return data. The survey was 

undertaken by Fugro Spatial Solutions (FSS; www.fugrospatial.com.au). The LiDAR survey covered 

most of the floodplain apart from a couple of backwater swamps and some thin upper reaches. Based 

on 63 ground control points, the horizontal and vertical accuracy provided by FSS were 0.6 m and  

0.2 m at 67% confidence levels, respectively. The root mean square error (RMSE) for the height was 

0.090 according to FSS. The accuracy of the LiDAR data was independently checked by Geoscience 

Australia, who found the RMSE for the height was was 0.438 based on 14 GCPs provided by Northern 

Territory Government. The average point density was 2 m-2; the laser beam footprint was 0.32 m, and 

the flying height was 1400 m above ground level. The gridded digital surface model (DSM) and DEM 

were created through interpolation of the LiDAR point data. The DEM was derived from last returns 

which are assumed to have hit the ground. The DSM was derived from first returns which are assumed 

to hit the top of vegetation. The CHM was calculated by subtracting the bare earth model or DEM 

derived from the LiDAR data from the DSM. The CHM consisted of a grid of 2 m cells. 

2.2.3. Field Data 

Field data, solely for validation purposes and not used for training, were collected using two 

methods. Firstly, a ‘ground’ plot survey was undertaken 17–26 May 2010 using an airboat (a flat 

bottom boat driven forward by an aircraft-style propeller for shallow water operations). The survey 

provided 28 reference sites, each representing homogenous cover consisting of one species. The 

sampling method used for this survey was random (although confined by accessibility) with the 

reference data collected using an oblique visual estimation of the projected cover by species. These 

observations were made from the deck of the airboat while stationary. The second method involved a 

systematic helicopter survey undertaken on 29 May 2010. This survey provided a further 100 reference 

sites. For these sites, the location, dominant species and proportional cover were recorded based on 

visual estimates from photos taken during the flight. All 128 sites are shown in Figure 3, although two 

were not used; one due to aligning with cloud cover and the other was outside the area of study. 

2.3. Image Pre-Processing and Analysis 

The steps involved pre-processing and analysing the data are shown in Figure 4. Analysis was based 

on the geographical object-based image analysis (GEOBIA) approach. 

All imagery were geometrically orthorectified using the sensor’s rational polynomial coefficients and 

ground control points (GCPs) based on easily identifiable tarpaulins placed throughout the scene with 

centre point locations recorded using a differential GPS. The surface model for the orthorectification was 
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the SRTM DEM data set. Accuracy assessment of the rectification was based on six independent GCPs 

with a root mean square error of 1.82 m [42,43]. 

 

Figure 3. Location of reference data collected across the floodplain. 

The three images were then radiometrically calibrated to surface reflectance using the FLAASH 

atmospheric correction algorithm based on the MODTRAN radiative transfer model [44]. Two 

validation methods were used to determine the quality of FLAASH surface reflectance model. The 

first method involved comparing sample areas of the FLAASH corrected imagery with the 

corresponding field-based reflectance. Within the Regions 2 and 3 imagery, mean FLAASH 

reflectance values for each band were extracted for locations corresponding to a total of 24 targets 

measured in the field along with two calibration panels. Field spectra were collected between the hours 

of 10:00 a.m. and 3:00 p.m. local time using a FieldSpecPro-FR spectrometer (covering 350–2500 nm) 

(ASD Inc). Spectra were captured using a 25º field of view (FoV) at nadir with the averaging sample 

spectrum set to 25. The sensor height was set to 1 m for targets on land and 0.5 m over water, resulting 

in an approximate ground view swath of 44 cm and 22 cm in diameter, respectively. A Labsphere 
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Spectralon® white reference panel was used for calibration. Between each white reference sample and 

dark current calibration, a maximum of four spectral samples were collected. The number of samples 

(between 9 and 25) obtained for each target was dependent on the variance observed within the target. 

The area sub-sampled for most targets was 25 m
2
. The location of each target was recorded using a 

GPS. The Region 1 image was not considered in this validation as no field spectra were collected for 

this region. A block of at least six pixels were extracted for each target from the FLAASH corrected 

imagery avoiding mixed pixels and adjacency effects. 

 

Figure 4. The image analysis approach used for wetland vegetation mapping. 

The second validation method compared reflectance from the FLAASH model with previously 

published empirical line (EL) modeled reflectance derived from the same imagery [43]. Two hundred 

randomly sampled points were generated within both Region 2 and 3. The corresponding pixel values 

for each band for both EL- and FLAASH- derived reflectance data sets were assigned to each of the 

random points. The EL- and FLAASH- derived reflectance values were then plotted against the other 

and r2 values determined. Again, the Region 1 image was not able to be validated due to no  

ground-based spectra available. 

2.4. Image Segmentation 

The image was segmented in a number of steps. The first segmentation was used to delineate the 

floodplain boundary to confine further analysis to the floodplain. There is a visibly distinct boundary 

between most of the floodplain and the surrounding savanna in the WV-2 imagery and a contour based 

on the SRTM DEM at 6 m closely approximated this boundary. Thus, a threshold height (z) value of  

6 m based on the SRTM DEM was used to split the imagery into floodplain (z < 6 m) and  
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non-floodplain (z ≥ 6 m) objects for the majority of the floodplain. However, the lack of spatial detail 

in the SRTM DEM (30 m GSD) was less effective in delineating the boundary in the upper reaches of 

the floodplain (towards the southern extent of the imagery) and the boundary was poorly defined. To 

compensate for this, the finer scale aerial photography based DEM (10 m GSD) was used for boundary 

delineation for the upper reaches with the same height threshold value. The boundary was then 

manually adjusted within a GIS using visual interpretation of the WV-2 imagery to provide a complete 

floodplain boundary. Further processing and analysis was restricted to within the floodplain object. 

After floodplain delineation, the imagery within the floodplain boundary was split into two 

segments based upon the view angles shown in Figure 2: (a) a Region 1 object and (b) a Regions 2 and 

3 object. Subsequent image processing and analysis was varied for each of these two segments due to 

the view-angle-based spectral differences. However, both objects were further segmented into image 

objects using the multiresolution segmentation algorithm within the eCognition® image processing  

software [21]. The algorithm is based upon the fractal net evolution approach [45] and is primarily an 

iterative bottom-up segmentation method starting with individual pixels and merging these pixels 

based upon pixel heterogeneity and object shape and colour [46]. These are determined within the 

algorithm by two parameters; (i) scale and (ii) colour versus form. The scale parameter within the 

algorithm is set by the operator and is influenced by the heterogeneity of the pixels. The colour 

parameter balances the homogeneity of an object’s colour with the homogeneity of its shape. The form 

parameter (compactness) is a balance between the smoothness of a segment’s border and its 

compactness. The weighting of these parameters establishes the homogeneity criterion for the image 

objects. Visual inspections of the image objects resulting from a number of segmentations using 

variations in parameter weightings were used to determine the overall optimal weighting which were 

scale parameter = 200, colour = 0.7 and compactness = 0.3. 

2.5. Analysis 

Analysis of the image objects involved two main steps: (1) separating treed and non-treed cover 

classes based on the CHM; and (2) implementing a decision tree classification on the non-treed objects 

based mainly on the spectral information of the image objects. 

2.5.1. Separating Woody from Non-Woody Cover 

The LiDAR derived CHM was used to distinguish image objects that contained trees from image 

objects with no trees (Figure 5). A detailed description of this method can be found in [47]. The 

method involved identifying potential candidate objects containing trees using a minimum mean 

canopy height threshold of 0.8 m. Objects with mean canopy heights above this threshold were 

assumed to have high above ground biomass, which may include trees and were assigned as potentially 

treed objects. Within the potentially treed objects, sub-objects representing trees or clusters of trees 

were created using a threshold segmentation algorithm assuming trees consisted of cells of the CHM 

above 4 m (the observed minimum height of detectable trees). Sub-objects with spurious high values 

were removed from the treed objects class using 25 m as a ceiling value. Additionally, objects were 

eliminated from the potentially treed class if they contained no tree sub-objects. The remaining treed 

objects were then assigned to a tree class depending on the proportion of tree sub-objects per treed 
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object: Open forest was greater than 50% proportional cover, Woodland 10%–50% proportional cover, 

Open Woodland less than 10% proportional cover. To maintain cover proportions consistent with 

those described in the Australian Soil and Land Survey Field Handbook [48], the Open woodland and 

Woodland were grouped together into a single Woodland class. In Region 1, treed objects were 

assigned to the Mangrove class based on proximity to the East Alligator River. Otherwise they were 

assigned as either Melaleuca open forest or Melaleuca woodland. In Regions 2 and 3, there were no 

Mangroves, so objects were assigned as either Melaleuca open forest or Melaleuca woodland. For 

floodplain objects outside the LiDAR coverage (two backswamp reaches), classification was 

conducted as for non-treed objects. 

   

(a) (b) (c) 

Figure 5. A potentially treed object (red polygon) (a) the Canopy Height Model (b) and 

tree sub-objects (c) Scale bar on top left of each image is 100 m. 

2.5.2. Manual Decision Tree Classification 

The classification of the non-treed image objects into the vegetation community classes was 

implemented using a set of rules that followed a decision tree classification model. Decision tree (DT) 

analysis uses the dichotomous splitting of data based on thresholds of the most relevant variables in the 

data. The advantages of using a decision tree classification over standard statistical classifiers are that 

they can (i) incorporate a variety of data sources (such as the multispectral imagery, digital elevation 

models and canopy height models used here); (ii) handle both continuous and categorical information; 

and (iii) the most important variables among those available for the classification are selected [49]. 

The DT analysis used progressive dichotomous grouping of the non-treed image objects using 

thresholds that formed the basis of the splitting rules. The thresholds incorporated into the rules were 

predominantly based upon the four spectral indices described in Table 3. Based upon observed surface 

spectral variations between the image objects and analysis of the mean feature values and statistics of 

objects of known vegetation types, the thresholds decided upon were considered optimal for splitting 

groups of objects. The four spectral indices (Equations (1)–(4)) used were: (i) the forest discrimination 

index (FDI) after Bunting and Lucas [50]; (ii) the NDVI or Normalized Difference Vegetation  

Index [51]; (iii) the Enhanced Vegetation Index (EVI) [52]; and (iv) a band ratio, (NREB) was also 



Remote Sens. 2015, 7 11676 

 

 

included that appeared useful in discriminating Nelumbo spp. cover. Within the imagery, the greatest 

reflectance difference and visual contrast between the floating or emergent broad-leafed vegetation and 

other vegetation (including grasses) was observed in the three-dimensional feature space described by 

the NIR2, Red edge and Blue bands (Figure 6). Based on this, an assumption was made that a reliable 

separation between the two cover types could be achieved via a combination of the three bands. The 

premise of the NREB is that, for the time of year of image capture, the broad-leafed macrophytic 

vegetation (typically broad horizontal leaves) displays greater homogeneity in cover than the grasses 

(typically a mixture of thin green leaves, vertical stems and shadowing) producing a higher NREB value 

(Figure 7). Additionally, the band ratio has been shown to successfully map Nelumbo spp. cover from 

multitemporal WV-2 imagery over the area [47]. 

 

Figure 6. Three dimensional plot of feature space for the NIR2, Red edge and Blue bands. 

This shows the separation between sample objects of Nelumbo sp. and other vegetation types. 

The decision trees for Region 1 and Regions 2 and 3 are shown in Figures 8 and 9 respectively. For 

some branches of the decision trees, it was necessary to undertake further segmentation to split some 

objects into smaller objects (using scale parameters of 100 and 50) to achieve further class discrimination. 

2.5.3 Random Forests Classification 

The classification of the non-treed image objects into the vegetation community classes was also 

implemented using the Random Forests ensemble classifier. In the RF analysis, the number of samples 

was 135. The samples used were selected using a systematic sampling method to ensure a minimum of 

6 samples per class and identified using expert visual analysis of a pan-sharpened version (GSD 0.6 m) 

of the imagery. For the other parameters, the number of trees was set to 200 and the number of features 

used was eight. These were the four indices from Table 3 plus four band values: mean Green, mean 

Red Edge, Standard deviation NIR 2, and Standard deviation Red Edge, as per the DT method. 
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Additionally, in line with the DT method, separate RF classifications were run for Region 1 and 

Regions 2 and 3. For each of the two regions, separate RF classifications were conducted also for areas 

within and outside the coverage of the CHM. 

 

Figure 7. Object values for the band ratio NIR2+RE−B for a sample of objects of Nelumbo 

spp. and other floodplain vegetation. Dashed horizontal line is the mean for the Nelumbo 

spp. objects in the graph and the solid line is the mean for the Other objects. 

 

Figure 8. The decision tree for the classification of Region 1 objects. 
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2.6. Accuracy Assessment 

The accuracies of the classified floodplain vegetation maps for 2010 were assessed by comparing the 

vegetation community described in the map to the community defined in the reference (field) data at 

those particular locations. These comparisons were undertaken using confusion matrices [53] From the 

matrices, User’s and Producer’s accuracies were calculated for each class along with the overall 

classification accuracies, and the Kappa statistics [54]. While Kappa indices have long been popular in 

remote sensing literature as a measure of overall accuracy [53], their worth has recently been criticised as 

(a) they provide no extra information that is not already provided by the overall accuracy; (b) are hard to 

interpret and (c) can be misleading [55]. Kappa is included here purely for comparison to other studies. 

 

Figure 9. The decision tree for objects in Regions 2 and 3. 

To provide further information on the accuracy of the classification, the confusion matrices for each 

classification were summarized by computing quantity disagreement and allocation disagreement [55]. 

Quantity disagreement is the difference between the reference and the classification categories due to 

an imperfect match in the overall proportions of all mapped categories. Allocation disagreement is the 
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difference between the reference and the classification due to an imperfect match in the spatial 

allocations of the mapped categories, given the categorical proportions in the reference and 

classification. The allocation disagreement was split into two components: exchange and shift [56]. 

Exchange is the component of allocation disagreement that pairwise confusions cause and shift is the 

component of allocation disagreement that non-pairwise confusions cause [56]. The total disagreement 

or error is the sum of the quantity disagreement, exchange and shift. 

Table 3. The spectral indices used in the decision tree classifications. FDI = forest 

discrimantaion index, NDVI = normalized difference vegetation index, EVI = enhanced 

vegetation index and NREB is a band ratio. Blue = blue band, NIR2 = near infrared 2 

band, Red = red band, RE = red edge band. 

Index Equation  Index Notes 

FDI 𝑁𝐼𝑅2 − (𝑅𝐸 + 𝐵𝑙𝑢𝑒) (1) 

Enabled the separation of photosynthetic 

vegetation from bare soil and non-PS vegetation. 

In particular, it separates woody canopy from 

understorey and ground cover. 

NDVI 𝑁𝐼𝑅2 − 𝑅𝑒𝑑
𝑁𝐼𝑅2 + 𝑅𝑒𝑑⁄  (2) 

Strongly related to photosynthetic material. 

Enabled discrimination between actively 

photosynthesising vegetation, senescent 

vegetation such as Oryza, and open water. 

EVI* 
𝐺 × (𝑁𝐼𝑅2 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅2 + (𝐶1 × 𝑅𝑒𝑑) + (𝐶2 × 𝐵𝑙𝑢𝑒) + 𝐿
 (3) Strongly correlated to evapotranspiration. 

NREB (𝑁𝐼𝑅2 + 𝑅𝐸) − 𝐵𝑙𝑢𝑒 (4) 

Highlighted photosynthetic vegetation that is 

highly reflective and homogeneous; in this case, 

emergent communities dominated by Nelumbo, 

Leersia, and Salvinia. 

* G=2.5, C1=6, C2=7.5 and L=1. 

Two tests were conducted to compare the results of the DT and RF classifications, assuming the 

null hypothesis that the same population proportion of objects was correctly classified for both 

classification methods. A z-test was conducted using the Kappa value from both classifications [53]. In 

addition, a McNemar’s test [57,58] was used to test the significance of the difference between the 

decision tree (DT) and the RF classifications. The test is based on the chi-squared statisitic (χ2) and is 

calculated using Equation (5): 

𝜒2 =
(𝑓12 − 𝑓21)

2

(𝑓12 + 𝑓21)
⁄  (5) 

where f12 was the number of correct samples for the first classification that were incorrect in the second, 

and f21 was the number of correct samples for the second classification that were wrong in the first. 

3. Results 

3.1. Accuracy of the FLAASH Radiometric Calibration 

In the comparison between the field spectra and FLAASH derived reflectance (Figure 10), all bands 

showed statistically significant relationships between FLAASH derived reflectance and field 
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reflectance data. r2 values for bands 1 to 6 were greater than 0.9. Bands 7 and 8 (the NIR bands) 

recorded slightly lower r2 values (0.85 and 0.82 respectively), primarily due to the influence of two 

outliers over water. In the regression analysis between all bands in the FLAASH derived reflectance 

and the EL reflectance from [43], r2 was greater than 0.99. 

3.2. Classification Accuracy 

From the confusion matrix for the DT classification, the overall accuracy was 78% with a Kappa 

value of 0.75. User’s and Producer’s accuracies for each class are shown in Table 4. The most 

accurately delineated classes were Leersia, Melaleuca woodland and Para Grass with Producer’s 

accuracies of 80.1%, 90%, and 87.5%, and User’s accuracies of 100%, 90% and 87.5%, respectively. 

The Mangrove and Melaleuca open forest classes also had high accuracies (Producer’s accuracies of 

100% and User’s accuracies of 75%) however, the total number of reference samples for each of these 

classes was quite low (three each). A low Producer’s accuracy (57.9%) indicates there was confusion 

where Eleocharis was misclassified as Hymenachne (four instances), Oryza (two instances), 

Mangroves or Melaleuca woodland (both one instance). Of those classes with low User’s accuracies, 

24 sites that were classed as Hymenachne, nine were other classes according to the reference data with 

four being Eleocharis. In addition, there was some confusion between the Pseudoraphis/Hymenachne 

class and the separate Pseudoraphis and Hymenachne classes. After merging these three classes, the 

overall accuracy of the classification increased to almost 84%. 

The overall error for the DT classification of the Magela Creek floodplain was 22%. Quantity 

disagreement accounted for half of the total error, while exchange (8%) was greater than shift (3%) in 

the allocation disagreement. Figure 11a summarises the categorical errors for each of the 13 categories 

of the DT classification. The three classes that contributed least to the error were Melaleuca Open 

Forest, Mangrove and Leersia (0.8% quantity disagreement each). Hymenachne was the class 

contributing the most error (9.5%) divided equally between quantity disagreement and exchange. Most 

of the error was commission meaning the extent of Hymenachne was over estimated. The class with 

the next highest proportional error is Eleocharis with just over 7%, which was mostly quantity 

disagreement showing the class was under estimated in the classification. 

From the confusion matrix for the RF classification (Table 5), the overall accuracy was 66.7% with 

a Kappa value of 0.6. The most accurately delineated class was Melaleuca open forest with Producer’s 

accuracy of 100% and User’s accuracy of 75%. The Melaleuca woodland and Oryza classes also had 

high Producer’s accuracies (100% and 85.7%, respectively) however the User’s accuracies were low 

(66.7% and 60%). The low Producer’s accuracy (33.3%) indicates there was confusion where 

Mangroves was misclassified as other woody classes. As for the DT classification there was some 

confusion between the Pseudoraphis/Hymenachne class and the separate Pseudoraphis and 

Hymenachne classes resulting in low Producer’s and User‘s accuracies for these classes. By merging 

these three classes, the overall accuracy of the classification increases to 74%. 
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Figure 10. Regression plots comparing the FLAASH modelled surface reflectance with 

field based (ASD) reflectance measurements of all targets (including calibration tarpaulins) 

for all 8 WV-2 bands. 

y = 0.9217x + 0.1112

R² = 0.9819

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
L

A
A

S
H

 r
ef

le
ct

a
n

ce

ASD reflectance

Band 1

y = 0.9293x + 0.0718

R² = 0.9766

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
L

A
A

S
H

 r
ef

le
ct

a
n

ce

ASD reflectance

Band 2

y = 0.9502x + 0.0535

R² = 0.9681

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
L

A
A

S
H

 r
ef

le
ct

a
n

ce

ASD reflectance

Band 3

y = 0.9315x + 0.0498

R² = 0.9588

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
L

A
A

S
H

 r
ef

le
ct

a
n

ce

ASD reflectance

Band 4

y = 0.8702x + 0.0441

R² = 0.9348

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
L

A
A

S
H

 r
ef

le
ct

n
a
ce

ASD reflectance

Band 5

y = 0.8785x + 0.0577

R² = 0.9119

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
L

A
A

S
H

 r
ef

le
ct

a
n

ce

ASD reflectance

Band 6

y = 0.8145x + 0.0683

R² = 0.8452

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
L

A
A

S
H

 r
ef

le
ct

a
n

ce

ASD reflectance

Band 7

y = 0.8242x + 0.0568

R² = 0.881

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
L

A
A

S
H

 r
ef

le
ct

a
n

ce

ASD reflectance

Band 8



Remote Sens. 2015, 7 11682 

 

 

Table 4. Accuracy matrix for the decision tree classification. 

Reference Data 

  
Eleocharis Hymenachne Leersia Mangrove 

Melaleuca  

Open Forest 

Melaleuca  

Woodland 
Nelumbo Oryza 

Para  

Grass 

Pseudoraphis/ 

Hymenachne 
Pseudoraphis Salvinia 

Open  

Water 
Total Commission 

UA 

(%) 

C
la

ss
if

ie
d

 d
a

ta
 

Eleocharis 11 1 0 0 0 0 0 0 0 0 0 0 0 12 1 91.7 

Hymenachne 4 15 0 0 0 1 0 1 1 1 0 1 0 24 9 62.5 

Leersia 0 0 4 0 0 0 0 0 0 0 0 0 0 4 0 100 

Mangrove 1 0 0 3 0 0 0 0 0 0 0 0 0 4 1 75 

Melaleuca  

Open Foreest 
0 0 0 0 3 0 0 0 0 0 0 0 1 4 1 75 

Melaleuca  

Woodland 
1 0 0 0 0 9 0 0 0 0 0 0 0 10 10 90 

Nelumbo 0 0 1 0 0 0 5 0 0 0 0 0 1 7 2 71.4 

Oryza 2 0 0 0 0 0 0 6 0 0 0 0 0 8 2 75 

Para Grass 0 1 0 0 0 0 0 0 7 0 0 0 0 8 1 87.5 

Pseudoraphis/ 

Hymenachne 
0 1 0 0 0 0 0 0 0 13 2 2 0 18 5 72.2 

Pseudoraphis 0 0 0 0 0 0 0 0 0 2 5 0 1 8 3 62.5 

Salvinia 0 0 0 0 0 0 0 0 0 0 0 8 2 10 2 80 

Open Water 0 0 0 0 0 0 0 0 0 0 0 0 9 9 0 100 

  Total 19 18 5 3 3 10 5 7 8 16 7 11 14 126 
  

  Omission 8 3 1 0 0 1 0 1 1 3 2 3 5 
   

  PA (%) 57.9 83.3 80 100 100 90 100 85.7 87.5 81.3 71.4 72.7 64.3 
   

Overall Accuracy (%) 77.8%     
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Table 5. Accuracy matrix for the Random Forests classification. 

Reference Data 

    Eleocharis Hymenachne Leersia Mangrove 

Melaleuca  

Open  

Forest 

Melaleuca  

Woodland 
Nelumbo Oryza 

Para 

Grass 

Pseudoraphis/ 

Hymenachne 
Pseudoraphis Salvinia 

Open 

 ater 
Total Commission 

UA 

(%) 

C
la

ss
if

ie
d

 d
a

ta
 

Eleocharis 12 1 0 0 0 0 0 0 0 0 0 0 0 13 1 92.3 

Hymenachne 4 10 1 0 0 0 0 0 1 3 1 0 2 22 12 45.5 

Leersia 0 0 3 0 0 0 0 0 0 0 0 0 0 3 0 100 

Mangrove 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 100 

Melaleuca  

Open Forest 
0 0 0 1 3 0 0 0 0 0 0 0 0 4 1 75 

Melaleuca Woodland 1 1 0 1 0 10 1 0 0 1 0 0 0 15 5 66.7 

Nelumbo 0 0 0 0 0 0 3 0 0 0 0 2 2 7 4 42.9 

Oryza 1 1 0 0 0 0 0 6 1 0 0 1 0 10 4 60 

Para Grass 1 2 1 0 0 0 0 1 6 1 0 0 0 12 6 50 

Pseudoraphis/ 

Hymenachne 
0 1 0 0 0 0 0 0 0 8 1 0 0 10 2 80 

Pseudoraphis 0 2 0 0 0 0 0 0 0 3 5 0 0 10 5 50 

Salvinia 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0 100 

Open Water 0 0 0 0 0 0 1 0 0 0 0 1 10 12 2 83.3 

  Total 19 18 5 3 3 10 5 7 8 16 7 11 14 126 
  

  Omission 7 8 2 2 0 0 2 1 2 8 2 4 4 
  

   PA (%) 63.2 55.6 60 33.3 100 100 60.0 85.7 75 50 71.4 63.6 71.4 
  

 Overall Accuracy (%) 66.7% 
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(a) 

 

(b) 

Figure 11. Categorical errors for each of the 13 classes for the Magela Creek floodplain 

for (a) DT classification and (b) RF classification. 

The overall error for the RF classification of the Magela Creek floodplain was 33%. Quantity 

disagreement accounted for over half of the total error (17%), while exchange (11%) was greater than 

shift (5%) in the allocation disagreement. Figure 11b summarises the categorical errors for each of the 

13 categories of the RF classification. The three classes contributing least to the error were Melaleuca 
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Open Forest, Mangrove and Leersia (0.8% quantity disagreement each).  Hymenachne was the class 

with the most error (16%) divided between quantity disagreement (3%), shift (6%) and exchange (6%). 

This means that while some of the Hymenachne class was over estimated in extent, most of the error 

was actually confusion with other classes. The class with the next highest proportional error is 

Pseudorpahis/Hymenachne with 8%, which was mostly quantity disagreement showing the class was 

under estimated. 

3.3. Image Classification 

The resultant maps from the DT classification (Figure 12) and the RF classification (Figure 13) both 

consisted of 12 vegetation classes consistent with classes previously described in the literature as being 

present on the floodplain [33]. Also included is open water. Table 6 shows the area for each class from 

both classifications. The extent of the Leersia, Oryza, Para grass, Pseudoraphis/Hymenachne Open water 

classes was noticeably greater in the DT classification, while the extent of the Hymenachne, Melaleuca 

woodland and Pseudoraphis classes were greater in the RF classification. The RF classification mapped 

half the extent of the Mangrove communities compared to the DT classification (123 ha to 249 ha). 

From Table 7, it can be seen that the two features within the RF classification with the highest 

importance were the NREB band ration and the Mean Red edge. 

Table 6. Areas for each class for both classification methods. 

 
Decision Tree Random Forests 

Class name Area (ha) Area (ha) 

Eleocharis 1054 1291 

Hymenachne 3639 5116 

Leersia 967 69 

Mangrove 249 123 

Melaleuca open forest 822 1020 

Melaleuca woodland 5039 5917 

Nelumbo 243 267 

Oryza 4040 1820 

Para grass 2181 1095 

Pseudoraphis/Hymenachne 375 143 

Pseudoraphis 943 1441 

Salvinia 108 225 

Open Water 3589 2400 

Table 7. Importance (proportional) of features used in the RF classification. 

Feature Region 1 Region 23 Region 1 outside CHM Region 23 outside CHM 

Mean Green 0.10 0.08 0.09 0.09 

Mean Red edge 0.17 0.18 0.17 0.18 

Standard deviation NIR2 0.11 0.10 0.11 0.11 

Standard deviation Red edge 0.12 0.12 0.13 0.13 

EVI 0.12 0.11 0.12 0.11 

FDI2 0.10 0.10 0.10 0.10 

NDVI2 0.11 0.12 0.12 0.12 

NREB 0.17 0.19 0.16 0.16 
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Figure 12. Vegetation map for the Magela Creek floodplain based on DT classification,  

11 May 2010. 
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Figure 13. Vegetation map for the Magela Creek floodplain based on RF classification,  

11 May 2010. 

The z-value between the Kappa values for the two classifications was 2.42, which is greater than the 

critical value for z at the 98% confidence level (2.33). The McNemar’s test statistic was 9.8 which is 

significant at p-value of 0.01. Therefore, based on the results of these two tests, the null hypothesis of 

equal classifier performance is rejected. The DT classifier produced more accurate results than the  

RF classifier. 
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4. Discussion 

For this study, a decision tree classification was developed for classifying WorldView-2 imagery to 

map the vegetation on the Magela Creek floodplain. In addition, the results were compared to a RF 

classification of the same data. Overall, the DT classification clearly outperformed the RF 

classification as shown in the statistical tests undertaken. In addition, most classes were more 

accurately classified in the DT classification. This is most likely because the RF classification was 

reliant on purely on the statistical information from the samples selected, whereas in the DT 

classification the operator was able to select what feature to use and specify the threshold value to 

apply. Therefore, a manually derived decision tree does have merit especially where there are classes 

that are difficult to map based on purely using statistical methods. The performance of the rule set over 

the state of the art supervised classification method, Random Forests, suggests that the DT method 

may be a useful alternative for areas where wetland maps created using a supervised classification 

have less than satisfactory accuracies. The method is temporally transferrable, having been used to 

map vegetation on the Magela Creek floodplain for subsequent years 2011–2013 with only minor 

adjustments to thresholds to account for spectral variation due to slight differences in view angle and 

seasonality [47]. One way to test whether the method is spatially transferrable would be to apply it 

other wetlands in the region, which are quite different in composition [29]. 

Both vegetation classification processes were able to distinguish between the spectrally and 

structurally distinct vegetation communities within the floodplain. The use of multiple indices and 

ratios were able to differentiate between classes that appeared spectrally similar. From the summaries 

of the confusion matrix, there were a number of instances where objects were either not detected or 

misclassified. There was some difficulty in distinguishing between vegetation classes that are 

spectrally similar, most notably between the classes dominated by grasses. Previously, there has been 

noted some spectral similarity between different covers namely Oryza and Para grass [36]. Most of the 

uncertainty in the maps is due to the confusion between grass classes. By merging the three grass 

classes (Pseudopraphis, Pseudoraphis/Hymenachne and Hymenachne), the overall accuracies were for 

both classifications were increased by over 7%. In addition, there were objects that were of the same 

class of vegetation cover that were spectrally different. This is more than likely due to differences in 

growth phases as a result of water availability. For example, the floodplain margin will dry out quicker 

and grasses senesce or die earlier than those in the central floodplain. In addition, the inclusion and 

analysis of the CHM was successfully able to differentiate between spectrally similar but structurally 

different communities. Initial analysis, not presented here, based on the decision tree without the CHM 

saw overall accuracies 10% less, due to confusion particularly between trees and patches of Eleocharis. 

One outcome of interest from this research is the potential utility of the band ratio, NREB, for the 

classification of stands of emergent vegetation with floating leaves such as lilies. The use of the NREB 

ratio has been successful for mapping these stands on the floodplain over multiple dates using WV-2 

imagery [47]. Further testing of this ratio could be conducted to assess its potential in this regard for 

wetlands in other regions. 

Due to sun glint, it was difficult to discern open water and floating vegetation within Region 1. In 

addition, due to changes in reflectance associated with the view angle, the class rulesets developed for 

Regions 2 and 3 did not satisfactorily detect the classes in Region 1. This required a modified set of 
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rules and threshold values for Region 1. Although the FLAASH atmospheric correction algorithm 

accounts for view angle, it is difficult to correct for sun glint on floodplains. Ensuring the imagery is 

captured along a single path will prevent this issue from reoccurring. 

Floodplain boundary delineation was useful to limit classification to the relevant vegetation 

communities and would have not been possible using only WV-2 imagery due to spectral similarities 

between floodplain and non-floodplain surfaces. The inclusion of DEM data was useful in providing 

an initial delineation of the floodplain boundary that could easily be manually adjusted. Both DEMs 

contain uncertainty in elevation, with the 30 m resolution DEM too coarse and the 10 m DEM 

suffering from vegetation effects in the northern section. Consequently, a manual modification of the 

boundary was necessary based upon visual interpretation of the multispectral imagery. 

The classification of HSR imagery does lead to an interesting problem associated with the scale and 

resolution. The high resolution (GSD = 2 m) of the WV-2 imagery produced a map scale including a 

level of detail that may mean some small objects only contained one individual of a species. For 

example, an object of 25 pixels classified as Melaleuca open forest might be a single tree. Objects of that 

scale may not be suitable for broader landscape analysis where community level classification is needed, 

therefore classes would need to be more specific to describe an individual organism of a single species. 

The hierarchical grouping of objects within GEOBIA would be one means to address this issue. 

The vegetation maps were representative of the vegetation that existed on the floodplain in May 2010. 

The seasonal variation that is known to occur [9,33] has not been captured within this map, such as 

changes in community composition associated with the varying water level and soil moisture in the 

floodplain. The amount and periodicity of rainfall varies annually leading to different water levels and 

soil moisture availability means community distributions can vary greatly within and between years. 

Although previously undertaken for the 2006 dry season using a time-series of four sets of Landsat 

imagery [9], mapping vegetation at this temporal scale can be problematic. For a large interval of the 

year, optical satellite data of a suitable quality is unavailable due to either cloud cover or smoke haze 

and, as the year progresses, so does the area of fire-affected land cover. In addition, using HSR data from 

a commercial satellite means data collection of such temporal intensity would be cost prohibitive. 

Although it was not possible to directly compare the results of this study to the map of Boyden et al. [9] 

due to temporal, spatial and methodological differences, a couple of observations can be made. Due to 

the higher spatial resolution of the imagery, the map produced for this study had better delineation of 

class boundaries. This map however had less success at discriminating between the various grass classes 

because unlike Boyden et al. [9], this study was not able to analyse the temporal changes in spectral 

responses of grass dominated land cover. 

For reference data, it would be preferable to have more points to increase the rigour of the accuracy 

assessment, as several of the classes have limited reference data. However, gaining sufficient reference 

data is difficult using standard observation techniques due to accessibility and hazard issues associated 

with the remote environment, and resource limitations. For HSR image analysis, a number of studies 

have used the visual analysis of the base imagery to provide sufficient reference data for ground 

truthing providing what has been referred to as a pseudo accuracy assessment [53]. While this may be 

possible to undertake for easily discernible land covers, again, spectrally and texturally similar 

vegetation may be difficult to differentiate resulting in error, and bias may also be introduced by user 

influence [59]. New techniques for reference data collection using helicopter-based GPS enabled 
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videography and still photography at higher spatial resolutions than the satellite imagery have been 

trialed for subsequent data captures to enable an increased number of reference sites relative to field 

sampling effort. 

5. Conclusions  

This research tests the application of a decision tree-based GEOBIA for mapping floodplain 

vegetation using WorldView-2 high spatial resolution imagery and ancillary data produced a 

vegetation map of the Magela Creek floodplain for May 2010. Based on the confusion matrix built 

using the field reference data, the overall accuracy of the decision tree classification was 78%. Half the 

overall disagreement was quantity disagreement, with the remainder mostly being exchange with the 

majority of error being associated with confusion between grass dominant classes that were spectrally 

similar but different species composition. The overall accuracy of the RF classification was 64% with 

half the overall disagreement being quantity disagreement and the remainder mostly exchange. Again 

there was mostly confusion between the grass classes that were spectrally similar. Results of the z-test 

and McNemar’s test showed that there was a significant difference between the results of the DT and 

RF classifications and that for this project the DT method clearly outperformed the RF. These results 

suggests that the method may be useful for classifying wetlands that are difficult to map using 

supervised classification methods, such as RF. 

The maps, however, are representative of a point in time and do not account for any temporal 

variability (either seasonal or annual) in the extent and distribution of the vegetation communities on  

the floodplain. 

Due to the performance of the DT approach, the method described here (with the Pseudorpahis, 

Hymenachne and Pseudorpahis/Hymenachne classes merged into a single class) has been applied to 

mapping the floodplain vegetation in over a time-series (2010–2013) to monitor the annual variation in 

distribution and extent of the communities and changes in open water [48]. This work forms an 

integral component of an operational landscape scale off-site monitoring program for the rehabilitation 

of Ranger Uranium Mine.  
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